Issue published October 1, 2025 Previous issue

On the cover: Circadian rhythmicity of chronic pain

Taccardi, Zacharias, Gowdy, et al. report that circadian rhythms in pain intensity and immune cell profiles are indicators of reduced opioid use and improved biopsychosocial characteristics, while arrhythmic pain profiles reflect poor outcomes. The painting on the cover represents the potential for improving pain relief by restoring circadian rhythmicity. Image credit: Quána Madison.

Editorial
Abstract

Authors

Sarah Jackson, Karen D. Guth, John B. Hawley, Corinne L. Williams, Priscilla Y. Hsue, Oliver Eickelberg, Elizabeth M. McNally

×
Viewpoint
Review Series
Abstract

The complement system is an evolutionarily conserved host defense system that has evolved from invertebrates to mammals. Over time, this system has become increasingly appreciated as having effects beyond purely bacterial clearance, with clinically relevant implications in transplantation, particularly lung transplantation. For many years, complement activation in lung transplantation was largely focused on antibody-mediated injuries. However, recent studies have highlighted the importance of both canonical and noncanonical complement activation in shaping adaptive immune responses, which influence alloimmunity. These studies, together with the emergence of FDA-approved complement therapeutics and other drugs in the pipeline that function at different points of the cascade, have led to an increased interest in regulating the complement system to improve donor organ availability as well as improving both short- and long-term outcomes after lung transplantation. In this Review, we provide an overview of the when, what, and how of complement in lung transplantation, posing the questions of: when does complement activation occur, what components of the complement system are activated, and how can this activation be controlled? We conclude that complement activation occurs at multiple stages of the transplant process and that randomized controlled trials will be necessary to realize the therapeutic potential of neutralizing this activation to improve outcomes after lung transplantation.

Authors

Hrishikesh S. Kulkarni, John A. Belperio, Carl Atkinson

×

Abstract

The complement system has emerged as a critical regulator of intestinal homeostasis, inflammation, and cancer. In this Review, we explore the multifaceted roles of complement in the gastrointestinal tract, highlighting its canonical and noncanonical functions across intestinal epithelial and immune cells. Under homeostatic conditions, intestinal cells produce complement that maintains barrier integrity and modulates local immune responses, but complement dysregulation contributes to intestinal inflammation and promotes colon cancer. We discuss recent clinical and preclinical studies to provide a cohesive overview of how complement-mediated modulation of immune and nonimmune cell functions can protect or exacerbate inflammation and colon cancer development. The complement system plays a dual role in the intestine, with certain components supporting tissue protection and repair and others exacerbating inflammation. Intriguingly, distinct complement pathways modulate colon cancer progression and response to therapy, with novel findings suggesting that the C3a/C3aR axis constrains early tumor development but may limit antitumor immunity. The recent discovery of intracellular complement activation and tissue-specific complement remains vastly underexplored in the context of intestinal inflammation and colon cancer. Collectively, complement functions are context- and cell-type-dependent, acting both as a shield and a sword in intestinal diseases. Future studies dissecting the temporal and spatial dynamics of complement are essential for leveraging its potential as a biomarker and therapeutic in colon cancer.

Authors

Carsten Krieg, Silvia Guglietta

×

Abstract

The gut microbiota plays a crucial role in maintaining intestinal homeostasis and influencing various aspects of host physiology, including immune function. Recent advances have highlighted the emerging importance of the complement system, particularly the C3 protein, as a key player in microbiota-host interactions. Traditionally known for its role in innate immunity, the complement system is now recognized for its interactions with microbial communities within the gut, where it promotes immune tolerance and protects against enteric infections. This Review explores the gut complement system as a possibly novel frontier in microbiota-host communication and examines its role in shaping microbial diversity, modulating inflammatory responses, and contributing to intestinal health. We discuss the dynamic interplay between microbiota-derived signals and complement activation, with a focus on the C3 protein and its effect on both the gut microbiome and host immune responses. Furthermore, we highlight the therapeutic potential of targeting complement pathways to restore microbial balance and treat diseases such as inflammatory bowel disease and colorectal cancer. By elucidating the functions of the gut complement system, we offer insights into its potential as a target for microbiota-based interventions aimed at restoring intestinal homeostasis and preventing disease.

Authors

Xianbin Tian, Lan Zhang, Xinyang Qian, Yangqing Peng, Fengyixin Chen, Sarah Bengtson, Zhiqing Wang, Meng Wu

×
Review
Abstract

Chronic organ disease is often complicated by fibrosis, the excessive accumulation of extracellular matrix, as a consequence of dysfunctional wound healing responses. Fibrosis progressively distorts tissue architecture and eventually leads to loss of organ function, accounting for up to 45% of deaths in developed countries. Moreover, fibrosis is a major risk factor for tumor development. The few approved therapies aimed at preventing or resolving fibrosis show limited efficacy and safety. One reason for the lack of efficient antifibrotic therapies is the fact that the cell circuits driving the disease biology are still only partially understood. The circadian clock is known to regulate the physiological functions of critical organs, including the liver, kidneys, and lungs. Several experimental and clinical studies have established that circadian disruption plays an important role in the development of chronic diseases across organs involving fibrosis. These include metabolic dysfunction–associated steatotic liver disease, chronic kidney disease, and chronic obstructive pulmonary disease. Here, we provide an overview of the circadian mechanisms that play critical roles in mediating physiological functions in the liver, kidneys, and lungs and whose deregulations could predispose toward development of chronic disease of these organs, leading to fibrosis. We also highlight the possible opportunities of chronotherapy for chronic diseases and discuss future perspectives.

Authors

Atish Mukherji, Pierre-Louis Tharaux, David W. Ray, Thomas F. Baumert

×
Commentaries
Abstract

The numbers of insulin-producing β cells in the pancreas are reduced in people with type 1 or type 2 diabetes, prompting efforts to replace these missing or lost β cells through transplant or regenerative medicine approaches. In this issue of the JCI, Wortham et al. describe a function for the deacetylase enzyme sirtuin 2 (SIRT2) in a novel pathway that acts as a brake on β cell proliferation. They show that inhibiting SIRT2 through pharmacologic or genetic approaches can induce human and mouse β cells to reenter a proliferative cell cycle. A surprising observation that remains unexplained is that the main targets of SIRT2 are mitochondrial oxidative phosphorylation (OxPhos) enzymes. It also remains unknown if and how these unanticipated acetylated OxPhos targets lead to cell-cycle entry. SIRT2 inhibitors will be a welcome addition to the growing repertoire of human β cell–regenerative drugs.

Authors

Liora S. Katz, Donald K. Scott, Andrew F. Stewart

×

Abstract

Uniform radiation therapy (RT) de-escalation in HPV+ oropharyngeal squamous cell carcinoma (OPSCC) has underperformed in clinical trials, likely due to underlying genomic heterogeneity. In this issue of the JCI, Ho et al. evaluated genomic adjusted radiation dose (GARD), which integrates tumor gene expression with RT dose to estimate biological effect. In 191 locoregionally advanced HPV+ OPSCC patients treated with definitive RT with or without chemotherapy, GARD values varied widely, despite uniform dose delivery, and independently predicted overall survival. These data support a genomically informed framework specific for HPV+ OPSCC patients via GARD for guiding radiation dose de-escalation strategies.

