Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

In-Press Preview

Articles in this category appear as authors submitted them for publication, prior to copyediting and publication layout.
Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy
Dysregulated protein degradative pathways are increasingly recognized as mediators of human disease. This mechanism may have particular relevance to desmosomal proteins that play critical...
Published April 15, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI137689.
View: Text | PDF
Research In-Press Preview Cardiology Muscle biology

Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy

  • Text
  • PDF
Abstract

Dysregulated protein degradative pathways are increasingly recognized as mediators of human disease. This mechanism may have particular relevance to desmosomal proteins that play critical structural roles in both tissue architecture and cell-cell communication as destabilization/breakdown of the desmosomal proteome is a hallmark of genetic-based desmosomal-targeted diseases, such as the cardiac disease, arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). However, no information exists on whether there are resident proteins that regulate desmosomal proteome homeostasis. Here we uncovered a cardiac COP9 desmosomal resident protein complex, composed of subunit 6 of the COP9 signalosome (CSN6), that enzymatically restricted neddylation and targeted desmosomal proteome degradation. CSN6 binding, localization, levels and function were impacted in hearts of classic mouse and human models of ARVD/C impacted by desmosomal loss and mutations, respectively. Loss of desmosomal proteome degradation control due to CSN6 loss and human desmosomal mutations destabilizing CSN6 were also sufficient to trigger ARVD/C in mice. We identified a desmosomal resident regulatory complex that restricted desmosomal proteome degradation and disease.

Authors

Yan Liang, Robert C. Lyon, Jason Pellman, William H. Bradford, Stephan Lange, Julius Bogomolovas, Nancy D. Dalton, Yusu Gu, Marcus Bobar, Mong-Hong Lee, Tomoo Iwakuma, Vishal Nigam, Angeliki Asimaki, Melvin Scheinman, Kirk L. Peterson, Farah Sheikh

×

Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice
Synaptic plasticity is identified as innate to hypothalamic feeding circuits in their adaptation to the changing metabolic milieu in control of feeding and obesity. However, less is known about the...
Published April 13, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144239.
View: Text | PDF
Research In-Press Preview Neuroscience

Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice

  • Text
  • PDF
Abstract

Synaptic plasticity is identified as innate to hypothalamic feeding circuits in their adaptation to the changing metabolic milieu in control of feeding and obesity. However, less is known about the regulatory principles of the dynamic changes of AgRP perikarya, a crucial region of the neuron gating excitation, and hence, feeding. Here we show that AgRP neurons activated either by food deprivation, ghrelin or chemogenetics decreased their own inhibitory tone while triggering mitochondrial adaptations in neighboring astrocytes. We found that it was the inhibitory neurotransmitter, GABA, released by AgRP neurons that evoked this astrocytic response, which in turn, resulted in increased glial ensheetment of AgRP perikaryal by glial processes and increased excitability of AgRP neurons. We also identified that astrocyte-derived prostaglandin E2 directly activated, via EP2 receptors, AgRP neurons. Taken together, these observations unmasked a feedforward, self-exciting loop in AgRP neuronal control mediated by astrocytes, a mechanism directly relevant for hunger, feeding and overfeeding.

Authors

Luis Varela, Bernardo Stutz, Jae Eun Song, Jae Geun Kim, Zhong-Wu Liu, Xiao-Bing Gao, Tamas L. Horvath

×

Tissue resident-like CD4+ T cells secreting IL-17 control Mycobacteria tuberculosis in the human lung
T cell immunity is essential for the control of tuberculosis (TB), an important disease of the lung, and is generally studied in humans using peripheral blood cells. Mounting evidence, however,...
Published April 13, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI142014.
View: Text | PDF
Research In-Press Preview Immunology Infectious disease

Tissue resident-like CD4+ T cells secreting IL-17 control Mycobacteria tuberculosis in the human lung

  • Text
  • PDF
Abstract

T cell immunity is essential for the control of tuberculosis (TB), an important disease of the lung, and is generally studied in humans using peripheral blood cells. Mounting evidence, however, indicates that tissue resident memory T cells (Trm) are superior at controlling many pathogens, including Mycobacterium tuberculosis (Mtb), and can be quite different from those in circulation. Using freshly resected lung tissue, from individuals with active or previous TB, we identified distinct CD4 and CD8 Trm-like clusters within TB diseased lung tissue that were functional and enriched for IL-17 producing cells. Mtb-specific CD4 T cells producing TNF-α, IL-2 and IL-17 were highly expanded in the lung compared to matched blood samples, in which IL-17+ cells were largely absent. Strikingly, the frequency of Mtb-specific lung T cells making IL-17, but not other cytokines, inversely correlated with the plasma IL-1β levels, suggesting a potential link with disease severity. Using a human granuloma model, we showed the addition of either exogenous IL-17 or IL-2 enhanced immune control of Mtb and was associated with increased NO production. Taken together, these data support an important role for Mtb-specific Trm-like IL-17 producing cells in the immune control of Mtb in the human lung.

