BACKGROUND. A key objective in managing HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) is reducing radiation therapy (RT) doses without compromising cure rates. A recent Phase 2/3 HN005 trial revealed that clinical factors alone are insufficient to guide safe RT dose de-escalation. Our prior research demonstrated that the Genomic Adjusted Radiation Dose (GARD) predicts RT benefit and may inform dose selection. We hypothesize that GARD can guide personalized RT de-escalation in HPV-positive OPSCC patients. METHODS. Gene expression profiles were analyzed in 191 HPV-positive OPSCC patients enrolled in an international, multi-institutional observational study (AJCC 8th edition stages I–III). Most patients received 70 Gy in 35 fractions or 69.96 Gy in 33 fractions (median dose: 70 Gy, range: 51.0–74.0 Gy). Overall survival (OS) was 94.1% at 36 months and 87.3% at 60 months. Cox proportional hazards models assessed association between GARD and OS, and time-dependent ROC analyses compared GARD with traditional clinical predictors. RESULTS. Despite uniform RT dosing, GARD showed wide heterogeneity ([15.4–71.7]). Higher GARD values were significantly associated with improved OS in univariate (HR = 0.941, P = 0.041) and multivariable analyses (HR = 0.943, P = 0.046), while T and N stage were not. GARD demonstrated superior predictive performance at 36 months (AUC = 78.26) versus clinical variables (AUC = 71.20). Two GARD-based RT de-escalation strategies were identified, offering potential survival benefits while reducing radiation exposure. CONCLUSIONS. GARD predicts overall survival and outperforms clinical variables, supporting its integration into the diagnostic workflow for personalized RT in HPV-positive OPSCC.
Emily Ho, Loris De Cecco, Steven A. Eschrich, Stefano Cavalieri, Geoffrey Sedor, Frank J. Hoebers, Ruud H. Brakenhoff, Kathrin Scheckenbach, Tito Poli, Kailin Yang, Jessica A. Scarborough, Shivani Nellore, Shauna R. Campbell, Neil M. Woody, Timothy A. Chan, Jacob Miller, Natalie L. Silver, Shlomo Koyfman, James E. Bates, Jimmy J. Caudell, Michael W. Kattan, Lisa Licitra, Javier F. Torres-Roca, Jacob G. Scott
Activating mutations in PIK3CA, the gene encoding the catalytic p110-alpha subunit of PI3K, are some of the most frequent genomic alterations in breast cancer. Alpelisib, a small-molecule inhibitor that targets p110-alpha, is a recommended drug for patients with PIK3CA-mutant advanced breast cancer. However, clinical success for PI3K inhibitors has been limited by their narrow therapeutic window. The lipid phosphatase PTEN is a potent tumour suppressor and a major negative regulator of the PI3K pathway. Unsurprisingly, inactivating mutations in PTEN correlate with tumour progression and resistance to PI3K inhibition due to persistent PI3K signalling. Here we demonstrate that PI3K inhibition leads rapidly to the inactivation of PTEN. Using a functional genetic screen we show that this effect is mediated by a USP10-GSK3-B signalling axis, in which USP10 stabilizes GSK3-B resulting in GSK3-B-mediated phosphorylation of the C-terminal tail of PTEN. This phosphorylation inhibits PTEN dimerization and thus prevents its activation. Downregulation of GSK3-B or USP10 re-sensitizes PI3K inhibitor resistant breast cancer models and patient derived organoids to PI3K inhibition and induces tumour regression. Our study establishes that enhancing PTEN activity is a new strategy to treat PIK3CA mutant tumours and provides a strong rationale for pursuing USP10 inhibitors in the clinic.
