Emerging evidence demonstrates that chronic stress alters immunological, neurochemical and endocrinological functions, thereby promoting tumor progression. However, the underlying metabolic mechanism of chronic stress in tumor progression is still elusive. Using multi-omics analysis, we found that aminopeptidase N (ANPEP) was upregulated in tumors with chronic restraint, associating with the reprogramming of amino acid metabolism. Functional assays revealed that ANPEP promoted liver cancer growth and metastasis. Knockdown of ANPEP blocked chronic stress-induced liver cancer progression. Chronic stress-induced glucocorticoids promoted nuclear receptor subfamily 3 group C member 1 (NR3C1) nuclear translocation to activate ANPEP transcription by directly binding to its promoter. Furthermore, ANPEP promotes glutathione synthesis, subsequently inhibiting reactive oxygen species (ROS)-induced ferroptosis. Mechanistically, ANPEP interacted with solute carrier family 3 member 2 (SLC3A2) to block membrane associated ring-CH-type finger 8-mediated (MARCH8-mediated) lysosome-dependent degradation of SLC3A2, promoting intracellular L-cystine transport, thereby increasing glutathione synthesis. The combination of ANPEP silencing and sorafenib treatment showed a synergistic effect in inhibiting liver cancer progression. Finally, clinical data and mouse models demonstrated that chronic stress drove liver tumor progression via ANPEP-regulated SLC3A2. These findings reveal unanticipated communication between chronic stress and metabolic reprogramming during liver cancer progression, providing potential therapeutic implications for liver cancer.
Yongkang Wu, Yankun Zhang, Xiaojia Shi, Mengting Wu, Min Sun, Ying Feng, Wenmeng Ma, Xiule Jiang, Dingqi Fei, Mingjian Zhao, Zhuanchang Wu, Chunyang Li, Xiaohong Liang, Lifen Gao, Chunhong Ma, Xuetian Yue
Chronic inflammation leads to tissue fibrosis which can disrupt the function of the parenchyma of the organ and ultimately lead to organ failure. The most prevalent form of this occurs in chronic hepatitis which leads to liver fibrosis and, ultimately, cirrhosis and hepatic failure. Although there is no specific treatment for fibrosis, the phosphodiesterase 4 (PDE4) competitive inhibitors have been shown to ameliorate fibrosis in rodent models. However, competitive inhibitors of PDE4 have shown significantly reduced effectiveness due to severe gastrointestinal side effects. The PDE4 family is composed of four genes (PDE4A–D) with each having up to 9 differentially spliced isoforms. Here, we report that PDE4D expression is specifically elevated during the hepatic fibrosis stage of liver disease progression. Furthermore, the expression of the long isoforms of PDE4D is selectively elevated in activated hepatic stellate cells, leading to the enhanced accumulation of extracellular matrix components. In a mouse model of liver fibrosis, genetic ablation of PDE4D or pharmacological inhibition using D159687, a selective allosteric inhibitor targeting the long isoforms of PDE4D, suppresses the expression of inflammatory and profibrogenic genes. These findings establish the long isoforms of PDE4D as key drivers of liver fibrosis and highlight their potential as therapeutic targets to ameliorate liver fibrosis.
Jeonghan Kim, Heeeun Yoon, Seoung Chan Joe, Antoine Smith, Jinsung Park, Geunhye Hong, Ji Myeong Ha, Eun Bae Kim, Ekihiro Seki, Myung K. Kim, Hae-Ock Lee, Ho-Shik Kim, Jay H. Chung
Both adipocytes and hepatocytes have the capacity to store fat, but the factor(s) that determine fat distribution between these cell types remain unknown. In mice fed a high-fat diet, fat initially accumulates predominantly in adipocytes, while hepatic fat accumulation mainly emerges after the onset of epididymal adipocyte death that results in elevated free fatty acids to promote lipid accumulation in hepatocytes. However, it remains unclear whether other signals after adipocyte death are required to direct and/or promote hepatocytes to store fat and subsequently trigger metabolic dysfunction–associated steatotic liver disease (MASLD, formerly known as nonalcoholic fatty liver disease). Using genetically modified mouse models combined with bulk and single-cell RNA-Seq analysis, we demonstrated that visceral adipocyte death induced an accumulation of S100A8+ macrophages in the liver, which was partially induced by fatty acids and apoptotic adipocyte–derived extracellular vesicles. Macrophage-specific deletion of the S100a8 gene reduced hepatic fat accumulation and MASLD severity in mice. Mechanistically, S100A8+ macrophages suppressed cellular communication network factor 3 (CCN3), a negative regulator of CD36, thereby enhancing CD36 expression in hepatocytes. In conclusion, adipocyte death promotes hepatic infiltration of S100A8+ macrophages, which drive hepatocyte lipid storage and subsequently promote MASLD progression through CD36 upregulation, partially mediated by CCN3 suppression.