Authors

Paul Ogongo, Liku B. Tezera, Amanda Ardain, Shepherd Nhamoyebonde, Duran Ramsuran, Alveera Singh, Abigail Ngoepe, Farina Karim, Taryn Naidoo, Khadija Khan, Kaylesh J. Dullabh, Michael Fehlings, Boon Heng Lee, Alessandra Nardin, Cecilia S. Lindestam Arlehamn, Alessandro Sette, Samuel M. Behar, Adrie J.C. Steyn, Rajhmun Madansein, Henrik N. Kløverpris, Paul T. Elkington, Alasdair Leslie

×

Myeloid cell-derived PROS1 inhibits tumor metastasis by regulating inflammatory and immune responses via IL-10
Stimulation of TAM (TYRO3, AXL and MERTK) Receptor Tyrosine Kinases promotes tumor progression through numerous cellular mechanisms. TAM cognate ligands GAS6 and PROS1 (for TYRO3 and MERTK) are...
Published April 13, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI126089.
View: Text | PDF
Research In-Press Preview Inflammation Oncology

Myeloid cell-derived PROS1 inhibits tumor metastasis by regulating inflammatory and immune responses via IL-10

  • Text
  • PDF
Abstract

Stimulation of TAM (TYRO3, AXL and MERTK) Receptor Tyrosine Kinases promotes tumor progression through numerous cellular mechanisms. TAM cognate ligands GAS6 and PROS1 (for TYRO3 and MERTK) are secreted by host immune cells, an interaction which may support tumor progression. Here we reveal an unexpected anti-metastatic role for myeloid-derived PROS1, directly suppressing the metastatic potential of lung and breast tumor models. Pros1 deletion in myeloid cells led to increased lung metastasis, independent of primary tumor infiltration. PROS1-cKO BMDMs led to elevated TNFα, IL-6, Nos2 and IL-10 via modulation of the Socs3-NFκB pathway. Conditioned medium from cKO BMDMs enhanced EMT, ERK, AKT and STAT3 activation within tumor cells, and promoted IL-10 dependent invasion and survival. Macrophages isolated from metastatic lungs modulated T cell proliferation and function, as well as expression of costimulatory molecules on dendritic cells in a PROS1-dependent manner. Inhibition of MERTK kinase activity blocked PROS1-mediated suppression of TNFα and IL-6, but not of IL-10. Overall, using lung and breast cancer models, we identify the PROS1-MERTK axis within BMDMs as a potent regulator of adaptive immune responses with a potential to suppress metastatic seeding, and reveal IL-10 regulation by PROS1 to deviate from that of TNFα and IL-6.

Authors

Avi Maimon, Victor Levi-Yahid, Kerem Ben-Meir, Amit Halpern, Ziv Talmi, Shivam Priya, Gabriel Mizraji, Shani Mistriel-Zerbib, Michael Berger, Michal Baniyash, Sonja Loges, Tal Burstyn-Cohen

×

The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder
Opioid use disorder (OUD) has become a leading cause of death in the US, yet current therapeutic strategies remain highly inadequate. To identify novel potential treatments for OUD, we screened a...
Published April 13, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI143990.
View: Text | PDF
Research In-Press Preview Neuroscience

The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder

  • Text
  • PDF
Abstract

Opioid use disorder (OUD) has become a leading cause of death in the US, yet current therapeutic strategies remain highly inadequate. To identify novel potential treatments for OUD, we screened a targeted selection of over 100 drugs using a recently developed opioid self-administration assay in zebrafish. This paradigm showed that finasteride, a steroidogenesis inhibitor approved for the treatment of benign prostatic hyperplasia and androgenetic alopecia, reduced self-administration of multiple opioids without affecting locomotion or feeding behavior. These findings were confirmed in rats; furthermore, finasteride reduced the physical signs associated with opioid withdrawal. In rat models of neuropathic pain, finasteride did not alter the antinociceptive effect of opioids and reduced withdrawal-induced hyperalgesia. Steroidomic analyses of the brains of fish treated with finasteride revealed a significant increase in dehydroepiandrosterone sulfate (DHEAS). Treatment with precursors of DHEAS reduced opioid self-administration in zebrafish in a fashion akin to the effects of finasteride. These results highlight the importance of steroidogenic pathways as a rich source of therapeutic targets for OUD and point to the potential of finasteride as a new treatment option for this disorder.