Nishi Kumari, Sarah CE. Wright, Christopher M. Witham, Laia Monserrat, Marta Palafox, John Lalith Charles Richard, Carlotta Costa, Moshe Elkabets, Mark Agostino, Theresa Klemm, Melissa K. Eccles, Alexandra Garnham, Ting Wu, Jonas A. Nilsson, Nikita Walz, Veena Venugopal, Anthony Cerra, Natali Vasilevski, Stephanie C. Bridgeman, Sona Bassi, Azad Saei, Moutaz Helal, Philipp Neundorf, Angela Riedel, Mathias Rosenfeldt, Jespal Gill, Nikolett Pahor, Oliver Hartmann, Jacky Chung, Sachdev S. Sidhu, Nina Moderau, Sudhakar Jha, Jordi Rodon, Markus E. Diefenbacher, David Komander, Violeta Serra, Pieter Eichhorn
Allergic diseases have reached epidemic proportions globally, calling attention to the need for better treatment and preventive approaches. Herein, we developed allergen-encoding messenger RNA (mRNA) lipid nanoparticle (LNP) strategies for both therapy and prevention of allergic responses. Immunization with allergen-encoded mRNA-LNPs modulated T cell differentiation, inhibiting the generation of T helper type 2 (Th2) and type 17 (Th17) cells upon allergen exposure in experimental asthma models induced by ovalbumin (OVA), and naturally occurring house dust mite (HDM) and the major HDM allergen Der p1. Allergen-specific mRNA-LNP treatment attenuated clinicopathology in both preventive and established allergy models, including reduction in eosinophilia, mucus production, and airway hypersensitivity, while enhancing production of allergen-specific IgG antibodies and maintaining low IgE levels. Additionally, allergen-specific mRNA-LNP vaccines in mice elicited a CD8+CD38+KLRG- T cell response as seen following SARS-CoV-2 mRNA vaccination in human, underscoring a conserved immune mechanism across species, regardless of the mRNA-encoded protein. Notably, mRNA-LNP vaccination in combination with an mTOR inhibitor reduced the CD8+ T cell response without affecting the vaccine-induced anti-allergic effect in the preventive model of asthma. This technology renders allergen-specific mRNA-LNP therapy as a promising approach for prevention and treatment of allergic diseases.
Yrina Rochman, Michael Kotliar, Andrea M. Klingler, Mark Rochman, Mohamad-Gabriel Alameh, Jilian R. Melamed, Garrett A. Osswald, Julie M. Caldwell, Jennifer M. Felton, Lydia E. Mack, Julie Hargis, Ian P. Lewkowich, Artem Barski, Drew Weissman, Marc E. Rothenberg
The Integrator complex plays essential roles in RNA polymerase II transcription termination and RNA processing. Here, we identify INTS6, a subunit of the Integrator complex, as a novel gene associated with neurodevelopmental disorders (NDDs). Through analysis of large NDD cohorts and international collaborations, we identified 23 families harboring monoallelic likely gene-disruptive or de novo missense variants in INTS6. Phenotypic characterization revealed shared features, including language and motor delays, autism, intellectual disability, and sleep disturbances. Using a nervous-system conditional knockout (cKO) mouse model, we show that Ints6 deficiency disrupts early neurogenesis, cortical lamination, and synaptic development. Ints6 cKO mice displayed a thickened ventricular zone/subventricular zone, thinning of the cortical plate, reduced neuronal differentiation, and increased apoptosis in cortical layer 6. Behavioral assessments of heterozygous mice revealed deficits in social novelty preference, spatial memory, and hyperactivity, mirroring phenotypes observed in individuals with INTS6 variants. Molecular analyses further revealed that INTS6 deficiency alters RNA polymerase II dynamics, disrupts transcriptional regulation, and impairs synaptic gene expression. Treatment with a CDK9 inhibitor (CDK9i) reduced RNAPII phosphorylation, thereby limiting its binding to target genes. Notably, CDK9i reversed neurosphere over-proliferation and rescued the abnormal dendritic spine phenotype caused by Ints6 deficiency. This work advances understanding of INTS-related NDD pathogenesis and highlights potential therapeutic targets for intervention.
Xiaoxia Peng, Xiangbin Jia, Hanying Wang, Jingjing Chen, Xiaolei Zhang, Senwei Tan, Xinyu Duan, Can Qiu, Mengyuan Hu, Haiyan Hou, Ilaria Parenti, Alma Kuechler, Frank J. Kaiser, Alicia Renck, Raymond Caylor, Cindy Skinner, Joseph Peeden, Benjamin Cogne, Bertrand Isidor, Sandra Mercier, Gael Nicolas, Anne-Marie Guerrot, Flavio Faletra, Luciana Musante, Lior Cohen, Gaber Bergant, Goran Čuturilo, Borut Peterlin, Andrea Seeley, Kristine Bachman, Julian A. Martinez-Agosto, Conny van Ravenswaaij-Arts, Dennis Bos, Katherine H. Kim, Tobias Bartolomaeus, Zelia Schmederer, Rami Abou Jamra, Erfan Aref-Eshghi, Wenjing Zhao, Yongyi Zou, Zhengmao Hu, Qian Pan, Faxiang Li, Guodong Chen, Jiada Li, Zhangxue Hu, Kun Xia, Jieqiong Tan, Hui Guo
Polypyrimidine tract-binding protein PTBP1 is a heterogeneous nuclear ribonucleoprotein primarily known for its alternative splicing activity. It shuttles between the nucleus and cytoplasm via partially overlapping N-terminal nuclear localization (NLS) and export (NES) signals. Despite its fundamental role in cell growth and differentiation, its involvement in human disease remains poorly understood. We identified 27 individuals from 25 families harboring de novo or inherited pathogenic variants — predominantly start-loss (89%) and, to a lesser extent, missense (11%) — affecting NES/NLS motifs. Affected individual presented with a syndromic neurodevelopmental disorder and variable skeletal dysplasia with disproportionate short-limbed short stature. Intellectual functioning ranged from normal to moderately delayed. Start-loss variants led to translation initiation from an alternative downstream in-frame methionine, resulting in loss of the NES and the first half of the bipartite NLS, and increased cytoplasmic stability. Start-loss and missense variants shared a DNA methylation episignature in peripheral blood and altered nucleocytoplasmic distribution in vitro and in vivo with preferential accumulation in processing bodies, causing aberrant gene expression but normal RNA splicing. Transcriptomic analysis of patient-derived fibroblasts revealed dysregulated pathways involved in osteochondrogenesis and neurodevelopment. Overall, our findings highlight a cytoplasmic role for PTBP1 in RNA stability and disease pathogenesis.