Yukun Guan, Yeonsoo Kim, Yang Wang, Ye Eun Cho, Xiaogang Xiang, Seung-Jin Kim, Tiantian Yao, Dechun Feng, Seonghwan Hwang, Bin Gao
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease characterized by complex interactions between lipotoxicity, ER stress responses, and immune-mediated inflammation. We identified enrichment of the proinflammatory alarmin S100 calcium-binding protein A11 (S100A11) on extracellular vesicles stimulated by palmitate-induced lipotoxic ER stress with concomitant upregulation of hepatocellular S100A11 abundance in an IRE1A-XBP1s dependent manner. We next investigated the epigenetic mechanisms that regulate this stress response. Publicly available human liver ChIP-Seq GEO datasets demonstrated a region of histone H3 lysine 27 (H3K27) acetylation upstream to the S100A11 promoter. H3K27acetylation ChIP-qPCR demonstrated a positive correlation between lipotoxic ER stress and H3K27acetylation of the region, which we termed Lipotoxicity Influenced Enhancer (LIE) domain. CRISPR-mediated repression of the LIE domain reduced palmitate-induced H3K27acetylation and corresponding S100A11 upregulation in Huh7 cells and immortalized mouse hepatocytes. Silencing of the murine LIE in two independent steatohepatitis models demonstrated reduced S100a11 upregulation and attenuated liver injury. We confirmed H3K27acetylation and XBP1s occupancy at the LIE domain in human MASH liver samples and an increase in hepatocyte-derived S100A11-enriched extracellular vesicles in MASH patient plasma. Our studies demonstrate a LIE domain which mediates hepatic S100A11 upregulation. This pathway may be a potential therapeutic target in MASH.
P. Vineeth Daniel, Hanna L. Erickson, Daheui Choi, Feda H. Hamdan, Yasuhiko Nakao, Gyanendra Puri, Takahito Nishihara, Yeriel Yoon, Amy S. Mauer, Debanjali Dasgupta, Jill Thompson, Alexander Revzin, Harmeet Malhi
Sustained CD4+ T cell immunity is required for resolution of acute hepatitis C virus (HCV) infection but the response remains poorly characterized. Here, circulating CD4+ T cells with high PD-1 and ICOS co-expression were temporally associated with onset of virus control, seroconversion, and hepatitis in HCV-infected chimpanzees. Co-production of Tfh (IL-21, CXCL13) and Th1 (IFN-γ, TNF) cytokines after stimulation with HCV non-structural proteins demonstrated that the response was predominately Tfh1-like and virus-specific. Transcriptional analysis confirmed a Tfh1 lineage assignment. Effector-related genes such as ADGRG1 (GPR56), ZNF683 (Hobit), and KLRB1 (CD161) were also expressed. HCV-specific PD-1hiICOShi CD4+ Tfh1-like cells were enriched in liver, suggesting the potential for B and CD8+ T cell help at the site of virus replication. Most circulating and intrahepatic PD-1hiICOShi CD4+ Tfh1-like cells did not express CXCR5, and therefore resembled CXCR5-negative CXCL13-positive peripheral helper (Tph) cells that infiltrate tumors and tissues inflamed by autoimmunity. PD-1hiICOShi CD4+ cells also peaked after hepatitis A virus infection, but the response was accelerated by several weeks when compared with HCV infection. The PD-1hiICOShi phenotype, and temporal association between the peak response and ALT, may provide markers to guide human studies of CD4+ T cell immunity against HCV and other hepatotropic viruses.
Heather Blasczyk, William G. Bremer, Christopher C. Phelps, Yan Zhou, David G. Bowen, Zhaohui Xu, Robert E. Lanford, Naglaa H. Shoukry, Arash Grakoui, Nicole E. Skinner, Christopher M. Walker
Treatment options for advanced liver disease and hepatocellular carcinoma (HCC) are limited and strategies to prevent HCC development are lacking. Aiming to discover novel therapeutic targets, we combined genome wide transcriptomic analysis of liver tissues from patients with advanced liver disease and HCC and a cell-based system predicting liver disease progression and HCC risk. Computational analysis predicted peroxiredoxin 2 (PRDX2) as a candidate gene mediating hepatocarcinogenesis and HCC risk. Analysis of HCC patient tissues confirmed a perturbed expression of PRDX2 in cancer. In vivo perturbation studies in mouse models for MASH driven hepatocarcinogenesis showed that specific Prdx2 knockout in hepatocytes significantly improved metabolic liver functions, restored AMPK activity and prevented HCC development by suppressing oncogenic signaling. Perturbations studies in HCC cell lines, a CDX mouse model and patient-derived HCC spheroids unraveled that PRDX2 also mediates cancer initiation, cancer cell proliferation and survival through its antioxidant activity. Targeting PRDX2 may therefore be a valuable strategy to prevent HCC development in metabolic liver disease.
Emilie Crouchet, Eugénie Schaeffer, Marine A. Oudot, Julien Moehlin, Cloé Gadenne, Frank Jühling, Hussein El Saghire, Naoto Fujiwara, Shijia Zhu, Fahmida Akter Rasha, Sarah C. Durand, Anouk Charlot, Clara Ponsolles, Romain Martin, Nicolas Brignon, Fabio Del Zompo, Laura Meiss Heydmann, Marie Parnot, Nourdine Hamdane, Danijela Heide, Jenny Hetzer, Mathias Heikenwälder, Emanuele Felli, Patrick Pessaux, Nathalie Pochet, Joffrey Zoll, Brian Cunniff, Yujin Hoshida, Laurent Mailly, Thomas F. Baumert, Catherine Schuster
Metabolic dysfunction–associated steatohepatitis (MASH) is a globally prevalent but intractable disease lacking effective pharmacotherapies. Here, we performed an integrated multilayered screening for pathogenic genes and druggable targets for MASH. We identified the subclass of metabolite-sensing G protein–coupled receptors, specifically GPR31, a critical contributor to MASH occurrence, which, to our knowledge, was previously uncharacterized. Mechanistically, Gαi3 is the essential downstream effector for the pro-MASH efficiency of GPR31 via glycosylation-dependent interaction with GPR31 and extra activation of PKCδ-MAPK signaling. Hepatocyte-specific GPR31 deficiency robustly blocked hepatic lipotoxicity and fibrosis in a mouse model of diet-induced MASH, whereas expression of the GPR31 transgene aggravated MASH development. Of translational importance, we developed a small-molecule inhibitor, named G4451, that specifically inhibits the GPR31-Gαi3 interaction by targeting the GPR31 conformational transition. Encouragingly, oral administration of G4451 effectively blocked MASH progression in preclinical models in both rodents and nonhuman primates. Collectively, the present study provides proof of concept that interference with GPR31 constitutes an attractive therapeutic strategy for MASH.
Xiao-Jing Zhang, Jiajun Fu, Xu Cheng, Hong Shen, Hailong Yang, Kun Wang, Wei Li, Han Tian, Tian Tian, Junjie Zhou, Song Tian, Zhouxiang Wang, Juan Wan, Lan Bai, Hongfei Duan, Xin Zhang, Ruifeng Tian, Haibo Xu, Rufang Liao, Toujun Zou, Jing Shi, Weiyi Qu, Liang Fang, Jingjing Cai, Peng Zhang, Zhi-Gang She, Jingwei Jiang, Yufeng Hu, Yibin Wang, Hongliang Li
Through a combination of single-cell/single-nucleus RNA-sequencing (sc/snRNA-seq) data analysis, immunohistochemistry, and primary macrophage studies, we have identified pathogenic macrophages characterized by TET3 overexpression (Toe-Macs) in three major human diseases associated with chronic inflammation: metabolic dysfunction-associated steatohepatitis (MASH), non-small cell lung cancer (NSCLC), and endometriosis. These macrophages are induced by common factors present in the disease microenvironment (DME). Crucially, the universal reliance on TET3 overexpression among these macrophages enables their selective elimination as a single population, irrespective of heterogeneity in other molecular markers. In mice, depleting these macrophages via myeloid-specific Tet3 knockout markedly mitigates disease progression and the therapeutic effects are recapitulated pharmacologically using a TET3-specific small molecule degrader. Through an unexpected mode of action, TET3 epigenetically regulates expression of multiple genes key to the generation and maintenance of an inflammatory/immunosuppressive DME. We propose that Toe-Macs are a unifying feature of pathogenic macrophages that could be therapeutically targeted to treat MASH, NSCLC, endometriosis, and potentially other chronic inflammatory diseases.