Authors

Gabriel D. Bosse, Roberto Cadeddu, Gabriele Floris, Ryan D. Farero, Eva Vigato, Suhjung J. Lee, Tejia Zhang, Nilesh W. Gaikwad, Kristen A. Keefe, Paul E.M. Phillips, Marco Bortolato, Randall T. Peterson

×

SARS-CoV-2 as a superantigen in multisystem inflammatory syndrome in children (MIS-C)
Multisystem Inflammatory Syndrome in Children (MIS-C) is a rare but deadly new disease in children that rapidly progresses to hyperinflammation, shock, and can lead to multiple organ failure if...
Published April 12, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI149327.
View: Text | PDF
Commentary In-Press Preview

SARS-CoV-2 as a superantigen in multisystem inflammatory syndrome in children (MIS-C)

  • Text
  • PDF
Abstract

Multisystem Inflammatory Syndrome in Children (MIS-C) is a rare but deadly new disease in children that rapidly progresses to hyperinflammation, shock, and can lead to multiple organ failure if unrecognized. It has been found to be temporally associated with the COVID-19 pandemic and is often associated with SARS-CoV-2 exposure in children. In this issue of the JCI, Porritt, Paschold, and Rivas et al. identify restricted T cell receptor (TCR) β-chain variable domain (Vβ) usage in patients with severe MIS-C indicating a potential role for SARS-CoV-2 as a superantigen. These findings suggest that a blood test that determines the presence of specific TCR beta variable gene segments (TRBV) may identify patients at risk for severe MIS-C.

Authors

Theodore Kouo, Worarat Chaisawangwong

×

Structure-based phylogeny identifies Avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice
Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2)...
Published April 12, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI147973.
View: Text | PDF
Research In-Press Preview COVID-19 Infectious disease

Structure-based phylogeny identifies Avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice

  • Text
  • PDF
Abstract

Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2) is a human protease required for SARS-CoV-2 viral entry and may represent such a target. We hypothesized that drugs selected from proteins related by their tertiary structure, rather than their primary structure, were likely to interact with TMPRSS2. We created a structure-based phylogenetic computational tool named 3DPhyloFold to systematically identify structurally similar serine proteases with known therapeutic inhibitors and demonstrated effective inhibition of SARS-CoV-2 infection in vitro and in vivo. Several candidate compounds, Avoralstat, PCI-27483, Antipain, and Soybean-Trypsin-Inhibitor, inhibited TMPRSS2 in biochemical and cell infection assays. Avoralstat, a clinically tested Kallikrein-related B1 inhibitor, inhibited SARS-CoV-2 entry and replication in human airway epithelial cells. In an in vivo proof of principle, Avoralstat significantly reduced lung tissue titers and mitigated weight-loss when administered prophylactically to SARS-CoV-2 susceptible mice indicating its potential to be repositioned for COVID-19 prophylaxis in humans.

Authors

Young Joo Sun, Gabriel Velez, Dylan E. Parsons, Kun Li, Miguel E. Ortiz, Shaunik Sharma, Paul B. McCray Jr., Alexander G. Bassuk, Vinit B. Mahajan

×

Functional characterization of CD4+ T-cell receptors cross-reactive for SARS-CoV-2 and endemic coronaviruses
Background. Recent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to cross-recognition by T-cells...
Published April 8, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146922.
View: Text | PDF
Clinical Medicine In-Press Preview COVID-19 Immunology

Functional characterization of CD4+ T-cell receptors cross-reactive for SARS-CoV-2 and endemic coronaviruses

  • Text
  • PDF
Abstract

Background. Recent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to cross-recognition by T-cells specific for common cold coronaviruses (CCCs). True T-cell cross-reactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2. Methods. We used the ViraFEST platform to identify T cell responses cross-reactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC cross-reactivity and assessments of functional avidity were performed using a TCR cloning and transfection system. Results. Memory CD4+ T-cell clonotypes that cross-recognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Cross-reactive T-cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to mono-specific CD4+ T-cells, which was consistent with lower functional avidity of their TCRs for SARS CoV-2 relative to CCC. Conclusions. For the first time, our data confirm the existence of unique memory CD4+ T cell clonotypes cross-recognizing SARS-CoV-2 and CCCs. The lower avidity of cross-reactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that pre-existing CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these cross-reactive T-cell responses impact clinical outcomes in COVID-19 patients.