Aymeric Masson, Julien Paccaud, Martina Orefice, Estelle Colin, Outi Mäkitie, Valérie Cormier-Daire, Raissa Relator, Sourav Ghosh, Jean-Marc Strub, Christine Schaeffer-Reiss, Carlo Marcelis, David A. Koolen, Rolph Pfundt, Elke de Boer, Lisenka E.L.M. Vissers, Thatjana Gardeitchik, Lonneke A.M. Aarts, Tuula Rinne, Paulien A. Terhal, Nienke E. Verbeek, Linda C. Zuurbier, Astrid S. Plomp, Marja W. Wessels, Stella A. de Man, Arjan Bouman, Lynne M. Bird, Reem Saadeh-Haddad, Maria J. Guillen Sacoto, Richard Person, Catherine Gooch, Anna C.E. Hurst, Michelle L. Thompson, Susan M. Hiatt, Rebecca O. Littlejohn, Elizabeth R. Roeder, Mari Mori, Scott Hickey, Jesse M. Hunter, Kristy Lee, Khaled Osman, Rana Halloun, Ruxandra Bachmann-Gagescu, Anita Rauch, Dagmar Wieczorek, Konrad Platzer, Johannes Luppe, Laurence Duplomb-Jego, Fatima El It, Yannis Duffourd, Frédéric Tran Mau-Them, Celine Huber, Christopher T. Gordon, Fulya Taylan, Riikka E. Mäkitie, Alice Costantini, Helena Valta, Stephen Robertson, Gemma Poke, Michel Francoise, Andrea Ciolfi, Marco Tartaglia, Nina Ekhilevitch, Rinat Zaid, Michael A. Levy, Jennifer Kerkhof, Haley McConkey, Julian Delanne, Martin Chevarin, Valentin Vautrot, Valentin Bourgeois, Sylvie Nguyen, Nathalie Marle, Patrick Callier, Hana Safraou, Angela Morgan, David J. Amor, Michael Hildebrand, David Coman, Marion Aubert Mucca, Julien Thevenon, Fanny Laffargue, Frédéric Bilan, Céline Pebrel-Richard, Grace Yoon, Michelle M. Axford, Luis A. Pérez-Jurado, Marta Sevilla-Porras, Douglas Black, Christophe Philippe, Bekim Sadikovic, Christel Thauvin-Robinet, Laurence Olivier-Faivre, Michela Ori, Quentin Thomas, Antonio Vitobello
3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid. Here we show that HSAT is ubiquitously expressed in the basement membranes of epithelial cells in multiple tissues. In the pancreas, HSAT is expressed by healthy ductal cells and its expression is increased in premalignant pancreatic intraepithelial neoplasia lesions (PanINs), but not in pancreatic ductal adenocarcinoma (PDAC). Inactivation of HS3ST1, a key enzyme in HSAT synthesis, in PDAC cells eliminated HSAT expression, induced an inflammatory phenotype, suppressed markers of apoptosis, and increased metastasis in an experimental mouse PDAC model. HSAT-positive PDAC cells bind AT, which inhibits the generation of active thrombin by tissue factor (TF) and Factor VIIa. Furthermore, plasma from PDAC patients showed accumulation of HSAT suggesting its potential as a marker of tumor formation. These findings suggest that HSAT exerts a tumor suppressing function through recruitment of AT and that the decrease in HSAT during progression of pancreatic tumorigenesis increases inflammation and metastatic potential.
