To maintain potassium homeostasis, the kidney’s distal convoluted tubule (DCT) evolved to convert small changes in blood [K+] into robust effects on salt reabsorption. This process requires NaCl cotransporter (NCC) activation by the With-No-Lysine (WNK) kinases. During hypokalemia, the Kidney-Specific WNK1 isoform (KS-WNK1) scaffolds the DCT-expressed WNK signaling pathway within biomolecular condensates of unknown function termed WNK bodies. Here, we show that KS-WNK1 amplifies kidney tubule reactivity to blood [K+], in part via WNK bodies. Genetically modified mice with targeted condensate disruption trap the WNK pathway, causing renal salt wasting that is more pronounced in females. In humans, WNK bodies accumulate as plasma potassium falls below 4.0 mmol/L, suggesting that the human DCT experiences the stress of potassium deficiency even when [K+] is in the low-normal range. These data identify WNK bodies as kinase signal amplifiers that mediate tubular [K+] responsiveness, nephron sexual dimorphism, and blood pressure salt-sensitivity. Our results illustrate how biomolecular condensate specialization can optimize a mammalian physiologic stress response that impacts human health.
Cary R. Boyd-Shiwarski, Rebecca T. Beacham, Jared A. Lashway, Katherine E. Querry, Shawn E. Griffiths, Daniel J. Shiwarski, Sophia A. Knoell, Nga H. Nguyen, Lubika J. Nkashama, Melissa N. Valladares, Anagha Bandaru, Allison L. Marciszyn, Jonathan Franks, Mara Sullivan, Simon C. Watkins, Aylin R. Rodan, Chou-Long Huang, Sean D. Stocker, Ossama B. Kashlan, Arohan R. Subramanya
Metastatic prostate cancer (mPC) is a clinically and molecularly heterogeneous disease. While there is increasing recognition of diverse tumor phenotypes across patients, less is known about the molecular and phenotypic heterogeneity present within an individual. In this study, we aimed to define the patterns, extent, and consequences of inter- and intra-tumoral heterogeneity in lethal prostate cancer. By combining and integrating in situ tissue-based and sequencing approaches, we analyzed over 630 tumor samples from 52 mPC patients. Our efforts revealed phenotypic heterogeneity at the patient, metastasis, and cellular levels. We observed that intra-patient, inter-tumoral molecular subtype heterogeneity was common in mPC and showed associations with genomic and clinical features. Additionally, cellular proliferation rates varied within a given patient across molecular subtypes and anatomic sites. Single-cell sequencing studies revealed features of morphologically and molecularly divergent tumor cell populations within a single metastatic site. These data provide a deeper insight into the complex patterns of tumoral heterogeneity in mPC with implications for clinical management and the future development of diagnostic and therapeutic approaches.
Martine P. Roudier, Roman Gulati, Erolcan Sayar, Radhika A. Patel, Micah Tratt, Helen M. Richards, Paloma Cejas, Miguel Munoz Gomez, Xintao Qiu, Yingtian Xie, Brian Hanratty, Samir Zaidi, Jimmy L. Zhao, Mohamed Adil, Chitvan Mittal, Yibai Zhao, Ruth Dumpit, Ilsa Coleman, Jin-Yih Low, Thomas Persse, Patricia C. Galipeau, John K. Lee, Maria Tretiakova, Meagan Chambers, Funda Vakar-Lopez, Lawrence D. True, Marie Perrone, Hung-Ming Lam, Lori A. Kollath, Chien-Kuang C. Ding, Stephanie Harmon, Heather H. Cheng, Evan Y. Yu, Robert B. Montgomery, Jessica E. Hawley, Daniel W. Lin, Eva Corey, Michael T. Schweizer, Manu Setty, Gavin Ha, Charles L. Sawyers, Colm Morrissey, Henry W. Long, Peter S. Nelson, Michael C. Haffner
White adipose tissue (WAT) fibrosis occurring in obesity contributes to the inflammatory and metabolic co-morbidities of insulin resistance and type 2 diabetes, yet the mechanisms involved remain poorly understood. Here, we report a role for the broadly conserved microRNA miR-30a as a regulator of WAT fibrosis and systemic glucose metabolism. Mice modified to express miR-30a at elevated levels in adipose tissues maintain insulin sensitivity coupled with reduced fatty liver disease when fed high fat diet. These effects were attributable to cell-autonomous functions of miR-30a that potently increase expression of adipocyte-specific genes. Proteomic screening revealed miR-30a limits pro-fibrotic programs in subcutaneous WAT, at least in part, by repressing PAI-1, a dominant regulator of fibrinolysis and biomarker of insulin resistance. Conversely, mouse adipocytes lacking miR-30a exhibited greater expression of fibrosis markers with disrupted cellular metabolism. Lastly, miR-30a expression negatively correlates with PAI-1 levels in subcutaneous WAT from people with obesity, further supporting an anti-fibrotic role for miR-30a. Together, these findings uncover miR-30a as a critical regulator of adipose tissue fibrosis that predicts metabolically healthy obesity in people and mice.