Authors

Arbor G. Dykema, Boyang Zhang, Bezawit A. Woldemeskel, Caroline C. Garliss, Laurene S. Cheung, Dilshad Choudhury, Jiajia Zhang, Luis Aparicio, Sadhana Bom, Rufiaat Rashid, Justina X. Caushi, Emily Han-Chung Hsiue, Katherine Cascino, Elizabeth A. Thompson, Abena K. Kwaa, Dipika Singh, Sampriti Thapa, Alvaro A. Ordonez, Andrew Pekosz, Franco R. D'Alessio, Jonathan D. Powell, Srinivasan Yegnasubramanian, Shibin Zhou, Drew M. Pardoll, Hongkai Ji, Andrea L. Cox, Joel N. Blankson, Kellie N. Smith

×

Keratinocyte-derived microvesicle particles mediate Ultraviolet B radiation induced systemic immunosuppression
A complete carcinogen, Ultraviolet B radiation (290-320 nm; UVB), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the...
Published April 8, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144963.
View: Text | PDF
Research In-Press Preview Dermatology Immunology

Keratinocyte-derived microvesicle particles mediate Ultraviolet B radiation induced systemic immunosuppression

  • Text
  • PDF
Abstract

A complete carcinogen, Ultraviolet B radiation (290-320 nm; UVB), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator Platelet-activating factor. A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF Receptor (PAFR) activation in keratinocytes induce large amounts of microvesicle particle (extracellular vesicles 100-1000nm; MVP) release. MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVP) are dependent upon the keratinocyte PAFR. The present studies used both pharmacologic and genetic approaches in cells and mice to determine that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVP leaving the keratinocyte can be found systemically in mice and in human subjects following UVB. Moreover, UVB-MVP contain bioactive contents including PAFR agonists which allow them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.

Authors

Langni Liu, Azeezat A. Awoyemi, Katherine E. Fahy, Pariksha Thapa, Christina Borchers, Benita Y. Wu, Cameron L. McGlone, Benjamin Schmeusser, Zafer Sattouf, Craig A. Rohan, Amy R. Williams, Elizabeth E. Cates, Christina Knisely, Lisa E. Kelly, Ji C. Bihl, David R. Cool, Ravi P. Sahu, Jinju Wang, Yanfang Chen, Christine M. Rapp, Michael G. Kemp, R. Michael Johnson, Jeffrey B. Travers

×

Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation
One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing...
Published April 8, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146832.
View: Text | PDF
Research In-Press Preview Immunology Oncology

Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation

  • Text
  • PDF
Abstract

One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-I) that significantly promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non-ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced major histocompatibility class I (MHC-I)-mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient-derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation, empowers T-cell cytotoxicity, and thus elevates the tumor response to immunotherapy.

Authors

Hanchen Xu, Kevin Van der Jeught, Zhuolong Zhou, Lu Zhang, Tao Yu, Yifan Sun, Yujing Li, Changlin Wan, Kaman So, Degang Liu, Michael Frieden, Yuanzhang Fang, Amber L. Mosley, Xiaoming He, Xinna Zhang, George E. Sandusky, Yunlong Liu, Samy O. Meroueh, Chi Zhang, Aruna B. Wijeratne, Cheng Huang, Guang Ji, Xiongbin Lu

×

Parkinson disease among patients treated for benign prostatic hyperplasia with α1 adrenergic receptor antagonists
BACKGROUND. Recently the α1 adrenergic receptor antagonist terazosin was shown to activate PGK1, a possible target for the mitochondrial deficits in Parkinson disease related to its function as the...
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI145112.
View: Text | PDF
Clinical Medicine In-Press Preview Genetics Neuroscience