Thomas Mandel Clausen, Ryan J. Weiss, Jacob R. Tremblay, Benjamin P. Kellman, Joanna Coker, Leo A. Dworkin, Jessica P. Rodriguez, Ivy M. Chang, Timothy Chen, Vikram Padala, Richard Karlsson, Hyemin Song, Kristina L. Peck, Satoshi Ogawa, Daniel R. Sandoval, Hiren J. Joshi, Gaowei Wang, L. Paige Ferguson, Nikita Bhalerao, Allison Moores, Tannishtha Reya, Maike Sander, Thomas C. Caffrey, Jean L. Grem, Alexandra Aicher, Christopher Heeschen, Dzung Le, Nathan E. Lewis, Michael A. Hollingsworth, Paul M. Grandgenett, Susan L. Bellis, Rebecca L. Miller, Mark M. Fuster, David W. Dawson, Dannielle D. Engle, Jeffrey D. Esko
Severe systemic inflammatory reactions, including sepsis, often lead to shock, organ failure and death, in part through an acute release of cytokines that promote vascular dysfunction. However, little is known about the vascular endothelial signaling pathways regulating the transcriptional profile in failing organs. This work focuses on signaling downstream of IL-6, due to its clinical importance as a biomarker for disease severity and predictor of mortality. Here, we show that loss of endothelial expression of the IL-6 pathway inhibitor, SOCS3, promoted a type I interferon (IFNI)-like gene signature in response to endotoxemia in mouse kidneys and brains. In cultured primary human endothelial cells, IL-6 induced a transient IFNI-like gene expression in a non-canonical, interferon-independent fashion. We further show that STAT3, which we had previously shown to control IL-6-driven endothelial barrier function, was dispensable for this activity. Instead, IL-6 promoted a transient increase in cytosolic mitochondrial DNA and required STAT1, cGAS, STING, and the IRFs 1, 3, and 4. Inhibition of this pathway in endothelial-specific STING knockout mice or global STAT1 knockout mice led to reduced severity of an acute endotoxemic challenge and prevented the endotoxin-induced IFNI-like gene signature. These results suggest that permeability and DNA sensing responses are driven by parallel pathways downstream of this cytokine, provide new insights into the complex response to acute inflammatory responses, and offer the possibility of potential novel therapeutic strategies for independently controlling the intracellular responses to IL-6 in order to tailor the inflammatory response.
Nina Martino, Erin K. Sanders, Ramon Bossardi Ramos, Iria Di John Portela, Fatma Awadalla, Shuhan Lu, Dareen Chuy, Neil Poddar, Mei Xing G Zuo, Uma Balasubramanian, Peter A. Vincent, Pilar Alcaide, Alejandro P. Adam
FOXP3+ natural regulatory T cells (nTregs) promote resolution of inflammation and repair of epithelial damage following viral pneumonia-induced lung injury, thus representing a cellular therapy for patients with severe viral pneumonia and the acute respiratory distress syndrome (ARDS). Whether in vitro induced Tregs (iTregs), which can be rapidly generated in substantial numbers from conventional T cells, also promote lung recovery is unknown. nTregs require specific DNA methylation patterns maintained by the epigenetic regulator, ubiquitin-like with PHD and RING finger domains 1 (UHRF1). Here, we tested whether iTregs promote recovery following viral pneumonia and whether iTregs require UHRF1 for their pro-recovery function. We found that adoptive transfer of iTregs to mice with influenza virus pneumonia promotes lung recovery and that loss of UHRF1-mediated maintenance DNA methylation in iTregs leads to reduced engraftment and a delayed repair response. Transcriptional and DNA methylation profiling of adoptively transferred UHRF1-deficient iTregs that had trafficked to influenza-injured lungs demonstrated transcriptional instability with gain of effector T cell lineage-defining transcription factors. Strategies to promote the stability of iTregs could be leveraged to further augment their pro-recovery function during viral pneumonia and other causes of severe lung injury.
Anthony M. Joudi, Jonathan K Gurkan, Qianli Liu, Elizabeth M. Steinert, Manuel A. Torres Acosta, Kathryn A. Helmin, Luisa Morales-Nebreda, Nurbek Mambetsariev, Carla Patricia Reyes Flores, Hiam Abdala-Valencia, Samuel E. Weinberg, Benjamin D. Singer
Type 2 diabetes affects more than 38 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid transport protein-2 (FATP2) gene deletion was noted to markedly reduce plasma glucose in db/db mice due to sustained insulin secretion. To identify the mechanism, we observed that islet FATP2 expression was restricted to α-cells, and α-cell FATP2 was functional. Basal glucagon and alanine-stimulated gluconeogenesis were reduced in FATP2KO db/db compared to db/db mice. Direct evidence of FATP2KO-induced α-cell-mediated glucagon-like peptide-1 (GLP-1) secretion included increased GLP-1-positive α-cell mass in FATP2KO db/db mice, small molecule FATP2 inhibitor enhancement of GLP-1 secretion in αTC1-6 cells and human islets, and exendin[9-39]-inhibitable insulin secretion in FATP2 inhibitor-treated human islets. FATP2-dependent enteroendocrine GLP-1 secretion was excluded by demonstration of similar glucose tolerance and plasma GLP-1 concentrations in db/db FATP2KO mice following oral versus intraperitoneal glucose loading, non-overlapping FATP2 and preproglucagon mRNA expression, and lack of FATP2/GLP-1 co-immunolocalization in intestine. We conclude that FATP2 deletion or inhibition exerts glucose-lowering effects through α-cell-mediated GLP-1 secretion and paracrine ß-cell insulin release.