Pradip K. Saha, Robert Sharp, Aaron R. Cox, Rabie Habib, Michael J. Bolt, Jessica B. Felix, Claudia E. Ramirez Bustamante, Xin Li, Sung Yun Jung, Kang Ho Kim, Kai Sun, Huaizhu Wu, Samuel Klein, Sean M. Hartig
Spinal microglia play a pivotal role in the development of neuropathic pain. Peripheral nerve injury induces changes in the transcriptional profile of microglia, including increased expression of components of the translational machinery. Whether microglial protein synthesis is stimulated following nerve injury and has a functional role in mediating pain hypersensitivity is unknown. Here, we show that nascent protein synthesis is upregulated in spinal microglia following peripheral nerve injury in both male and female mice. Stimulating mRNA translation in microglia by selectively ablating the translational repressor eukaryotic initiation factor 4E–binding protein 1 (4E-BP1) promoted the transition of microglia to a reactive state and induced mechanical hypersensitivity in both sexes, whereas spontaneous pain was increased only in males. Conversely, inhibiting microglial translation by expressing a mutant form of 4E-BP1 in microglia attenuated their activation following peripheral nerve injury and alleviated neuropathic pain in both sexes. Thus, stimulating 4E-BP1–dependent translation promotes microglial reactivity and mechanical hypersensitivity, whereas inhibiting it alleviates neuropathic pain.
Kevin C. Lister, Calvin Wong, Weihua Cai, Sonali Uttam, Patricia Stecum, Rose Rodrigues, Mehdi Hooshmandi, Nicole Brown, Jonathan Fan, Noe Francois-Saint-Cyr, Shannon Tansley, Volodya Hovhannisyan, Diana Tavares-Ferreira, Nikhil Nageshwar Inturi, Khadijah Mazhar, Alain Pacis, Jieyi Yang, Alfredo Ribeiro-da-Silva, Christos G. Gkogkas, Theodore J. Price, Jeffrey S. Mogil, Arkady Khoutorsky
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the excessive accumulation of activated myofibroblasts that deposit extracellular matrix (ECM) protein, leading to progressive scar formation and mechanical stress. However, the cellular origin and fate of myofibroblasts remain controversial, and the mechanisms by which myofibroblasts sense mechanical cues in the lung are unclear. Here, we report that periostin (Postn) is a reliable and distinctive marker for pulmonary myofibroblasts, while ablation of Postn+ myofibroblasts after injury ameliorated lung fibrosis. PIEZO1 was highly expressed in Postn+ myofibroblast and played a vital role in mechanoactivation of Postn+ myofibroblast and development of lung fibrosis. Conditional deletion of Piezo1 in Postn+ myofibroblasts significantly inhibited lung fibrosis by suppressing myofibroblast activation and proliferation. Loss of Piezo1 led to disruption of actin organization and prevention of Yap/Taz nuclear localization, thus shifting the myofibroblasts from a proliferative state into a stressed and apoptotic state. Furthermore, myofibroblast-specific Yap/Taz deletion fully recapitulated the protective phenotypes of myofibroblast-Piezo1–KO mice. These findings show that periostin marks pulmonary myofibroblasts, and that PIEZO1-mediated mechanosensation is essential for myofibroblast activation in the lung. Targeting PIEZO1 in the periostin-expressing cells is a novel therapeutic option to interfere with fibrotic diseases such as IPF .
Liran Xu, Ting Li, Yapeng Cao, Yu He, Zehua Shao, Siyu Liu, Bianbian Wang, Ailing Su, Huijing Tian, Yongxin Li, Guozheng Liang, Changhe Wang, John Shyy, Ying Xiong, Fangyuan Chen, Jason X.J. Yuan, Junjun Liu, Bin Zhou, Nina Wettschureck, Stefan Offermanns, Yang Yan, Zuyi Yuan, Shengpeng Wang
Lineage plasticity is recognized as a critical determinant of lethality and resistance to AR pathway inhibitors in prostate cancer. Lineage plasticity is a continuum, ranging from AR activity-low tumors, AR-null tumors that do not express a neuroendocrine prostate cancer (NEPC) program (i.e., double-negative prostate cancer [DNPC]), and AR-null NEPC tumors. Factors upregulated early in lineage plasticity are not well-characterized. The clarification of such factors is essential to identify tumors undergoing lineage plasticity or at risk of this occurring. Our integrative analysis of metastatic prostate cancer patient tumors, patient-derived xenografts, and cell models determined that PROX1 is upregulated early in the lineage plasticity continuum and progressively increases as tumors lose AR activity. We determined DNA methylation is a key regulator of PROX1 expression. PROX1 suppression in DNPC and NEPC reduces cell survival and impacts apoptosis and differentiation, demonstrating PROX1’s functional importance. PROX1 is not directly targetable with standard drug development approaches. However, affinity immunopurification demonstrated histone deacetylases (HDACs) are among the top PROX1-interacting proteins; HDAC inhibition depletes PROX1 and recapitulates PROX1 suppression in DNPC and NEPC. Altogether, our results suggest PROX1 promotes the emergence of lineage plasticity, and HDAC inhibition is a promising approach to treat tumors across the lineage plasticity continuum.
Zhi Duan, Mingchen Shi, Anbarasu Kumaraswamy, Dong Lin, Dhruv Khokhani, Yong Wang, Chao Zhang, Diana Flores, Eva Rodansky, Olivia A. Swaim, William K. Storck, Hannah N. Beck, Radhika A. Patel, Erolcan Sayar, Brian P. Hanratty, Hui Xue, Xin Dong, Zoe R. Maylin, Rensheng Wan, David A. Quigley, Martin Sjöström, Ya-Mei Hu, Faming Zhao, Zheng Xia, Siyuan Cheng, Xiuping Yu, Felix Y. Feng, Li Zhang, Rahul Aggarwal, Eric J. Small, Visweswaran Ravikumar, Arvind Rao, Karan Bedi, John K. Lee, Colm Morrissey, Ilsa Coleman, Peter S. Nelson, Eva Corey, Aaron M. Udager, Ryan J. Rebernick, Marcin P. Cieslik, Arul M. Chinnaiyan, Joel A. Yates, Michael C. Haffner, Yuzhuo Wang, Joshi J. Alumkal
Loss-of-function mutations in genome maintenance genes fuel tumorigenesis through increased genomic instability. A subset of these tumor suppressors are challenging to identify due to context dependency, including functional interactions with other genes and pathways. Here, we searched for potential causal genes that impact tumor development and/or progression in breast cancer through functional-genetic screening of candidate genes. MYH4, encoding a class II myosin, emerged as a top hit impacting genomic stability. We show that MYH4 suppresses DNA replication stress by promoting replication licensing and replication fork progression. Moreover, we observed a strong synergistic relationship among class II myosins in suppressing replication-associated DNA damage. Genomic analysis of Pan-Cancer Analysis of Whole Genomes project breast cancer samples revealed frequent concomitant loss of TP53 with MYH4 and class II myosins on chromosome 17p. Notably, Myh4 disruption accelerated mouse mammary tumorigenesis in a Trp53-deficient background. In conclusion, our results suggest an unanticipated function of MYH4 in p53-mediated tumor suppression that can explain their combined loss in breast cancer.
Jayashree Thatte, Ana Moisés da Silva, Judit Börcsök, Thorkell Gudjónsson, Jan Benada, Xin Li, Muthiah Bose, Hanneke van der Gulden, Ji-Ying Song, Renée Menezes, Elena Martín-Doncel, Luis Toledo, Valdemaras Petrosius, Cord Brakebusch, Jos Jonkers, Finn Cilius Nielsen, Maria Rossing, Claus S. Sørensen
Glycogenolysis and gluconeogenesis ensure sufficient hepatic glucose production during energy shortages. Here, we report that hepatic glycogen levels control the phosphorylation of a transcriptional coactivator to determine the amplitude of gluconeogenesis. Decreased liver glycogen during fasting promotes gluconeogenic gene expression, while feeding-induced glycogen accumulation suppresses it. Liver-specific deletion of the glycogen scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels, increases the expression of gluconeogenic genes, and promotes glucose production in primary hepatocytes. In contrast, liver glycogen phosphorylase (PYGL) knockdown or inhibition increases glycogen levels and represses gluconeogenic gene expression. These changes in hepatic glycogen levels are sensed by AMP-activated protein kinase (AMPK). AMPK activity is increased when glycogen levels decline, resulting in the phosphorylation and stabilization of CREB-regulated transcriptional coactivator 2 (CRTC2), which is crucial for the full activation of the cAMP-responsive transcriptional factor CREB. High glycogen allosterically inhibits AMPK, leading to CRTC2 degradation and reduced CREB transcriptional activity. Hepatocytes with low glycogen levels or high AMPK activity show higher CRTC2 protein levels, priming the cell for gluconeogenesis through transcriptional regulation. Thus, glycogen plays a regulatory role in controlling hepatic glucose metabolism through the glycogen/AMPK/CRTC2 signaling axis, safeguarding efficient glucose output during fasting and suppressing it during feeding.