Parkinson disease among patients treated for benign prostatic hyperplasia with α1 adrenergic receptor antagonists

  • Text
  • PDF
Abstract

BACKGROUND. Recently the α1 adrenergic receptor antagonist terazosin was shown to activate PGK1, a possible target for the mitochondrial deficits in Parkinson disease related to its function as the initial enzyme in ATP synthesis during glycolysis. An epidemiologic study of terazosin users showed a lower incidence of Parkinson disease when compared to users of tamsulosin, an α1 adrenergic receptor antagonist of a different class that does not activate PGK1. However, prior research on tamsulosin has suggested that it may in fact potentiate neurodegeneration, raising the question of whether it is an appropriate control group. METHODS. To address this question, we undertook an epidemiological study on Parkinson disease occurrence rate in 113,450 individuals from the U.S.A. with > 5 years of follow-up. Patients were classified as tamsulosin users (n = 45,380), terazosin/alfuzosin/doxazosin users (n = 22,690) or controls matched on age, gender and Charlson Comorbidity Index score (n = 45,380). RESULTS. Incidence of Parkinson disease in tamsulosin users was 1.53%, which was significantly higher than that in both terazosin/alfuzosin/doxazosin users (1.10%; p<0.0001) and matched controls (1.01%; p < 0.0001). Terazosin/alfuzosin/doxazosin users did not differ in Parkinson disease risk from matched controls (p = 0.29). CONCLUSION. These results suggest that zosins may not confer a protective effect against Parkinson disease, but rather that tamsulosin may in some way potentiate Parkinson disease progression. FUNDING. This work was supported by Cerevel Therapeutics.

Authors

Rahul Sasane, Amy Bartels, Michelle Field, Maria I. Sierra, Sridhar Duvvuri, David L. Gray, Sokhom S. Pin, John J. Renger, David J. Stone

×

SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63
Recent studies have shown T cell cross-recognition of SARS-CoV-2 and common cold coronavirus spike proteins. However, the effect of SARS-CoV-2 vaccines on T cell responses to common cold...
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI149335.
View: Text | PDF
Concise Communication In-Press Preview COVID-19

SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63

  • Text
  • PDF
Abstract

Recent studies have shown T cell cross-recognition of SARS-CoV-2 and common cold coronavirus spike proteins. However, the effect of SARS-CoV-2 vaccines on T cell responses to common cold coronaviruses remain unknown. In this study, we analyzed CD4+ T cell responses to spike peptides from SARS-CoV-2 and 3 common cold coronaviruses (HCoV-229E, HCoV-NL63, and HCoV-OC43) before and after study participants received Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) mRNA-based COVID-19 vaccines. Vaccine recipients made broad T cell responses to the SARS-CoV-2 spike protein and we identified 23 distinct targeted peptides in 9 participants including one peptide that was targeted by 6 individuals. Only 4 out of these 23 targeted peptides would potentially be affected by mutations in the UK (B.1.1.7) and South African (B.1.351) variants and CD4+ T cells from vaccine recipients recognized the 2 variant spike proteins as effectively as the spike protein from the ancestral virus. Interestingly, we saw a 3-fold increase in the CD4+ T cell responses to HCoV-NL63 spike peptides post-vaccination. Our results suggest that T cell responses elicited or enhanced by SARS-CoV-2 mRNA vaccines may be able to control SARS-CoV-2 variants and lead to cross-protection from some endemic coronaviruses.

Authors

Bezawit A. Woldemeskel, Caroline C. Garliss, Joel N. Blankson

×

Calcineurin inhibitors suppress acute graft-vs-host disease via NFAT-independent inhibition of T cell receptor signaling
Inhibitors of calcineurin phosphatase activity (CNIs) such as cyclosporin A (CsA) are widely used to treat tissue transplant rejection and acute graft-versus-host disease (aGVHD), for which...
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI147683.
View: Text | PDF
Research In-Press Preview Immunology

Calcineurin inhibitors suppress acute graft-vs-host disease via NFAT-independent inhibition of T cell receptor signaling