Shenaz Khan, Robert J. Gaivin, Zhiyu Liu, Vincent Li, Ivy Samuels, Jinsook Son, Patrick Osei-Owusu, Jeffrey L. Garvin, Domenico Accili, Jeffrey R. Schelling
BACKGROUND. Spinal muscular atrophy (SMA) is a rare genetic neuromuscular disease caused by deletions or mutations of the survival motor neuron 1 gene. Despite the availability of genetically-based treatments for SMA, functional impairments and weakness persist in treated symptomatic individuals. This study addresses whether additional treatment after gene transfer therapy could provide further clinical benefits. METHODS. Interim Day 302 findings are described from the phase 4 open-label RESPOND trial evaluating nusinersen in participants aged ≤ 36 months who had suboptimal clinical status following onasemnogene abeparvovec (OA) treatment, as determined by the investigator. RESULTS. Thirty-seven participants included in the interim analysis were symptomatic at the time of OA administration. Most (92%) had two survival motor neuron 2 gene copies. Age at first nusinersen dose (median [range]) was 9.1 (3–33) months for participants with two SMN2 copies and 34.2 (31–36) months for those with three SMN2 copies, while time from OA dose to first nusinersen dose (median [range]) was 6.3 (3–31) and 13.3 (10–22) months, respectively. Participants had elevated neurofilament light chain (NfL) levels and low compound muscle action potential (CMAP) amplitudes at baseline, suggesting active neurodegeneration and severe denervation at study entry. Improvements from baseline were observed across a range of outcomes at Day 302, including motor function outcomes (HINE-2 and CHOP-INTEND total score), achievement of independent sitting, NfL levels, CMAP, and investigator- and caregiver-reported outcomes. Mean NfL levels decreased rapidly from baseline to Day 183 and remained low at Day 302. Mean ulnar and peroneal CMAP amplitudes increased. No safety concerns were identified. CONCLUSION. Improvements in clinical and biomarker outcomes support the benefit of nusinersen treatment in infants and children with suboptimal clinical status following OA. TRIAL REGISTRATION. ClinicalTrials.gov ID, NCT04488133; EudraCT number, 2020-003492-18. FUNDING. This study was sponsored by Biogen (Cambridge, MA, USA).
Crystal M. Proud, Richard S. Finkel, Julie A. Parsons, Riccardo Masson, John F. Brandsema, Nancy L. Kuntz, Richard Foster, Wenjing Li, Ross Littauer, Jihee Sohn, Stephanie Fradette, Bora Youn, Angela D. Paradis
Sustained CD4+ T cell immunity is required for resolution of acute hepatitis C virus (HCV) infection but the response remains poorly characterized. Here, circulating CD4+ T cells with high PD-1 and ICOS co-expression were temporally associated with onset of virus control, seroconversion, and hepatitis in HCV-infected chimpanzees. Co-production of Tfh (IL-21, CXCL13) and Th1 (IFN-γ, TNF) cytokines after stimulation with HCV non-structural proteins demonstrated that the response was predominately Tfh1-like and virus-specific. Transcriptional analysis confirmed a Tfh1 lineage assignment. Effector-related genes such as ADGRG1 (GPR56), ZNF683 (Hobit), and KLRB1 (CD161) were also expressed. HCV-specific PD-1hiICOShi CD4+ Tfh1-like cells were enriched in liver, suggesting the potential for B and CD8+ T cell help at the site of virus replication. Most circulating and intrahepatic PD-1hiICOShi CD4+ Tfh1-like cells did not express CXCR5, and therefore resembled CXCR5-negative CXCL13-positive peripheral helper (Tph) cells that infiltrate tumors and tissues inflamed by autoimmunity. PD-1hiICOShi CD4+ cells also peaked after hepatitis A virus infection, but the response was accelerated by several weeks when compared with HCV infection. The PD-1hiICOShi phenotype, and temporal association between the peak response and ALT, may provide markers to guide human studies of CD4+ T cell immunity against HCV and other hepatotropic viruses.
Heather Blasczyk, William G. Bremer, Christopher C. Phelps, Yan Zhou, David G. Bowen, Zhaohui Xu, Robert E. Lanford, Naglaa H. Shoukry, Arash Grakoui, Nicole E. Skinner, Christopher M. Walker
A cornerstone of research to improve cancer outcomes involves studies of model systems to identify causal drivers of oncogenesis, understand mechanisms leading to metastases, and develop new therapeutics. While most cancer types are represented by large cell line panels that reflect diverse neoplastic genotypes and phenotypes found in patients, prostate cancer is notable for a very limited repertoire of models that recapitulate the pathobiology of human disease. Of these, Lymph node carcinoma of the prostate (LNCaP) has served as the major resource for basic and translational studies. Here, we delineated the molecular composition of LNCaP and multiple substrains through analyses of whole genome sequences, transcriptomes, chromatin structure, AR cistromes, and functional studies. Our results determined that LNCaP exhibits substantial subclonal diversity, ongoing genomic instability and phenotype plasticity. While several oncogenic features were consistently present across strains, others were unexpectedly variable such as ETV1 expression, Y chromosome loss, a reliance on WNT and glucocorticoid receptor activity, and distinct AR alterations maintaining AR pathway activation. These results document the inherent molecular heterogeneity and ongoing genomic instability that drive diverse prostate cancer phenotypes and provide a foundation for the accurate interpretation and reproduction of research findings.
Arnab Bose, Armand Bankhead III, Ilsa Coleman, Thomas Persse, Wanting Han, Patricia Galipeau, Brian Hanratty, Tony Chu, Jared Lucas, Dapei Li, Rabeya Bilkis, Pushpa Itagi, Sajida Hassan, Mallory Beightol, Minjeong Ko, Ruth Dumpit, Michael Haffner, Colin Pritchard, Gavin Ha, Peter S. Nelson
The role of endothelial dysfunction in tubulointerstitial fibrosis associated with chronic kidney disease (CKD) is not well understood. In this study, we demonstrate that the activation of the endothelial tyrosine kinase TIE2 alleviates renal pathology in experimental CKD in mice. TIE2 activation was achieved using a human angiopoietin-2 (ANGPT2)-binding and TIE2-activating antibody (ABTAA), or through adult-induced endothelial-specific knockout of the vascular endothelial protein tyrosine phosphatase gene (Veptp). Both methods significantly protected CKD mice from endothelial dysfunction, peritubular capillary loss, tubular epithelial injury, and tubulointerstitial fibrosis. Conversely, silencing TIE2 through adult-induced endothelial-specific knockout of the Tie2 gene exacerbated CKD pathology. Additionally, we found that endothelial dysfunction promotes renal fibrosis not through endothelial-to-mesenchymal transition as previously expected, but by inducing the expression of pro-fibrotic PDGFB in tubular epithelial cells, a process that is inhibited by TIE2 activation. Our findings suggest that TIE2 activation via ABTAA warrants investigation as a therapy in human CKD, where there is a substantial unmet medical need.
Riikka Pietilä, Amanda M. Marks-Hultström, Liqun He, Sami Nanavazadeh, Susan E. Quaggin, Christer Betsholtz, Marie Jeansson
Molnupiravir is an antiviral medicine that induces lethal copying errors during SARS-CoV-2 RNA replication. Molnupiravir reduced hospitalization in one pivotal trial by 50% and had variable effects on reducing viral RNA levels in three separate trials. We used mathematical models to simulate these trials and closely recapitulated their virologic outcomes. Model simulations suggest lower antiviral potency against pre-omicron SARS-CoV-2 variants than against omicron. We estimate that in vitro assays underestimate in vivo potency 6-7 fold against omicron variants. Our model suggests that because polymerase chain reaction detects molnupiravir mutated variants, the true reduction in non-mutated viral RNA is underestimated by ~0.4 log10 in the two trials conducted while omicron variants dominated. Viral area under the curve estimates differ significantly between non-mutated and mutated viral RNA. Our results reinforce past work suggesting that in vitro assays are unreliable for estimating in vivo antiviral drug potency and suggest that virologic endpoints for respiratory virus clinical trials should be catered to the drug mechanism of action.
Shadisadat Esmaeili, Katherine Owens, Ugo Avila-Ponce de Leon, Joseph F. Standing, David M. Lowe, Shengyuan Zhang, James A. Watson, William H.K. Schilling, Jessica Wagoner, Stephen J. Polyak, Joshua T. Schiffer
Treatment options for advanced liver disease and hepatocellular carcinoma (HCC) are limited and strategies to prevent HCC development are lacking. Aiming to discover novel therapeutic targets, we combined genome wide transcriptomic analysis of liver tissues from patients with advanced liver disease and HCC and a cell-based system predicting liver disease progression and HCC risk. Computational analysis predicted peroxiredoxin 2 (PRDX2) as a candidate gene mediating hepatocarcinogenesis and HCC risk. Analysis of HCC patient tissues confirmed a perturbed expression of PRDX2 in cancer. In vivo perturbation studies in mouse models for MASH driven hepatocarcinogenesis showed that specific Prdx2 knockout in hepatocytes significantly improved metabolic liver functions, restored AMPK activity and prevented HCC development by suppressing oncogenic signaling. Perturbations studies in HCC cell lines, a CDX mouse model and patient-derived HCC spheroids unraveled that PRDX2 also mediates cancer initiation, cancer cell proliferation and survival through its antioxidant activity. Targeting PRDX2 may therefore be a valuable strategy to prevent HCC development in metabolic liver disease.
Emilie Crouchet, Eugénie Schaeffer, Marine A. Oudot, Julien Moehlin, Cloé Gadenne, Frank Jühling, Hussein El Saghire, Naoto Fujiwara, Shijia Zhu, Fahmida Akter Rasha, Sarah C. Durand, Anouk Charlot, Clara Ponsolles, Romain Martin, Nicolas Brignon, Fabio Del Zompo, Laura Meiss Heydmann, Marie Parnot, Nourdine Hamdane, Danijela Heide, Jenny Hetzer, Mathias Heikenwälder, Emanuele Felli, Patrick Pessaux, Nathalie Pochet, Joffrey Zoll, Brian Cunniff, Yujin Hoshida, Laurent Mailly, Thomas F. Baumert, Catherine Schuster
Background. Statin therapy lowers the risk of major adverse cardiovascular events (MACE) among people with HIV (PWH). Residual risk pathways contributing to excess MACE beyond low-density lipoprotein cholesterol (LDL-C) are not well understood. Our objective was to evaluate the association of statin responsive and other inflammatory and metabolic pathways to MACE in the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Methods. Cox proportional hazards models were used to assess the relationship between MACE and proteomic measurements at study entry and year 2 adjusting for time-updated statin use and baseline 10-year atherosclerotic cardiovascular disease risk score. We built a machine learning (ML) model to predict MACE using baseline proteins values with significant associations. Results. In 765 individuals (age: 50.8±5.9 years, 82% males) among 7 proteins changing with statin vs. placebo, angiopoietin-related protein 3 (ANGPTL3) related most strongly to MACE (aHR: 2.31 per 2-fold higher levels; 95%CI: 1.11-4.80; p=0.03), such that lower levels of ANGPTL3 achieved with statin therapy were associated with lower MACE risk. Among 248 proteins not changing in response to statin therapy, 26 were associated with MACE at FDR<0.05. These proteins represented predominantly humoral immune response, leukocyte chemotaxis, and cytokine pathways. Our proteomic ML model achieved a 10-fold cross-validated c-index of 0.74±0.11 to predict MACE, improving on models using traditional risk prediction scores only (c-index: 0.61±0.18). Conclusions. ANGPTL3, as well as key inflammatory pathways may contribute to residual risk of MACE among PWH, beyond LDL-C. Trial registration. ClinicalTrials.gov: NCT02344290. Funding. NIH, Kowa, Gilead Sciences, ViiV.
Márton Kolossváry, Irini Sereti, Markella V. Zanni, Carl J. Fichtenbaum, Judith A Aberg, Gerald S. Bloomfield, Carlos D. Malvestutto, Judith S. Currier, Sarah M. Chu, Marissa R. Diggs, Alex B. Lu, Christopher deFilippi, Borek Foldyna, Sara McCallum, Craig A. Sponseller, Michael T. Lu, Pamela S. Douglas, Heather J. Ribaudo, Steven K. Grinspoon
Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC. ZEB1 knockdown synergized with gemcitabine and anti-PD1 therapy, markedly suppressed PC growth, and prolonged survival in vivo. Single-cell and spatial transcriptomics revealed that ZEB1 ablation promoted tumor pyroptosis by recruiting and activating GZMA+CD8+ T cells in the tumor core through epigenetic upregulation of CXCL16. Meanwhile, ZEB1 blockade attenuates CD44+ neutrophil-induced CD8+ T cell exhaustion by reducing tumor-derived SPP1 secretion, which otherwise promotes exhaustion through activation of the PD-L1–PD-1 pathway. Clinically, high ZEB1 expression correlated with chemoresistance, immunosuppression, and diminished CXCL16 levels in PC patients. Importantly, the epigenetic inhibitor Mocetinostat (targeting ZEB1) potentiated chemoimmunotherapy efficacy, including anti-PD1 and CAR-T therapies, in patient-derived organoids, xenografts, and orthotopic models. Our study unveils ZEB1 as a master epigenetic regulator of chemoimmunotherapy resistance and proposes its targeting as a transformative strategy for PC treatment.