Authors

Sandip K. Rath, David S. Yu

×

Abstract

Lipids, which constitute half of the brain’s solid matter, are essential for forming specialized membranes of neural cells, providing energy sources, and facilitating cell-to-cell communication. Although the blood-brain barrier restricts lipid movement between peripheral circulation and the brain, multiple mechanisms supply the building blocks necessary to synthesize the diverse lipid species present in the central nervous system (CNS). In this issue of the JCI, Song et al. characterize specialized microvascular niches that metabolize circulating triglyceride-rich lipoproteins (TRLs) to deliver fatty acids into the brain. They located GPIHBP1, an essential chaperone for lipoprotein lipase (LPL) in the fenestrated endothelial cells of the choroid plexus (ChP) and circumventricular organs (CVOs), demonstrating lipolytic processing of peripheral TRLs and brain uptake of fatty acids. This advance implicates the GPIHBP1/LPL lipid metabolic hub in supporting the roles of the ChP and CVO in cerebrospinal fluid composition, immunity, satiety, thirst, and metabolic homeostasis.

Authors

A. Dushani Ranasinghe, Timothy Hla

×

Abstract

Initial efforts to control HIV infection include an autologous neutralizing antibody (aNAb) response. aNAbs bind Env trimers of the infecting HIV strain to neutralize virus but are not very effective at controlling HIV, as the virus quickly develops escape mutations to evade neutralization. Nevertheless, recent evidence suggests that aNAbs exert ongoing immune pressure on viral isolates in people living with HIV (PWH) treated with anti-retroviral therapy (ART) during chronic and early infection. In this issue of the JCI, McMyn et al. studied the dynamics of aNAb resistance in a cohort of 31 PWH treated with ART. Notably, a large proportion of HIV reservoir viral isolates were resistant to aNAb neutralization, which correlated with longer duration on uninterrupted ART, suggesting that selection for aNAb-resistant isolates occurs as reservoir cells containing neutralization-sensitive isolates are eliminated. aNAb resistance was not attributed to waning antibody response, which persisted for over 20 years despite viral suppression.

Authors

Nancie M. Archin

×
Research Letters
Abstract

Authors

Alyssa M. Duffy, Anshika Goenka, Maryam I. Azeem, Azmain Taz, Sayalee V. Potdar, Sara A. Scott, Ellen Marin, Jonathan L. Kaufman, Craig C. Hofmeister, Nisha S. Joseph, Vikas A. Gupta, Sagar Lonial, Ajay K. Nooka, Madhav V. Dhodapkar, Kavita M. Dhodapkar

×

Abstract

Authors

Elena Godoy-Molina, Natalia L. Serrano, Aquilina Jiménez-González, Miquel Villaronga, Rosa M. Marqués Pérez-Bryan, Rubén Varela-Fernández, Stephanie Lotz-Esquivel, Alba Hevia Tuñón, Prachi P. Trivedi, Nina Horn, Joseph F. Standing, Víctor Mangas-Sanjuan, Mercè Capdevila, Aurora Mateos, Denis Broun, Svetlana Lutsenko, Ines Medina-Rivera, Rafael Artuch, Cristina Jou, Mònica Roldán, Pedro Arango-Sancho, Mónica Saez-Villafañe, Juan J. Ortiz-de-Urbina, Angela Pieras-López, Marta Duero, Rosa Farré, Jordi Pijuan, Janet Hoenicka, James C. Sacchettini, Michael J. Petris, Vishal M. Gohil, Francesc Palau

×
Research Articles
Abstract

BACKGROUND Endocrine therapy (ET) with tamoxifen (TAM) or aromatase inhibitors (AI) is highly effective against hormone receptor–positive (HR-positive) early breast cancer (BC), but resistance remains a major challenge. The primary objectives of our study were to understand the underlying mechanisms of primary resistance and to identify potential biomarkers.METHODS We selected more than 800 patients in 3 subcohorts (Discovery, n = 364, matched pairs; Validation 1, n = 270, Validation 2, n = 176) of the West German Study Group (WSG) ADAPT trial who underwent short-term preoperative TAM or AI treatment. Treatment response was assessed by immunohistochemical labeling of proliferating cells with Ki67 before and after ET. We performed comprehensive molecular profiling, including targeted next-generation sequencing (NGS) and DNA methylation analysis using EPIC arrays, on posttreatment tumor samples.RESULTS TP53 mutations were strongly associated with primary resistance to both TAM and AI. We identified distinct DNA methylation patterns in resistant tumors, suggesting alterations in key signaling pathways and tumor microenvironment composition. Based on these findings and patient age, we developed the Predictive Endocrine ResistanCe Index (PERCI). PERCI accurately stratified responders and nonresponders in both treatment groups in all 3 subcohorts and predicted progression-free survival in an external validation cohort and in the combined subcohorts.CONCLUSION Our results highlight the potential of PERCI to guide personalized endocrine therapy and improve patient outcomes.TRIAL REGISTRATION WSG-ADAPT, ClinicalTrials.gov NCT01779206, retrospectively registered 01-25-2013.FUNDING German Cancer Aid (Grant Number 70112954), German Federal Ministry of Education and Research (Grant Number 01ZZ1804C, DIFUTURE).

Authors

Guokun Zhang, Vindi Jurinovic, Stephan Bartels, Matthias Christgen, Henriette Christgen, Leonie Donata Kandt, Lidiya Mishieva, Hua Ni, Mieke Raap, Janin Klein, Anna-Lena Katzke, Winfried Hofmann, Doris Steinemann, Ronald E. Kates, Oleg Gluz, Monika Graeser, Sherko Kümmel, Ulrike Nitz, Christoph Plass, Ulrich Lehmann, Christine zu Eulenburg, Ulrich Mansmann, Clarissa Gerhäuser, Nadia Harbeck, Hans H. Kreipe

×

Abstract

Birth defects are the leading cause of infant mortality, and most inborn errors of development are multifactorial in origin resulting from complex gene-environment interactions. Definition of specific gene-environment interactions in the etiology and pathogenesis of congenital disorders is critically needed in the absence of genotype-phenotype correlation but is challenging. This is particularly true for congenital craniofacial anomalies, which account for approximately one-third of all birth defects, as they typically exhibit considerable inter- and intrafamilial variability. A classic example of this is Treacher Collins syndrome (TCS), which, although primarily caused by mutations in treacle ribosome biogenesis factor 1 (TCOF1), is characterized by considerable variability in the severity of mandibulofacial dysostosis. Here, we describe the genetic and environmental factors with converging effects that mechanistically contribute to the etiology and pathogenesis of craniofacial variation in this rare congenital disorder. We discovered in Tcof1+/– mouse models of TCS that the combination of different endogenous levels of Tcof1 (also known as treacle) protein and ROS within distinct genetic backgrounds correlated with TCS phenotype severity. Furthermore, geometric morphometric analyses revealed that genotype largely determines the craniofacial shape but that redox status determines the size of individual bones. Taken together, our results highlight the roles of ROS and genomic instability in modulating the variability and phenotype severity of craniofacial anomalies.

Authors

Sharien Fitriasari, Roberta Fiorino, Thoa H.K. Truong, Mary C. McKinney, Jill Dixon, Michael J. Dixon, Paul A. Trainor

×

Abstract

BRD4 is an epigenetic reader protein that regulates oncogenes such as myc in cancer. However, its additional role in shaping immune responses via regulation of inflammatory and myeloid cell responses is not yet fully understood. This work further characterized the multifaceted role of BRD4 in antitumor immunity. Nanostring gene expression analysis of EMT6 tumors treated with a BRD4 inhibitor identified a reduction in myeloid gene expression signatures. Additionally, BRD4 inhibition significantly reduced myeloid-derived suppressor cells (MDSCs) in the spleens and tumors of mice in multiple tumor models and also decreased the release of tumor-derived MDSC growth and chemotactic factors. Pharmacologic inhibition of BRD4 in MDSCs induced apoptosis and modulated expression of apoptosis regulatory proteins. A BRD4 myeloid–specific knockout model suggested that the dominant mechanism of MDSC reduction after BRD4 inhibition was primarily through a direct effect on MDSCs. BRD4 inhibition enhanced anti–PD-L1 therapy in the EMT6, 4T1, and Lewis lung carcinoma tumor models, and the efficacy of the combination treatment was dependent on CD8+ T cells and on BRD4 expression in the myeloid compartment. These results identify BRD4 as a regulator of MDSC survival and provide evidence to further investigate BRD4 inhibitors in combination with immune-based therapies.

Authors

Himanshu Savardekar, Andrew Stiff, Alvin Liu, Robert Wesolowski, Emily Schwarz, Ian C. Garbarine, Megan C. Duggan, Sara Zelinskas, Jianying Li, Gabriella Lapurga, Alexander Abreo, Lohith Savardekar, Ryan Parker, Julia Sabella, Mallory J. DiVincenzo, Brooke Benner, Steven H. Sun, Dionisia Quiroga, Luke Scarberry, Gang Xin, Anup Dey, Keiko Ozato, Lianbo Yu, Merve Hasanov, Debasish Sundi, Richard C. Wu, Kari L. Kendra, William E. Carson III

×

Abstract

Acute ischemic organ diseases such as acute myocardial infarction and acute kidney injury often result in irreversible tissue damage and progress to chronic heart failure (CHF) and chronic kidney disease (CKD), respectively. However, the molecular mechanisms underlying the development of CHF and CKD remain incompletely understood. Here, we show that mice deficient in CD300a, an inhibitory immunoreceptor expressed on myeloid cells, showed enhanced efferocytosis by tissue-resident macrophages and decreased damage-associated molecular patterns and pathogenic SiglecFhi neutrophils, resulting in milder inflammation-associated tissue injury than in wild-type mice after ischemia and reperfusion (IR). Notably, we uncovered that CD300a deficiency on SiglecFlo neutrophils increased the signal transducer and activator of transcription 3–mediated production of pro-angiogenic and antifibrotic factors, resulting in milder adverse remodeling after IR. Our results demonstrated that CD300a plays an important role in the pathogenesis of ischemic tissue injury and adverse remodeling in the heart and kidney.

Authors

Nanako Nishiyama, Hitoshi Koizumi, Chigusa Nakahashi-Oda, Satoshi Fujiyama, Xuewei Ng, Hanbin Lee, Fumie Abe, Jinao Li, Yan Xu, Takehito Sugasawa, Kazuko Tajiri, Taketaro Sadahiro, Masaki Ieda, Keiji Tabuchi, Kazuko Shibuya, Akira Shibuya

×

Abstract

The current gold standard for assessing renal pathology in lupus nephritis (LN) is invasive and cannot be serially repeated. To assess if urine can serve as a liquid biopsy for underlying renal pathology, urine obtained from patients with LN at the time of renal biopsy were interrogated for 1,317 proteins, using an aptamer-based proteomic screen. Levels of 57 urine proteins were significantly elevated and correlated with pathology activity index (AI), notably endocapillary hypercellularity, fibrinoid necrosis, and cellular crescents. These included proteins pertaining to leukocyte/podocyte activation, neutrophil activation, endothelial activation, and markers of inflammation/anti-inflammation. In contrast, complement and coagulation cascade proteins, and proteins related to the extracellular matrix (ECM) emerged as the strongest urinary readouts of concurrent renal pathology chonicity index (CI), notably tubular atrophy and interstitial fibrosis. In vitro mechanistic studies revealed that complement proteins C3a and C5a increased the expression of profibrotic ECM proteins in macrophages and proximal tubule epithelial cells. Thus, carefully assembled panels of urinary proteins that are indicative of high renal pathology AI and/or CI may help monitor the status of renal pathology after therapy in patients with LN, in a noninvasive manner, without the need for repeat renal biopsies.

Authors

Ting Zhang, Jessica Castillo, Anto Sam Crosslee Louis Sam Titus, Kamala Vanarsa, Vedant Sharma, Sohan Kureti, Ramesh Saxena, Chandra Mohan

×

Abstract

Chemotherapy resistance remains a formidable challenge to the treatment of high-grade serous ovarian cancer (HGSOC). The drug-tolerant cells may originate from a small population of inherently resistant cancer stem cells (CSCs) in primary tumors. In contrast, sufficient evidence suggests that drug tolerance can also be transiently acquired by nonstem cancer cells. Regardless of the route, key regulators of this plastic process are poorly understood. Here, we utilized multiomics, tumor microarrays, and epigenetic modulation to demonstrate that SOX9 is a key chemo-induced driver of chemoresistance in HGSOC. Epigenetic upregulation of SOX9 was sufficient to induce chemoresistance in multiple HGSOC lines. Moreover, this upregulation induced the formation of a stem-like subpopulation and significant chemoresistance in vivo. Mechanistically, SOX9 increased transcriptional divergence, reprogramming the transcriptional state of naive cells into a stem-like state. Supporting this, we identified a rare cluster of SOX9-expressing cells in primary tumors that were highly enriched for CSCs and chemoresistance-associated stress gene modules. Notably, single-cell analysis showed that chemo treatment results in rapid population-level induction of SOX9 that enriches for a stem-like transcriptional state. Altogether, these findings implicate SOX9 as a critical regulator of early steps of transcriptional reprogramming that lead to chemoresistance through a CSC-like state in HGSOC.

Authors

Alexander J. Duval, Fidan Seker-Polat, Magdalena Rogozinska, Meric Kinali, Ann E. Walts, Ozlem Neyisci, Yaqi Zhang, Zhonglin Li, Edward J. Tanner III, Allison E. Grubbs, Sandra Orsulic, Daniela Matei, Mazhar Adli

×

Abstract

Elevated glucocorticoid levels are common in conditions such as aging, chronic stress, Cushing syndrome, and glucocorticoid therapy. While glucocorticoids suppress inflammation through the glucocorticoid receptor (GR), they also cause metabolic side effects. Investigating alternative pathways beyond GR activation is crucial for reducing these side effects. Our phosphoproteomics analysis revealed that glucocorticoid exposure promotes phosphorylation at the RxxS motifs of multiple proteins in preadipocytes, including those mediated by serum- and glucocorticoid-induced kinase 3 (SGK3). SGK3 is a key mediator of glucocorticoid-induced adipogenesis, as shown by impaired adipogenesis after SGK3 inhibition or genetic ablation. Sgk3-KO mice were resistant to obesity induced by glucocorticoid or a high-fat diet, and proteolysis targeting chimeras (PROTAC) targeting SGK3 reduced adipogenesis in both obese mice and in a thyroid eye disease cell line. Mechanistically, SGK3 translocated to the nucleus upon glucocorticoid stimulation, interacted with and phosphorylated the BRG1 subunit of the BAF complex, and prevented BRG1 degradation, promoting chromatin remodeling necessary for adipogenesis. These findings highlight SGK3 as a potential therapeutic target to mitigate metabolic side effects of elevated glucocorticoid levels.

Authors

Qilong Chen, Jialu Guo, Yuyi Liu, Tai Du, Jiapei Liu, Yuyao Zhang, Yuming Dai, Mengdi Zhang, Ziqian Zhou, Qiyang Zhang, Caixia Wei, Qiurong Ding, Jun Qin, Qiwei Zhai, Ju Qiu, Mengle Shao, Fang Zhang, Alexander A. Soukas, Ben Zhou

×

Abstract

Selective and controlled expansion of endogenous β cells has been pursued as a potential therapy for diabetes. Ideally, such therapies would preserve feedback control of β cell proliferation to avoid excessive β cell expansion. Here, we identified a regulator of β cell proliferation whose inactivation resulted in controlled β cell expansion: the protein deacetylase sirtuin 2 (SIRT2). Sirt2 deletion in β cells of mice increased β cell proliferation during hyperglycemia with little effect under homeostatic conditions, indicating preservation of feedback control of β cell mass. SIRT2 restrains proliferation of human islet β cells, demonstrating conserved SIRT2 function. Analysis of acetylated proteins in islets treated with a SIRT2 inhibitor revealed that SIRT2 deacetylates enzymes involved in oxidative phosphorylation, dampening the adaptive increase in oxygen consumption during hyperglycemia. At the transcriptomic level, Sirt2 inactivation has context-dependent effects on β cells, with Sirt2 controlling how β cells interpret hyperglycemia as a stress. Finally, we provide proof of principle that systemic administration of a glucagon-like peptide 1–coupled (GLP1-coupled), Sirt2-targeting antisense oligonucleotide achieves β cell Sirt2 inactivation and stimulates β cell proliferation during hyperglycemia. Overall, these studies identify a therapeutic strategy for increasing β cell mass in diabetes without circumventing feedback control of β cell proliferation. Future work should test the extent to which these findings translate to human β cells from individuals with or without diabetes.

Authors

Matthew Wortham, Bastian Ramms, Chun Zeng, Jacqueline R. Benthuysen, Somesh Sai, Dennis P. Pollow, Fenfen Liu, Michael Schlichting, Austin R. Harrington, Bradley Liu, Thazha P. Prakash, Elaine C. Pirie, Han Zhu, Siyouneh Baghdasarian, Sean T. Lee, Victor A. Ruthig, Kristen L. Wells, Johan Auwerx, Orian S. Shirihai, Maike Sander

×

Abstract

Mutant KRAS has been implicated in driving a quarter of all cancer types. Although inhibition of the KRASG12C mutant protein has shown clinical promise, there is still a need for therapies that overcome resistance and target non-KRASG12C mutations. KRAS activates downstream MYC, which is also a difficult-to-drug oncoprotein. We have developed an “inverted” RNAi molecule with the passenger strand of a MYC-targeting siRNA fused to the guide strand of a KRAS-targeting siRNA. The chimeric molecule simultaneously inhibits KRAS and MYC, showing marked improvements in efficacy beyond the individual siRNA components. This effect is mediated by 5′-dT overhangs following endosomal metabolism. The synergistic RNAi activity led to a more than 10- to 40-fold improvement in inhibition of cancer viability in vitro. When conjugated to an EGFR-targeting ligand, the chimeric siRNA was delivered to and internalized by tumor cells. As compared with individual targeting siRNAs, the chimeric design resulted in considerably improved metabolic stability in tumors, enhanced silencing of both oncogenes, and reduced tumor progression in multiple cancer models. This inverted chimeric design establishes proof of concept for ligand-directed, dual silencing of KRAS and MYC in cancer and constitutes an innovative molecular strategy for cotargeting any two genes of interest, which has broad implications.

Authors

Yogitha S. Chareddy, Hayden P. Huggins, Snehasudha S. Sahoo, Lyla J. Stanland, Christina Gutierrez-Ford, Kristina M. Whately, Lincy Edatt, Salma H. Azam, Matthew C. Fleming, Jonah Im, Alessandro Porrello, Imani Simmons, Jillian L. Perry, Albert A. Bowers, Martin Egli, Chad V. Pecot

×

Abstract

The fetal liver is the primary site of hematopoietic stem cell (HSC) generation during embryonic development. However, the molecular mechanisms governing the transition of hematopoiesis from the fetal liver to the BM remain incompletely understood. Here, we identify the mammalian Polycomb Group protein Yin Yang 1 (YY1) as a key regulator of this developmental transition. Conditional deletion of Yy1 in the hematopoietic system during fetal development results in neonatal lethality and depletion of the fetal HSC pool. YY1-deficient fetal HSCs exhibit impaired migration and fail to engraft in the adult BM, thereby losing their ability to reconstitute hematopoiesis. Transcriptomic analysis reveals that Yy1 KO disrupts genetic networks controlling cell motility and adhesion in fetal hematopoietic stem and progenitor cells (HSPCs). Notably, YY1 does not directly bind the promoters of most dysregulated genes. Instead, it modulates chromatin accessibility at regulatory loci, orchestrating broader epigenetic programs essential for HSPC migration and adhesion. Together, these findings establish YY1 as a critical epigenetic regulator of fetal HSC function and provide a mechanistic framework to further decipher how temporal epigenomic configurations determine HSC fetal-to-adult transition during development.

Authors

Sahitya Saka, Zhanping Lu, Yinghua Wang, Peng Liu, Deependra K. Singh, Junki P. Lee, Carmen G. Palii, Tyler R. Alvarez, Anna L.F.V. Assumpção, Xiaona You, Jing Zhang, Marjorie Brand, Michael L. Atchison, Xuan Pan

×

Abstract

BACKGROUND Inter- and intraindividual fluctuations in pain intensity pose a major challenge to treatment efficacy, with a majority of people perceiving their pain relief as inadequate. Recent preclinical studies have identified circadian rhythmicity as a potential contributor to these fluctuations and a therapeutic target.METHODS We therefore sought to determine the impact of circadian rhythms in people with chronic low back pain (CLBP) through a detailed characterization, including questionnaires to evaluate biopsychosocial characteristics, ecological momentary assessment (7 day e-diaries at 8:00/14:00/20:00) to observe pain fluctuations, and intraday blood transcriptomics (at 8:00/20:00) to identify genes/pathways of interest.RESULTS While most individuals displayed constant or variable/mixed pain phenotypes, a distinct subset had daily fluctuations of increasing pain scores (>30% change in intensity over 12 hours in ≥4/7 days). This population had no opioid users, better biopsychosocial profiles, and differentially expressed transcripts relative to other pain phenotypes. The circadian-governed neutrophil degranulation pathway was particularly enriched among arrhythmic individuals; the link between neutrophil degranulation and opioid use was further confirmed in a separate CLBP cohort.CONCLUSION Our findings identified pain rhythmicity and the circadian expression of neutrophil degranulation pathways as indicators of CLBP outcomes, which may help provide a personalized approach to phenotyping biopsychosocial characteristics and medication use. This highlights the need to better understand the impact of circadian rhythmicity across chronic pain conditions.FUNDING This work was funded by grants from the Canadian Institutes of Health Research (CIHR; grant PJT-190170, to NG and MGP) and the CIHR-Strategy for Patient-Oriented Research Chronic Pain Network (grant SCA-145102, to NG, QD, LD, MGP, and MC). DT was funded by a MS Canada endMS Doctoral Research Award, AMZ by an Ontario Graduate Scholarship, HGMG by a CIHR Doctoral Research Award, MGP by a Junior 2 Research Scholarship from the Fonds de recherche du Québec – Santé, and LD by a Canadian Excellence Research Chairs and Pfizer Canada Professorship in Pain Research.

Authors

Doriana Taccardi, Amanda M. Zacharias, Hailey G.M. Gowdy, Mitra Knezic, Marc Parisien, Etienne J. Bisson, Zhi Yi Fang, Sara A. Stickley, Elizabeth Brown, Daenis Camiré, Rosemary Wilson, Lesley N. Singer, Jennifer Daly-Cyr, Manon Choinière, Zihang Lu, M. Gabrielle Pagé, Luda Diatchenko, Qingling Duan, Nader Ghasemlou

×

Abstract

Clinically, blockade of renal glucose resorption by sodium–glucose cotransporter 2 (SGLT2) inhibitors slows progression of kidney disease, yet the underlying mechanisms are not fully understood. We hypothesized that altered renal metabolites underlie observed kidney protection when SGLT2 function is lost. S-adenosylmethionine (SAM) levels were increased in kidneys from mice lacking SGLT2 function on a diabetogenic high-fat diet (SPHFD) compared with WT mice fed HFD. Elevated SAM in SPHFD was associated with improved kidney function and decreased expression of NF-κB pathway–related genes. Injured proximal tubular cells that emerged under HFD conditions in WT mice and humans consistently showed reduction in expression of the SAM synthetase Mat2a/MAT2A, while MAT2A inhibition, which reduces SAM production, abrogated kidney protection in SPHFD mice. Histone H3 lysine 27 (H3K27) repressive trimethylation of NF-κB–related genes was increased in SPHFD, consistent with SAM’s role as a methyl donor. Our data support a model whereby SGLT2 loss enhances SAM levels within the kidney, leading to epigenetic repression of inflammatory genes and kidney protection under metabolic stress.

Authors

Hiroshi Maekawa, Yalu Zhou, Yuki Aoi, Margaret E. Fain, Dorian S. Kaminski, Hyewon Kong, Zachary L. Sebo, Ram P. Chakrabarty, Benjamin C. Howard, Grant Andersen, Biliana Marcheva, Peng Gao, Pinelopi Kapitsinou, Joseph Bass, Ali Shilatifard, Navdeep S. Chandel, Susan E. Quaggin

×

Abstract

LRRK2 contains a kinase domain where the N2081D Crohn’s disease (CD) risk and the G2019S Parkinson’s disease (PD) pathogenic variants are located. It is not clear how the N2081D variant increases CD risk or how these adjacent mutations give rise to distinct disorders. To investigate the pathophysiology of the CD-linked LRRK2 N2081D variant, we generated a knock-in (KI) mouse model and compared its effects with those of the LRRK2-G2019S mutation. Lrrk2N2081D KI mice demonstrated heightened sensitivity to induced colitis, resulting in more severe intestinal damage than in Lrrk2G2019S KI and WT mice. Analysis of colon tissue revealed distinct mutation-dependent LRRK2 RAB substrate phosphorylation, with significantly elevated phosphorylated RAB10 levels in Lrrk2N2081D mice. In cells, we demonstrated that the N2081D mutation activates LRRK2 through a mechanism distinct from that of LRRK2-G2019S. We also found that proinflammatory stimulation enhances LRRK2 kinase activity, leading to mutation-dependent differences in RAB phosphorylation and inflammatory responses in dendritic cells (DCs). Finally, we show that knockout of Rab12, but not pharmacological LRRK2 kinase inhibition, significantly reduced colitis severity in Lrrk2N2081D mice. Our study characterizes the pathogenic mechanisms of LRRK2-linked CD, highlights structural and functional differences between disease-associated LRRK2 variants, and suggests RAB proteins as promising therapeutic targets for modulating LRRK2 activity in CD treatment.

Authors

George R. Heaton, Xingjian Li, Xianting Li, Xiaoting Zhou, Yuanxi Zhang, Duc Tung Vu, Marc Oeller, Ozge Karayel, Quyen Q. Hoang, Meltem Ece Kars, Nitika Kamath, Minghui Wang, Leonid Tarassishin, Matthias Mann, Inga Peter, Zhenyu Yue

×

Abstract

The cystine-xCT transporter/glutathione/GPX4 axis is the canonical pathway protecting cells from ferroptosis. Whereas GPX4-targeting ferroptosis-inducing compounds (FINs) act independently of mitochondria, xCT-targeting FINs require mitochondrial lipid peroxidation, though the mechanism remains unclear. Because cysteine is also a precursor for coenzyme A (CoA) biosynthesis, here, we demonstrated that CoA supplementation selectively prevented ferroptosis triggered by xCT inhibition by regulating the mitochondrial thioredoxin system. Our data showed that CoA regulated the in vitro enzymatic activity of mitochondrial thioredoxin reductase-2 (TXNRD2) by covalently modifying the thiol group of cysteine (CoAlation) on Cys-483. Replacing Cys-483 with alanine on TXNRD2 abolished its enzymatic activity and ability to protect cells against ferroptosis. Targeting xCT to limit cysteine import and, therefore, CoA biosynthesis reduced CoAlation on TXNRD2. Furthermore, the fibroblasts from patients with disrupted CoA metabolism had increased mitochondrial lipid peroxidation. In organotypic brain slice cultures, inhibition of CoA biosynthesis led to an oxidized thioredoxin system, increased mitochondrial lipid peroxidation, and loss of cell viability, which were all rescued by ferrostatin-1. These findings identified CoA-mediated posttranslational modification to regulate the thioredoxin system as an alternative ferroptosis protection pathway with potential clinical relevance for patients with disrupted CoA metabolism.

Authors

Chao-Chieh Lin, Yi-Tzu Lin, Ssu-Yu Chen, Yasaman Setayeshpour, Yubin Chen, Denise E. Dunn, Taylor Nguyen, Alexander A. Mestre, Adrija Banerjee, Lalitha Guruprasad, Erik J. Soderblom, Guo-Fang Zhang, Chen-Yong Lin, Valeriy Filonenko, Suh Young Jeong, Scott R. Floyd, Susan J. Hayflick, Ivan Gout, Jen-Tsan Chi

×

Abstract

Calciphylaxis is a rare but life-threatening disorder characterized by ectopic calcification affecting the subcutaneous tissues and blood vessels of the skin. Survival rates are less than a year after diagnosis, and yet despite the severity of the condition, the pathobiology of calciphylaxis is ill understood. Here, we created animal models of calciphylaxis that recapitulated many characteristics of the human phenotype. We demonstrate that cutaneous calcification is preceded by inflammatory cell infiltration. We show that increased local skin inflammation, regardless of the inciting cause, in the presence of hypercalcemia and hyperphosphatemia contributes to cutaneous ectopic calcification. Genetically modified rodents lacking immune activation of T and B cells or NK cells are resistant to developing cutaneous calcification. Consistent with this, administration of the immunosuppressive cyclophosphamide reduced calcific deposits, as did T cell suppression with cyclosporine. We demonstrate that IL-17 is upregulated in calcific skin and neutrophils are the predominant cell type expressing IL-17 and tissue-nonspecific alkaline phosphatase (TNAP) that are necessary for ectopic calcification. Targeting IL-17 with a monoclonal antibody or using a myeloperoxidase inhibitor to blunt neutrophil activation notably attenuated calcific deposits in vivo. Taken together, these observations provide fresh insight into the role of the immune system and the IL-17/neutrophil axis in mediating ectopic calcification in rodent models of calciphylaxis.

Authors

Bo Tao, Edward Z. Cao, James Hyun, Sivakumar Ramadoss, Juan F. Alvarez, Lianjiu Su, Qihao Sun, Zhihao Liu, Linlin Zhang, Alejandro Espinoza, Yiqian Gu, Feiyang Ma, Shen Li, Matteo Pellegrini, Arjun Deb

×

Abstract

In peripheral tissues, an endothelial cell (EC) protein, GPIHBP1, captures lipoprotein lipase (LPL) from the interstitial spaces and transports it to the capillary lumen. LPL mediates the margination of triglyceride-rich (TG-rich) lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. TRL-derived fatty acids are used for fuel in oxidative tissues or stored in adipose tissue. In mice, GPIHBP1 is absent from capillary ECs of the brain (which uses glucose for fuel); consequently, LPL and TRL margination are absent in mouse brain capillaries. However, because fatty acids were reported to play signaling roles in the brain, we hypothesized that LPL-mediated TRL processing might occur within specialized vascular beds within the central nervous system. Here, we show that GPIHBP1 is expressed in capillary ECs of human and mouse choroid plexus (ChP) and that GPIHBP1 transports LPL (produced by adjacent ChP cells) to the capillary lumen. The LPL in ChP capillaries mediates both TRL margination and processing. Intracapillary LPL and TRL margination are absent in the ChP of Gpihbp1–/– mice. GPIHBP1 expression, intracapillary LPL, and TRL margination were also observed in the median eminence and subfornical organ, circumventricular organs implicated in the regulation of food intake.

Authors

Wenxin Song, Madison Hung, Ellen Kozlov, Megan Hung, Anh P. Tran, James Carroll, Le Phoung Nguyen, Troy L. Lowe, Paul Kim, Hyesoo Jung, Yiping Tu, Joonyoung Kim, Ashley M. Presnell, Julia Scheithauer, Jenna P. Koerner, Ye Yang, Shino D. Magaki, Christopher K. Williams, Michael Ploug, Haibo Jiang, Christer Betsholtz, Maarja Andaloussi Mäe, Liqun He, Anne P. Beigneux, Loren G. Fong, Stephen G. Young

×

Abstract

BACKGROUND Anti-TNF biologics are widely used to treat patients with immune-mediated inflammatory diseases. In mouse models, the complete absence of TNF impairs germinal center (GC) responses. Less is known about the impact of anti-TNF therapy on specific immune responses in humans. Widespread vaccination against SARS-CoV-2 offered an unprecedented opportunity to investigate the effects of biological therapies on responses to specific immunization. Previous work demonstrated that patients with inflammatory bowel disease (IBD) who were treated with anti-TNF biologics exhibited decreased Spike-specific antibody responses compared with patients with IBD treated with anti-IL-12/23 or healthy controls, even after 4 doses of mRNA vaccine.METHODS Here we analyzed humoral responses to SARS-CoV-2 immunization using single-cell RNA-Sequencing and flow cytometry of Spike-specific memory B cells (MBC), as well as avidity measurements of plasma antibodies from patients with IBD treated with anti-TNF or anti-IL-12/23 and from people in the healthy control group.RESULTS We observed decreased somatic hypermutation in the B cell receptors of Spike-specific MBCs and decreased antigen-specific MBC accumulation following SARS-CoV-2 mRNA vaccination in patients with IBD treated with anti-TNF, compared with patients with IBD treated with anti-IL-12/23 or people in the healthy control group. This decreased somatic hypermutation in Spike-specific MBCs in patients treated with anti-TNF correlated with decreased and delayed antibody affinity maturation and reduced neutralization activity.CONCLUSION These data provide in vivo evidence that anti-TNF, but not anti-IL-12/23, therapy impairs the quantity and quality of antigen-specific GC outputs in humans.FUNDING Juan and Stefania Speck (donation) and by Canadian Institutes of Health Research (CIHR)/COVID-Immunity Task Force (CITF) grants VR-1 172711, VS1-175545, GA2-177716, GA1-177703 and CIHR FDN 143301 &143350.

Authors

Michelle W. Cheung, Samantha Xu, Janna R. Shapiro, Freda Qi, Melanie Delgado-Brand, Karen Colwill, Roya M. Dayam, Ying Liu, Jenny D. Lee, Joanne M. Stempak, James M. Rini, Vinod Chandran, Mark S. Silverberg, Anne-Claude Gingras, Tania H. Watts

×

Abstract

The leukemia fusion gene CBFB-MYH11 requires RUNX1 for leukemogenesis, but the underlying mechanism is unclear. By in vitro studies, we found that CBFβ-SMMHC, the chimeric protein encoded by CBFB-MYH11, could enhance the binding affinity between RUNX1 and its target DNA. Increased RUNX1-DNA binding was also observed in myeloid progenitor cells from mice expressing CBFβ-SMMHC. Moreover, only CBFβ-SMMHC variants able to enhance the DNA binding affinity by RUNX1 could induce leukemia in mouse models. Marked transcriptomic changes, affecting genes associated with inflammatory response and target genes of CBFA2T3, were observed in mice expressing leukemogenic CBFβ-SMMHC variants. Finally, we show that CBFβ-SMMHC could not induce leukemia in mice with a Runx1-R188Q mutation, which reduces RUNX1 DNA binding but does not affect its interaction with CBFβ-SMMHC or its sequestration to cytoplasm by CBFβ-SMMHC. Our data suggest that, in addition to binding RUNX1 to regulate gene expression, enhancing RUNX1 binding affinity to its target DNA is an important mechanism by which CBFβ-SMMHC contributes to leukemogenesis, highlighting RUNX1-DNA interaction as a potential therapeutic target in inv(16) acute myeloid leukemia.

Authors

Tao Zhen, Yaqiang Cao, Tongyi Dou, Yun Chen, Guadalupe Lopez, Ana Catarina Menezes, Xufeng Wu, John A. Hammer, Jun Cheng, Lisa Garrett, Stacie Anderson, Martha Kirby, Stephen Wincovitch, Bayu Sisay, Abdel G. Elkahloun, Di Wu, Lucio H. Castilla, Wei Yang, Jiansen Jiang, Keji Zhao, P. Paul Liu

×

Abstract

Bacterial infections, particularly uropathogenic E. coli (UPEC), contribute substantially to male infertility through tissue damage and subsequent fibrosis in the testis and epididymis. The role of testicular macrophages (TMs), a diverse cell population integral to tissue maintenance and immune balance, in fibrosis is not fully understood. Here, we used single-cell RNA sequencing in a murine model of epididymo-orchitis to analyze TM dynamics during UPEC infection. Our study identified a marked increase in S100a4+ macrophages, originating from monocytes, strongly associated with fibrotic changes. This association was validated in human testicular and epididymal samples. We further demonstrated that S100a4+ macrophages transition to a myofibroblast-like phenotype, producing extracellular matrix proteins such as collagen I and fibronectin. S100a4, both extracellular and intracellular, activated collagen synthesis through the TGF-β/STAT3 signaling pathway, highlighting this pathway as a therapeutic target. Inhibition of S100a4 with niclosamide or macrophage-specific S100a4 KO markedly reduced immune infiltration, tissue damage, and fibrosis in infected murine models. Our findings establish the critical role of S100a4+ macrophages in fibrosis during UPEC-induced epididymo-orchitis and propose them as potential targets for antifibrotic therapy development.

Authors

Ming Wang, Xu Chu, Zhongyu Fan, Lin Chen, Huafei Wang, Peng Wang, Zihao Wang, Yiming Zhang, Yihao Du, Sudhanshu Bhushan, Zhengguo Zhang

×

Abstract

BACKGROUND A key objective in managing HPV+ oropharyngeal squamous cell carcinoma (OPSCC) is reducing radiation therapy (RT) doses without compromising cure rates. A recent phase II/III HN005 trial revealed that clinical factors alone are insufficient to guide safe RT dose de-escalation. Our prior research demonstrated that the genomic adjusted radiation dose (GARD) predicts RT benefit and may inform dose selection. We hypothesize that GARD can guide personalized RT de-escalation in HPV+ OPSCC patients.METHODS Gene expression profiles were analyzed in 191 HPV+ OPSCC patients enrolled in an international, multi-institutional observational study (AJCC Eighth Edition, stages I–III). Most patients received 70 Gy in 35 fractions or 69.96 Gy in 33 fractions (median dose: 70 Gy; range: 51.0–74.0 Gy). Overall survival (OS) was 94.1% at 36 months and 87.3% at 60 months. A Cox proportional hazards model assessed association between GARD and OS, and time-dependent receiver operating characteristic analyses compared GARD with traditional clinical predictors.RESULTS Despite uniform RT dosing, GARD showed wide heterogeneity, ranging from 15.4 to 71.7. Higher GARD values were significantly associated with improved OS in univariate (HR = 0.941, P = 0.041) and multivariable analyses (HR = 0.943, P = 0.046), while T and N stages were not. GARD demonstrated superior predictive performance at 36 months (AUC = 78.26) versus clinical variables (AUC = 71.20). Two GARD-based RT de-escalation strategies were identified, offering potential survival benefits while reducing radiation exposure.CONCLUSION GARD predicts OS and outperforms clinical variables, supporting its integration into the diagnostic workflow for personalized RT in HPV+ OPSCC.FUNDING This work was supported by the National Cancer Institute through the Cleveland Clinic/Emory ROBIN center (U54-CA274513, project 2), the European Union Horizon 2020 Framework Programme (grant/award 689715), the Italian Association for Cancer Research (AIRC project ID 23573), and the European Research Area Network ERA PerMed JTC2019/Fondazione Regionale per la Ricerca Biomedica project SuPerTreat (Supporting Personalized Treatment Decisions in Head and Neck Cancer through Big Data).

Authors

Emily Ho, Loris De Cecco, Steven A. Eschrich, Stefano Cavalieri, Geoffrey Sedor, Frank Hoebers, Ruud H. Brakenhoff, Kathrin Scheckenbach, Tito Poli, Kailin Yang, Jessica A. Scarborough, Shivani Nellore, Shauna Campbell, Neil Woody, Tim Chan, Jacob Miller, Natalie Silver, Shlomo Koyfman, James Bates, Jimmy J. Caudell, Michael W. Kattan, Lisa Licitra, Javier F. Torres-Roca, Jacob G. Scott

×

Abstract

BACKGROUND Antiretroviral therapy (ART) prevents HIV-1 replication but does not eliminate the latent reservoir, the source of viral rebound if treatment is stopped. Autologous neutralizing antibodies (aNAbs) can block in vitro outgrowth of a subset of reservoir viruses and therefore potentially affect viral rebound upon ART interruption.METHODS We investigated aNAbs in 31 people with HIV-1 (PWH) on ART.RESULTS Participants fell into 2 groups based on a high or low fraction of aNAb-resistant reservoir isolates, with most isolates being aNAb-resistant (IC50 > 100 μg/mL). Time on uninterrupted ART was associated with higher aNAb resistance. However, pharmacodynamic analysis predicted that many isolates would be partially inhibited at physiologic IgG concentrations, to the same degree as by single antiretroviral drugs. Steep dose-response curve slopes, an indication of cooperativity, were observed for the rare isolates that were very strongly inhibited (> 5 logs) by aNAbs. Resistance to aNAbs was not fully explained by declining in aNAb titers and may be driven partially by ADCC-mediated elimination of infected cells carrying aNAb-sensitive viruses over long time intervals, leaving only aNAb-resistant viruses, which can contribute to viral rebound.CONCLUSION Inhibition of reservoir viruses by aNAbs may be affected by dose-response curve slope, time on uninterrupted ART, waning of antibody responses, and selection against cells with aNAb-sensitive viruses.FUNDING This work was supported by NIH Martin Delaney Collaboratories for HIV Cure Research grant awards UM1AI164556, UM1AI164570, and UM1AI164560, and the Howard Hughes Medical Institute

Authors

Natalie F. McMyn, Joseph Varriale, Hanna W. S. Wu, Vivek Hariharan, Milica Moskovljevic, Toong Seng Tan, Jun Lai, Anushka Singhal, Kenneth Lynn, Karam Mounzer, Pablo Tebas, Luis J. Montaner, Rebecca Hoh, Xu G. Yu, Mathias Lichterfeld, Francesco R. Simonetti, Colin Kovacs, Steven G. Deeks, Janet M. Siliciano, Robert F. Siliciano

×
Expression of concern
Abstract

Authors

Shouyu Wang, Ke Liang, Qingsong Hu, Ping Li, Jian Song, Yuedong Yang, Jun Yao, Lingegowda Selanere Mangala, Chunlai Li, Wenhao Yang, Peter K. Park, David H. Hawke, Jianwei Zhou, Yan Zhou, Weiya Xia, Mien-Chie Hung, Jeffrey R. Marks, Gary E. Gallick, Gabriel Lopez-Berestein, Elsa R. Flores, Anil K. Sood, Suyun Huang, Dihua Yu, Liuqing Yang, Chunru Lin

×
Corrigendum

In-Press Preview - More

Abstract

The intratumor microenvironment shapes the metastatic potential of cancer cells and their susceptibility to any immune response. Yet the nature of the signals within the microenvironment that control anti-cancer immunity and how they are regulated is poorly understood. Here, using melanoma as a model, we investigate the involvement in metastatic dissemination and the immune-modulatory microenvironment of Protein S-Acyl Transferases, as an underexplored class of potential therapeutic targets. We find that ZDHHC13, suppresses metastatic dissemination by palmitoylation of CTNND1, leading to stabilization of E-cadherin. Importantly, ZDHHC13 also reshapes the tumor immune microenvironment by suppressing lysophosphatidylcholine (LPC) synthesis in melanoma cells, leading to inhibition of M2-like tumor-associated macrophages that we show degrades E-cadherin via MMP12 expression. Consequently, ZDHHC13 activity suppresses tumor growth and metastasis in immunocompetent mice. Our study highlights the therapeutic potential of targeting the ZDHHC13-E-cadherin axis and its downstream metabolic and immune-modulatory mechanisms, offering additional strategies to inhibit melanoma progression and metastasis.

Authors

Hongjin Li, Jianke Lyu, Yu Sun, Chengqian Yin, Yuewen Li, Weiqiang Chen, Suan-Sin Foo, Xianfang Wu, Colin Goding, Shuyang Chen

×

Abstract

Deficits in the mitochondrial energy-generating machinery cause mitochondrial disease (MD), a group of untreatable and usually fatal disorders. Among many severe symptoms, refractory epileptic events are a common neurological presentation of MD. However, the neuronal substrates and circuits for MD-induced epilepsy remain unclear. Here, using mouse models of Leigh Syndrome, a severe form of MD associated to epilepsy, that lack mitochondrial complex I subunit NDUFS4 in a constitutive or conditional manner, we demonstrate that mitochondrial dysfunction leads to a reduction in the number of GABAergic neurons in the rostral external globus pallidus (GPe), and identify a specific affectation of pallidal Lhx6-expressing inhibitory neurons, contributing to altered GPe excitability. Our findings further reveal that viral vector-mediated Ndufs4 re-expression in the GPe effectively prevents seizures and improves the survival in the models. Additionally, we highlight the subthalamic nucleus (STN) as a critical structure in the neural circuit involved in mitochondrial epilepsy, as its inhibition effectively reduces epileptic events. Thus, we have identified a role for pallido-subthalamic projections in the development of epilepsy in the context of mitochondrial dysfunction. Our results suggest STN inhibition as a potential therapeutic intervention for refractory epilepsy in patients with MD providing promising leads in the quest to identify effective treatments.

Authors

Laura Sánchez-Benito, Melania González-Torres, Irene Fernández-González, Laura Cutando, María Royo, Joan Compte, Miquel Vila, Sandra Jurado, Elisenda Sanz, Albert Quintana

×

Abstract

Single-cell studies have revealed that intestinal macrophages maintain gut homeostasis through the balanced actions of reactive (inflammatory) and tolerant (non-inflammatory) subpopulations. How such balance is impaired in inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), remains unresolved. Here, we define colon-specific macrophage states and reveal the critical role of non-inflammatory colon-associated macrophages (niColAMs) in IBD recovery. Through trans-scale analyses—integrating computational transcriptomics, proteomics, and in vivo interventional studies—we identified GIV (CCDC88A) as a key regulator of niColAMs. GIV emerged as the top-ranked gene in niColAMs that physically and functionally interacts with NOD2, an innate immune sensor implicated in CD and UC. Myeloid-specific GIV depletion exacerbates infectious colitis, prolongs disease, and abolishes the protective effects of the NOD2 ligand, muramyl dipeptide, in colitis and sepsis models. Mechanistically, GIV’s C-terminus binds the terminal leucine-rich repeat (LRR#10) of NOD2 and is required for NOD2 to dampen inflammation and clear microbes. The CD-associated 1007fs NOD2-variant, which lacks LRR#10, cannot bind GIV—providing critical insights into how this clinically relevant variant impairs microbial sensing and clearance. These findings illuminate a critical GIV-NOD2 axis essential for gut homeostasis and highlight its disruption as a driver of dysbiosis and inflammation in IBD.

Authors

Gajanan D. Katkar, Mahitha Shree Anandachar, Stella-Rita C. Ibeawuchi, Ella G. McLaren, Megan L. Estanol, Kennith Carpio-Perkins, Shu-Ting Hsu, Celia R. Espinoza, Jane E. Coates, Yashaswat S. Malhotra, Madhubanti Mullick, Vanessa Castillo, Daniella Vo, Saptarshi Sinha, Pradipta Ghosh

×

Abstract

TMPRSS2:ERG gene fusion (T:E fusion) in prostate adenocarcinoma (PCa) puts ERG under androgen receptor (AR) regulated TMPRSS2 expression. T:E fusion is associated with PTEN loss, and is highly associated with decreased INPP4B expression, which together may compensate for ERG-mediated suppression of AKT signaling. We confirmed in PCa cells and a mouse PCa model that ERG suppresses IRS2 and AKT activation. In contrast, ERG downregulation did not increase INPP4B, suggesting its decrease is indirect and reflects selective pressure to suppress INPP4B function. Notably, INPP4B expression is decreased in PTEN-intact and PTEN-deficient T:E fusion tumors, suggesting selection for a nonredundant function. As ERG in T:E fusion tumors is AR regulated, we further assessed whether AR inhibition increases AKT activity in T:E fusion tumors. A T:E fusion positive PDX had increased AKT activity in vivo and response to AKT inhibition in vitro after androgen deprivation. Moreover, two clinical trials of neoadjuvant AR inhibition prior to radical prostatectomy showed greater increases in AKT activation in the T:E fusion positive versus negative tumors. These findings indicate that AKT activation may mitigate the efficacy of AR targeted therapy in T:E fusion PCa, and that these patients may most benefit from combination therapy targeting AR and AKT.

Authors

Fen Ma, Sen Chen, Luigi Cecchi, Betul Ersoy-Fazlioglu, Joshua W. Russo, Seiji Arai, Seifeldin Awad, Carla Calagua, Fang Xie, Larysa Poluben, Olga Voznesensky, Anson T. Ku, Fatima Karzai, Changmeng Cai, David J. Einstein, Huihui Ye, Xin Yuan, Alex Toker, Mary-Ellen Taplin, Adam G. Sowalsky, Steven P. Balk

×

Abstract

Immune cells are constantly exposed to microbiota-derived compounds that can engage innate recognition receptors. How this constitutive stimulation is down-modulated to avoid systemic inflammation and auto-immunity is poorly understood. Here we show that Aryl hydrocarbon Receptor (AhR) deficiency in monocytes unleashes spontaneous cytokine responses in vivo, driven by STING-mediated tonic sensing of microbiota. This effect was specific to monocytes, as mice deficient for AhR specifically in macrophages did not show any dysregulation of tonic cytokine responses. AhR inhibition also increased tonic cytokine production in human monocytes. Finally, in patients with systemic juvenile idiopathic arthritis, low AhR activity in monocytes correlated with elevated cytokine responses. Our findings evidence an essential role for AhR in monocytes in restraining tonic microbiota sensing and in maintaining immune homeostasis.

Authors

Adeline Cros, Alessandra Rigamonti, Alba de Juan, Alice Coillard, Mathilde Rieux-Laucat, Darawan Tabtim-On, Emeline Papillon, Christel Goudot, Alma-Martina Cepika, Romain Banchereau, Virginia Pascual, Marianne Burbage, Burkhard Becher, Elodie Segura

×

Advertisement

Review Series - More

Pancreatic Cancer

Series edited by Ben Z. Stanger

Pancreatic ductal adenocarcinoma (PDAC) has among the poorest prognosis and highest refractory rates of all tumor types. The reviews in this series, by Dr. Ben Z. Stanger, bring together experts across multiple disciplines to explore what makes PDAC and other pancreatic cancers so distinctively challenging and provide an update on recent multipronged approaches aimed at improving early diagnosis and treatment.

×