  • Text
  • PDF
Abstract

Inhibitors of calcineurin phosphatase activity (CNIs) such as cyclosporin A (CsA) are widely used to treat tissue transplant rejection and acute graft-versus-host disease (aGVHD), for which inhibition of NFAT-dependent gene expression is the mechanistic paradigm. We recently reported that CNIs inhibit TCR-proximal signaling by preventing calcineurin-mediated dephosphorylation of LckS59, an inhibitory modification, raising the possibility of another mechanism by which CNIs suppress immune responses. Here we utilized T cells from mice that express LckS59A, which cannot accept a phosphate at residue 59, to initiate aGVHD. Although CsA inhibited NFAT-dependent gene upregulation in allo-aggressive T cells expressing either LckWT or LckS59A, it was ineffective in treating disease when the T cells expressed LckS59A. Two important NFAT-independent T cell functions were found to be CsA-resistant in LckS59A T cells: upregulation of the cytolytic protein perforin in tissue-infiltrating CD8+ T cells and antigen-specific T:DC (dendritic cell) adhesion and clustering in lymph nodes. These results demonstrate that effective treatment of aGVHD by CsA requires NFAT-independent inhibition of TCR signaling. Given that NFATs are widely expressed and off-target effects are a major limitation in CNI use, it is possible that targeting TCR-associated calcineurin directly may provide effective therapies with less toxicity.

Authors

Shizuka Otsuka, Nicolas Melis, Matthias M. Gaida, Debjani Dutta, Roberto Weigert, Jonathan D. Ashwell

×

Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism
Limiting dysfunctional neutrophilic inflammation whilst preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative...
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI134073.
View: Text | PDF
Research In-Press Preview Inflammation Metabolism

Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism

  • Text
  • PDF
Abstract

Limiting dysfunctional neutrophilic inflammation whilst preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labelled amino acids into metabolic enzymes, pro-inflammatory mediators and granule proteins we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycaemia, characteristic of inflamed tissues, promoted this extra-cellular protein scavenging with activation of the lysosomal compartment further driving exploitation of the protein rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways which enable neutrophils to sustain synthetic and effector functions in the tissues.

Authors

Emily R. Watts, Andrew J.M. Howden, Tyler Morrison, Pranvera Sadiku, Jens L. Hukelmann, Alex von Kriegsheim, Bart Ghesquière, Fiona Murphy, Ananda S. Mirchandani, Duncan C. Humphries, Robert Grecian, Eilise M. Ryan, Patricia Coelho, Giovanny Rodriguez-Blanco, Tracie M. Plant, Rebecca S. Dickinson, Andrew J. Finch, Wesley Vermaelen, Doreen A. Cantrell, Moira K.B. Whyte, Sarah R. Walmsley

×

The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model
Anemia in β-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on...
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144206.
View: Text | PDF
Research In-Press Preview Hematology

The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model

  • Text
  • PDF
Abstract

Anemia in β-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on β-thalassemic erythroblasts and erythrocytes, impacting cell metabolism. We hypothesized that increased pyruvate kinase activity induced by mitapivat (AG-348) in the Hbbth3/+ mouse model for β-thalassemia would reduce chronic hemolysis and ineffective erythropoiesis through stimulation of red cell glycolytic metabolism. Oral mitapivat administration ameliorated ineffective erythropoiesis and anemia in Hbbth3/+ mice. Increased ATP, reduced reactive oxygen species production, and reduced markers of mitochondrial dysfunction associated with improved mitochondrial clearance suggested enhanced metabolism following mitapivat administration in β-thalassemia. The amelioration of responsiveness to erythropoietin resulted in reduced soluble erythroferrone, increased liver Hamp expression, and diminished liver iron overload. Mitapivat reduced duodenal Dmt1 expression potentially by activating the pyruvate kinase M2HIF2α axis, representing a mechanism additional to Hamp in controlling iron absorption and preventing β-thalassemia–related liver iron overload. In ex vivo studies on erythroid precursors from patients with β-thalassemia, mitapivat enhanced erythropoiesis, promoted erythroid maturation, and decreased apoptosis. Overall, pyruvate kinase activation as a treatment modality for β-thalassemia in preclinical model systems had multiple beneficial effects in the erythropoietic compartment and beyond, providing a strong scientific basis for further clinical trials.