Bichen Zhang, Morgan M. Johnson, Timothy Yuan, Tammy-Nhu Nguyen, Junichi Okada, Fajun Yang, Alus M. Xiaoli, Liana H. Melikian, Songran Xu, Benyamin Dadpey, Jeffrey E. Pessin, Alan R. Saltiel
Anemia is the primary clinical manifestation of myelodysplastic syndromes (MDS), but the molecular pathogenesis of ineffective erythropoiesis remains incompletely understood. Luspatercept, an activin receptor 2B (ACVRIIB-Fc) ligand trap, has been approved to treat anemia, however its molecular mechanism of action is unclear. We found that the ACVR2B, its ligand GDF11, and effector, SMAD2, are upregulated in MDS patient samples. GDF11 inhibited human erythropoiesis in vitro and caused anemia in zebrafish, effects that were abrogated by luspatercept. Upon GDF11 stimulation of human erythroid progenitors, SMAD2 binding occurred in the erythroid regulatory regions, including at GATA1 intron. Intronic SMAD2 binding led to skipping of exon 2 of GATA1, resulting in a shorter, hypomorphic isoform (GATA1s). CRISPR deletion of the SMAD2 binding intronic region decreased GATA1s production upon GDF11 stimulation. Expression of gata1s in a mouse model led to anemia, rescued by a murine ActRIIB-Fc (RAP-536). Finally, RNA-seq analysis of samples from the Phase 3 MEDALIST trial revealed that responders to Luspatercept had a higher proportion of GATA1s compared to non-responders. Moreover, the increase RBCs post-treatment was linked to a relative decrease in GATA1s isoform. Our study indicates that GDF11-mediated SMAD2 activation results in an increase in functionally impaired GATA1 isoforms, consequently contributing to anemia and influencing responses to Luspatercept in MDS.
Srinivas Aluri, Te Ling, Ellen Fraint, Samarpana Chakraborty, Kevin Zhang, Aarif Ahsan, Leah Kravets, Gowri Poigaialwar, Rongbao Zhao, Kith Pradhan, Anitria Cotton, Kimo Bachiashvili, Jung-In Yang, Anjali Budhathoki, Beamon Agarwal, Shanisha Gordon-Mitchell, Milagros Carbajal, Srabani Sahu, Jacqueline Boultwood, Andrea Pellagatti, Ulrich Steidl, Amittha Wickrema, Satish Nandakumar, Aditi Shastri, Rajasekhar N.V.S. Suragani, Teresa V. Bowman, John D. Crispino, Sadanand Vodala, Amit Verma
Air pollution is a serious environmental threat to public health; however, the molecular basis underlying its detrimental effects on respiratory fitness remains poorly understood. Here, we show that exposure to particulate matter ≤2.5 µm (PM2.5), a significant fraction of air pollutants, induces the generation of reactive aldehyde species in the airway. We identified aldehyde dehydrogenase 1A1 (ALDH1A1), which is selectively expressed in airway epithelium, as an enzyme responsible for detoxifying these reactive aldehyde species. Loss of ALDH1A1 function results in the accumulation of aldehyde adducts in the airway, which selectively impairs mucociliary clearance (MCC), a critical defense mechanism against respiratory pathogens. Thus, ALDH1A1-deficient mice pre-exposed to PM2.5 exhibited increased susceptibility to pneumonia. Conversely, pharmacological enhancement of ALDH1A1 activity promoted the restoration of MCC function. These findings elucidate the critical role of aldehyde metabolism in protecting against PM2.5 exposure, offering a potential target to mitigate the negative health consequences of air pollution.
Noriko Shinjyo, Haruna Kimura, Tomomi Yoshihara, Jun Suzuki, Masaya Yamaguchi, Shigetada Kawabata, Yasutaka Okabe
No posts were found with this tag.