Beibei Liu, Yangyang Dai, Zixin Wang, Jiahui Song, Yushu Du, Haining Lv, Stefania Bellone, Yang-Hartwich Yang, Andrew Kennedy, Songying Zhang, Muthukumaran Venkatachalapathy, Yulia V. Surovtseva, Penghua Wang, Gordon G. Carmichael, Hugh S. Taylor, Xuchen Zhang, Da Li, Yingqun Huang
Acute-on-chronic liver failure (ACLF) is a leading cause of global liver-related mortality. Bacterial infection, especially in patients with decompensated cirrhosis (DC), commonly triggers ACLF and is difficult to treat with antibiotics. Therefore, finding alternative strategies for preventing and managing bacterial infection is an urgent priority. Here, we observed that infected DC patients and ACLF mice exhibited lower fecal panose levels than uninfected controls. Megamonas funiformis (M. funiformis), with 4α-glucanosyltransferase (4αGT) as a key enzyme for panose production, was identified as a potential panose producer. Animal experiments demonstrated that panose efficiently reduced liver injury and extended survival in ACLF mice by mitigating bacterial infection. Further results revealed that panose enhanced resistance to bacterial infection by inhibiting oxidative stress-induced gut barrier disruption, thereby limiting bacterial dissemination. Mechanistically, panose interacted with the solute carrier family 7 member 11 (SLC7A11, also known as xCT) protein to boost antioxidant glutathione (GSH) levels in intestinal epithelial cells. These findings highlight panose's potential in preventing bacterial infection, offering a valuable insight into mitigating ACLF progression.
Jiaxin Li, Shihao Xie, Meiling Chen, Changze Hong, Yuqi Chen, Fengyuan Lyu, Niexin Tang, Tianqi Chen, Lingyan Zhao, Weihao Zou, Hongjuan Peng, Jingna Bao, Peng Gu, Bernd Schnabl, Jinjun Chen, Peng Chen
Alcohol-associated liver disease represents a significant global health challenge, with gut microbial dysbiosis and bacterial translocation playing a critical role in its pathogenesis. Patients with alcohol-associated hepatitis had increased fecal abundance of mammalian viruses including retroviruses. This study investigated the role of endogenous retroviruses (ERVs) in the development of alcohol-associated liver disease. Transcriptomic analysis of duodenal and liver biopsies revealed increased expression of several human ERVs, including HERV-K and HERV-H, in patients with alcohol-associated liver disease compared with controls. Chronic-binge ethanol feeding markedly induced ERV abundance in intestinal epithelial cells, but not the liver of mice. Ethanol increased ERV expression and activated the Z-DNA binding protein 1 (Zbp1)–mixed lineage kinase domain-like pseudokinase (Mlkl) signaling pathways to induce necroptosis in intestinal epithelial cells. Antiretroviral treatment reduced ethanol-induced intestinal ERV expression, stabilized the gut barrier, and decreased liver disease in microbiota-humanized mice. Furthermore, mice with an intestine-specific deletion of Zbp1 were protected against bacterial translocation and ethanol-induced steatohepatitis. These findings indicate that ethanol exploits this pathway by inducing ERVs and promoting innate immune responses, which results in the death of intestinal epithelial cells, gut barrier dysfunction and liver disease. Targeting the ERV-Zbp1 pathway may offer new therapies for patients with alcohol-associated liver disease.
Noemí Cabré, Marcos F. Fondevila, Wenchao Wei, Tomoo Yamazaki, Fernanda Raya Tonetti, Alvaro Eguileor, Ricard Garcia-Carbonell, Abraham S. Meijnikman, Yukiko Miyamoto, Susan Mayo, Yanhan Wang, Xinlian Zhang, Thorsten Trimbuch, Seija Lehnardt, Lars Eckmann, Derrick E. Fouts, Cristina Llorente, Hidekazu Tsukamoto, Peter Stärkel, Bernd Schnabl