Shaobo Zhang, Yumeng Hu, Zhijun Zhou, Gaoyuan Lv, Chenze Zhang, Yuanyuan Guo, Fangxia Wang, Yuxin Ye, Haoran Qi, Hui Zhang, Wenming Wu, Min Li, Mingyang Liu
Few drugs are available for rare diseases due to economic disincentives. However, tailored medications for extremely-rare disorders (N-of-1) offer a ray of hope. Artificial antisense oligonucleotides (ASOs) are now best known for their use in spinal muscular atrophy (SMA). The success of nusinersen/Spinraza for SMA indicates ASO-therapies' potential for other rare conditions. We propose a strategy to develop N-of-1 ASOs for treating one form of trichothiodystrophy (TTD), a rare condition with multisystem abnormalities and reduced life expectancy, associated with instability and greatly reduced amounts of the DNA-repair/transcription factor TFIIH. The therapeutic target carry mutations in GTF2H5, encoding the TFIIH-p8 subunit. This approach was inspired by the diagnosis and molecular dissection of a xeroderma pigmentosum (XP) case with mutations in GTF2H4, encoding the TFIIH-p52 subunit. This is newly classified as a ninth XP complementation-group, XP-J, identified five decades after the discovery of the other XP complementation-groups. The p8-p52 interaction is required to support the TFIIH-complex formation, and the patient's p52 C-terminal truncation results in the complete absence of p8 in TFIIH. However, intriguingly, TFIIH remained stable in vivo, and the XP-J patient did not exhibit any TTD-features. The aim of our ASO-design is to induce a C-terminal truncation of p52 and we have successfully stabilised TFIIH in p8-deficient TTD-A patient cells.
Yuka Nakazawa, Lin Ye, Yasuyoshi Oka, Hironobu Morinaga, Kana Kato, Mayuko Shimada, Kotaro Tsukada, Koyo Tsujikawa, Yosuke Nishio, Hiva Fassihi, Shehla Mohammed, Alan R. Lehmann, Tomoo Ogi
Hiva Fassihi, Shehla Mohammed, Yuka Nakazawa, Heather Fawcett, Sally Turner, Joanne Palfrey, Isabel Garrood, Adesoji Abiona, Ana M.S. Morley, Mayuko Shimada, Kana Kato, Alan R. Lehmann, Tomoo Ogi
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking. We used genome sequencing to identify 6 individuals with MEDS caused by biallelic variants in the novel disease gene, TMEM167A. All had neonatal diabetes (diagnosed <6 months) and severe microcephaly, five also had epilepsy. TMEM167A is highly expressed in developing and adult human pancreas and brain. To gain insights into the mechanisms leading to diabetes, we silenced TMEM167A in EndoC-βH1 cells and knocked-in one patient’s variant, p.Val59Glu, in induced pluripotent stem cells (iPSCs). Both TMEM167A depletion in EndoC-βH1 cells and the p.Val59Glu variant in iPSC-derived β cells sensitized β cells to ER stress. The p.Val59Glu variant impaired proinsulin trafficking to the Golgi and induced iPSC-β cell dysfunction. The discovery of TMEM167A variants as a new genetic cause of MEDS highlights a critical role of TMEM167A in the ER to Golgi pathway in β cells and neurons.
Enrico Virgilio, Sylvia Tielens, Georgia Bonfield, Fang-Shin Nian, Toshiaki Sawatani, Chiara Vinci, Molly Govier, Hossam Montaser, Romane Lartigue, Anoop Arunagiri, Alexandrine Liboz, Flavia Natividade da Silva, Maria Lytrivi, Theodora Papadopoulou, Matthew N. Wakeling, James Russ-Silsby, Pamela Bowman, Matthew B. Johnson, Thomas W. Laver, Anthony Piron, Xiaoyan Yi, Federica Fantuzzi, Sirine Hendrickx, Mariana Igoillo-Esteve, Bruno J. Santacreu, Jananie Suntharesan, Radha Ghildiyal, Darshan G. Hegde, Nikhil Avnish Shah, Sezer Acar, Beyhan Özkaya Dönmez, Behzat Özkan, Fauzia Mohsin, Iman M. Talaat, Mohamed Tarek Abbas, Omar Saied Abbas, Hamed Ali Alghamdi, Nurgun Kandemir, Sarah E. Flanagan, Raphael Scharfmann, Peter Arvan, Matthieu Raoux, Laurent Nguyen, Andrew T. Hattersley, Miriam Cnop, Elisa De Franco