Authors

Alessandro Matte, Enrica Federti, Charles Kung, Penelope A. Kosinski, Rohini Narayanaswamy, Roberta Russo, Giorgia Federico, Francesca Carlomagno, Maria Andrea Desbats, Leonardo Salviati, Christophe Leboeuf, Maria Teresa Valenti, Francesco Turrini, Anne Janin, Shaoxia Yu, Elisabetta Beneduce, Sebastien Ronseaux, Iana Iatcenko, Lenny Dang, Tomas Ganz, Chun-Ling Jung, Achille Iolascon, Carlo Brugnara, Lucia De Franceschi

×

FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition
The protein kinases IKK-epsilon and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKK-epsilon/TBK1 inhibitor, amlexanox,...
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI145546.
View: Text | PDF
Research In-Press Preview Metabolism

FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition

  • Text
  • PDF
Abstract

The protein kinases IKK-epsilon and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKK-epsilon/TBK1 inhibitor, amlexanox, produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of WAT. Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, while hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that leads to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by suppression of hepatic glucose production via the activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging, and an endocrine role of adipocyte-derived IL-6 to decrease gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.

Authors

Shannon M. Reilly, Mohammad Abu-Odeh, Magdalene Ameka, Julia H. DeLuca, Meghan C. Naber, Benyamin Dadpey, Nima Ebadat, Andrew V. Gomez, Xiaoling Peng, BreAnne Poirier, Elyse Walk, Matthew J. Potthoff, Alan R. Saltiel

×

Accurate diagnosis of pulmonary nodules using a non-invasive DNA methylation test
BACKGROUND. Current clinical management of patients with pulmonary nodules involves either repeated LDCT/CT scans or invasive procedures yet causes significant patient misclassification. An...
Published April 1, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI145973.
View: Text | PDF
Clinical Medicine In-Press Preview Genetics Oncology

Accurate diagnosis of pulmonary nodules using a non-invasive DNA methylation test

  • Text
  • PDF
Abstract

BACKGROUND. Current clinical management of patients with pulmonary nodules involves either repeated LDCT/CT scans or invasive procedures yet causes significant patient misclassification. An accurate non-invasive test is needed to identify malignant nodules and reduce unnecessary invasive tests. METHOD. We developed a diagnostic model based on targeted DNA methylation sequencing of 389 pulmonary nodule patients’ plasma samples, and then validated in 140 plasma samples independently. We tested the model in different stages and subtypes of pulmonary nodules. RESULTS. A 100-feature model was developed and validated for pulmonary nodule diagnosis: the model achieved a ROC-AUC of 0.843 on 140 independent validation samples with an accuracy of 0.800. The performance was well maintained in, 1) 6-20 mm size subgroup (N=100), with a sensitivity of 1.000 and adjusted NPV of 1.000 at 10% prevalence; 2) stage I malignancy (N=90), with a sensitivity of 0.971; 3) different nodule types - solid nodules (N=78) with a sensitivity of 1.000 and adjusted NPV of 1.000, part-solid nodules (N=75) with a sensitivity of 0.947 and adjusted NPV of 0.983, and ground-glass nodules (N=67) with a sensitivity of 0.964 and adjusted NPV of 0.989 at 10% prevalence. This methylation test, called PulmoSeek, outperformed PET-CT and two clinical prediction models (Mayo and Veterans Affairs) in discriminating malignant pulmonary nodules from benign ones. CONCLUSION. This study suggests that the blood-based DNA methylation model may provide a better test for classifying pulmonary nodules, which could help facilitate the accurate diagnosis of early-stage lung cancer from pulmonary nodule patients and guide clinical decisions. FUNDING. The National Key Research and Development Program of China; Science and Technology Planning Project of Guangdong Province; The National Natural Science Foundation of China National.

Authors

Wenhua Liang, Zhiwei Chen, Caichen Li, Jun Liu, Jinsheng Tao, Xin Liu, Dezhi Zhao, Weiqiang Yin, Hanzhang Chen, Chao Cheng, Fenglei Yu, Chunfang Zhang, Lunxu Liu, Hui Tian, Kaican Cai, Xiang Liu, Zheng Wang, Ning Xu, Qing Dong, Liang Chen, Yue Yang, Xiuyi Zhi, Hui Li, Xixiang Tu, Xiangrui Cai, Zeyu Jiang, Hua Ji, Lili Mo, Jiaxuan Wang, Jian-Bing Fan, Jianxing He

×

Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling
Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases...
Published March 30, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI127884.
View: Text | PDF
Research In-Press Preview Vascular biology

Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling

  • Text
  • PDF
Abstract

Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesised that Thymosin β4 (Tβ4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with Low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of PDGF-BB signalling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tβ4-null mice displayed aortic VSMC and elastin defects, phenocopying LRP1 mutants, and their compromised vascular integrity predisposed to Angiotensin II-induced aneurysm formation. Aneurysmal vessels were characterised by enhanced VSMC phenotypic modulation and augmented platelet-derived growth factor (PDGF) receptor (PDGFR)β signalling. In vitro, enhanced sensitivity to PDGF-BB, upon loss of Tβ4, associated with dysregulated endocytosis, with increased recycling and reduced lysosomal targeting of LRP1-PDGFRβ. Accordingly, the exacerbated aneurysmal phenotype in Tβ4-null mice was rescued upon treatment with the PDGFRβ antagonist, Imatinib. Our study identifies Tβ4 as a key regulator of LRP1 for maintaining vascular health and provides insights into the mechanisms of growth factor-controlled VSMC phenotypic modulation underlying aortic disease progression.

Authors

Sonali Munshaw, Susann Bruche, Andia N. Redpath, Alisha Jones, Jyoti Patel, Karina N. Dubé, Regent Lee, Svenja S. Hester, Rachel Davies, Giles Neal, Ashok Handa, Michael Sattler, Roman Fischer, Keith M. Channon, Nicola Smart

×

B cells, antibody-secreting cells and virus-specific antibodies respond to herpes simplex virus-2 reactivation in skin
Tissue-based T cells are important effectors in the prevention and control of mucosal viral infections – less is known about tissue-based B cells. We demonstrate that B cells and antibody-secreting...
Published March 30, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI142088.
View: Text | PDF
Research In-Press Preview Immunology Infectious disease

B cells, antibody-secreting cells and virus-specific antibodies respond to herpes simplex virus-2 reactivation in skin

  • Text
  • PDF
Abstract

Tissue-based T cells are important effectors in the prevention and control of mucosal viral infections – less is known about tissue-based B cells. We demonstrate that B cells and antibody-secreting cells (ASCs) are present in inflammatory infiltrates in skin biopsies of persons during symptomatic HSV2 reactivation and early healing. Both CD20+ B cells, most of which are antigen-inexperienced by co-expression of IgD, and ASCs, characterized by dense IgG RNA expression in combination with CD138, IRF4 and Blimp1 RNA, are seen in association with T cells. ASCs are found clustered with CD4+ T cells, suggesting potential for crosstalk. HSV2-specific antibodies to virus surface antigens are also present in tissue and increase in concentration during HSV2 reactivation and healing, unlike in serum where concentrations remain static over time. B cells, ASCs, and HSV-specific antibody were rarely detected in biopsies of unaffected skin. Evaluation of serial biopsies demonstrate that B cells and ASCs follow a more migratory than resident pattern of infiltration in HSV-affected genital skin, in contrast to T cells. Together, these observations suggest distinct phenotypes of B cells in HSV-affected tissue; dissecting their role in reactivation may reveal new therapeutic avenues to control these infections.

Authors

Emily S. Ford, Anton M. Sholukh, RuthMabel Boytz, Savanna S. Carmack, Alexis Klock, Khamsone Phasouk, Danica Shao, Raabya Rossenkhan, Paul T. Edlefsen, Tao Peng, Christine Johnston, Anna Wald, Jia Zhu, Lawrence Corey

×

Type 1 diabetes mellitus: much progress, many opportunities
As part of the centennial celebration of insulin’s discovery, this review summarizes the current understanding of the genetics, pathogenesis, treatment, and outcomes in type 1 diabetes (T1D). T1D...
Published March 24, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI142242.
View: Text | PDF
Review In-Press Preview

Type 1 diabetes mellitus: much progress, many opportunities

  • Text
  • PDF
Abstract

As part of the centennial celebration of insulin’s discovery, this review summarizes the current understanding of the genetics, pathogenesis, treatment, and outcomes in type 1 diabetes (T1D). T1D results from an autoimmune response that leads to destruction of the β cells in the pancreatic islet and requires life-long insulin therapy. While much has been learned about T1D, it is now clear that there is considerable heterogeneity in T1D with regards to genetics, pathology, response to immune-based therapies, clinical course, and susceptibility to diabetes-related complications. This review highlights knowledge gaps and opportunities to improve the understanding of T1D pathogenesis and outlines emerging therapies to treat or prevent T1D and reduce the burden of T1D.

Authors

Alvin C. Powers

×

← Previous 1 2 3 … 42 43 Next →


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts