The non-essential amino acid asparagine can only be synthesized de novo by the enzymatic activity of asparagine synthetase (ASNS). While ASNS and asparagine have been implicated in the response to numerous metabolic stressors in cultured cells, the in vivo relevance of this enzyme in stress-related pathways remains unexplored. Here, we found ASNS to be expressed in pericentral hepatocytes, a population of hepatic cells specialized in xenobiotic detoxification. ASNS expression was strongly enhanced in two models of acute liver injury: carbon tetrachloride (CCl4) and acetaminophen (APAP). We found that mice with hepatocyte-specific Asns deletion (Asnshep-/-) were more prone to pericentral liver damage than their control (Asnshep+/+) littermates after toxin exposure. This phenotype could be reverted by intravenous administration of asparagine. Unexpectedly, the stress-induced upregulation of ASNS involved an ATF4-independent, non-canonical pathway mediated by the nuclear receptor, liver receptor homolog 1 (LRH-1; NR5A2). Altogether, our data indicate that the induction of the asparagine-producing enzyme ASNS acts as an adaptive mechanism to constrain the necrotic wave that follows toxin administration and provide proof of concept that intravenous delivery of asparagine can dampen hepatotoxin-induced pericentral hepatocellular death.
Yu Sun, Hadrien Demagny, Adrien Faure, Francesca Pontanari, Antoine Jalil, Nadia Bresciani, Ece Yildiz, Melanie Korbelius, Alessia Perino, Kristina Schoonjans
BACKGROUND A pilot, single-center study showed that first-degree relatives of probands with nonalcoholic fatty liver disease (NAFLD) cirrhosis have a high risk of advanced fibrosis. We aimed to validate these findings using 2 independent cohorts from the US and Europe.METHODS This prospective study included probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 first-degree relative. A total of 396 first-degree relatives — 220 in a derivation cohort and 176 in a validation cohort — were enrolled in the study, and liver fibrosis was evaluated using magnetic resonance elastography and other noninvasive imaging modalities. The primary outcome was prevalence of advanced fibrosis in first-degree relatives.RESULTS Prevalence of advanced fibrosis in first-degree relatives of probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD was 15.6%, 5.9%, and 1.3%, respectively (P = 0.002), in the derivation cohort, and 14.0%, 2.6%, and 1.3%, respectively (P = 0.004), in the validation cohort. In multivariable-adjusted logistic regression models, age of ≥50 years (adjusted OR [aOR]: 2.63, 95% CI 1.0–6.7), male sex (aOR: 3.79, 95% CI 1.6–9.2), diabetes mellitus (aOR: 3.37, 95% CI 1.3–9), and a first-degree relative with NAFLD with advanced fibrosis (aOR: 11.8, 95% CI 2.5–57) were significant predictors of presence of advanced fibrosis (all P < 0.05).CONCLUSION First-degree relatives of probands with NAFLD with advanced fibrosis have significantly increased risk of advanced fibrosis. Routine screening should be done in the first-degree relatives of patients with advanced fibrosis.FUNDING Supported by NCATS (5UL1TR001442), NIDDK (U01DK061734, U01DK130190, R01DK106419, R01DK121378, R01DK124318, P30DK120515, K23DK119460), NHLBI (P01HL147835), and NIAAA (U01AA029019); Academy of Finland grant 309263; the Novo Nordisk, EVO, and Sigrid Jusélius Foundations; and the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 777377. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation program and the EFPIA.
Nobuharu Tamaki, Noora Ahlholm, Panu K. Luukkonen, Kimmo Porthan, Suzanne R. Sharpton, Veeral Ajmera, Yuko Kono, Shravan Dave, Aijaz Ahmed, Vinay Sundaram, Michael J. Wilkinson, Heather Patton, Hersh Gupta, Vanessa Cervantes, Christie Hernandez, Scarlett J. Lopez, Ria Loomba, Amanda Baumgartner, Lisa Richards, Perttu E.T. Arkkila, Katriina Nemes, Helena Isoniemi, Hannele Yki-Järvinen, Rohit Loomba
Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As dysregulated urea cycle is implicated in cancer development, the impact of GS’ ammonia clearance function has not been explored in cancer. Here we show that, oncogenic activation of beta-catenin led to decreased urea cycle and elevated ammonia waste burden. While beta-catenin induced the expression of GS, which is thought to be cancer-promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved β-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived non-essential amino acids (NEAAs), which subsequently stimulated mTORC1. Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While HCC patients, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor β-catenin activation mutations and a compromised urea cycle.
Weiwei Dai, Jianliang Shen, Junrong Yan, Alex J. Bott, Sara Maimouni, Heineken Q. Daguplo, Yujue Wang, Khoosheh Khayati, Jessie Yanxiang Guo, Lanjing Zhang, Yongbo Wang, Alexander Valvezan, Wen-Xing Ding, Xin Chen, Xiaoyang Su, Shenglan Gao, Wei-Xing Zong
Won-Mook Choi, Young-Suk Lim
Shi Liu, Yongyin Li, Jian Sun
BACKGROUND. It is unclear whether the level of serum hepatitis B virus (HBV) DNA at baseline impacts the on-treatment risk of hepatocellular carcinoma (HCC) in HBeAg positive, non-cirrhotic patients with chronic hepatitis B (CHB). METHODS. We conducted a multicenter cohort study including 2,073 entecavir- or tenofovir-treated, HBeAg-positive, non-cirrhotic, adult CHB patients with baseline HBV DNA levels ≥5.00 log10 IU/mL at three centers in Korea between January 2007 and December 2016. We evaluated the on-treatment incidence rate of HCC by baseline HBV DNA levels. RESULTS. During a median 5.7 years of continuous antiviral treatment, 47 patients developed HCC (0.39 per 100 person-years). By Kaplan–Meier analysis, HCC risk was the lowest in those with baseline HBV DNA levels ≥8.00 log10 IU/mL, increased incrementally with decreasing viral load, and the highest with HBV DNA levels 5.00–5.99 log10 IU/mL (P<0.001). By multivariable analysis, baseline HBV DNA level was an independent factor that was inversely associated with HCC risk. Compared with HBV DNA ≥8.00 log10 IU/mL, the adjusted hazard ratios for HCC risk with HBV DNA 7.00–7.99 log10 IU/mL, 6.00–6.99 log10 IU/mL, and 5.00–5.99 log10 IU/mL were 2.48 (P=0.03), 3.69 (P=0.002), and 6.10 (P<0.001), respectively. CONCLUSION. On-treatment HCC risk increased incrementally with decreasing baseline HBV DNA levels in the range of ≥5.00 log10 IU/mL in HBeAg-positive, non-cirrhotic, adult patients with CHB. Early initiation of antiviral treatment with a high viral load (≥8.00 log10 IU/mL) may maintain the lowest risk of HCC in those patients. FUNDING. Korean Government.
Won-Mook Choi, Gi-Ae Kim, Jonggi Choi, Seungbong Han, Young-Suk Lim
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes and metabolic syndrome. A hallmark feature of NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism which can progress to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here we have identified that activation of the kisspeptin receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In NAFLD patients and in HFD-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.
Stephania Guzman, Magdalena Dragan, Hyokjoon Kwon, Vanessa de Oliveira, Shivani Rao, Vrushank Bhatt, Katarzyna M. Kalemba, Ankit Shah, Vinod K. Rustgi, He Wang, Paul R. Bech, Ali Abbara, Chioma Izzi-Engbeaya, Pinelopi Manousou, Jessie Yanxiang Guo, Grace L. Guo, Sally Radovick, Waljit S. Dhillo, Fredric E. Wondisford, Andy V. Babwah, Moshmi Bhattacharya
The gut microbiome shapes local and systemic immunity. The liver is presumed to be a protected sterile site. As such, a hepatic microbiome has not been examined. Here, we showed a liver microbiome in mice and humans that is distinct from the gut and is enriched in Proteobacteria. It undergoes dynamic alterations with age and is influenced by the environment and host physiology. Fecal microbial transfer experiments revealed that the liver microbiome is populated from the gut in a highly selective manner. Hepatic immunity is dependent on the microbiome, specifically Bacteroidetes species. Targeting Bacteroidetes with oral antibiotics reduced hepatic immune cells by ~90%, prevented APC maturation, and mitigated adaptive immunity. Mechanistically, our findings are consistent with presentation of Bacteroidetes-derived glycosphingolipids to NKT cells promoting CCL5 signaling, which drives hepatic leukocyte expansion and activation, among other possible host-microbe interactions. Collectively, we reveal a microbial – glycosphingolipid – NKT – CCL5 axis that underlies hepatic immunity.
Joshua C. Leinwand, Bidisha Paul, Ruonan Chen, Fangxi Xu, Maria A. Sierra, Madan M. Paluru, Sumant Nanduri, Carolina G. Alcantara Hirsch, Sorin A.A. Shadaloey, Fan Yang, Salma A. Adam, Qianhao Li, Michelle Bandel, Inderdeep Gakhal, Lara Appiah, Yuqi Guo, Mridula Vardhan, Zia J. Flaminio, Emilie R. Grodman, Ari Mermelstein, Wei Wang, Brian Diskin, Berk Aykut, Mohammed Khan, Gregor Werba, Smruti Pushalkar, Mia McKinstry, Zachary Kluger, Jaimie J. Park, Brandon Hsieh, Kristen Dancel-Manning, Feng-Xia Liang, James S. Park, Anjana Saxena, Xin Li, Neil D. Theise, Deepak Saxena, George Miller
Sophie Lotersztajn, Ariane Mallat
BACKGROUND Hepatic de novo lipogenesis (DNL) is elevated in nonalcoholic fatty liver disease (NAFLD). Improvements in hepatic fat by dietary sugar reduction may be mediated by reduced DNL, but data are limited, especially in children. We examined the effects of 8 weeks of dietary sugar restriction on hepatic DNL in adolescents with NAFLD and correlations between DNL and other metabolic outcomes.METHODS Adolescent boys with NAFLD (n = 29) participated in an 8-week, randomized controlled trial comparing a diet low in free sugars versus their usual diet. Hepatic DNL was measured as percentage contribution to plasma triglyceride palmitate using a 7-day metabolic labeling protocol with heavy water. Hepatic fat was measured by magnetic resonance imaging–proton density fat fraction.RESULTS Hepatic DNL was significantly decreased in the treatment group (from 34.6% to 24.1%) versus the control group (33.9% to 34.6%) (adjusted week 8 mean difference: –10.6% [95% CI: –19.1%, –2.0%]), which was paralleled by greater decreases in hepatic fat (25.5% to 17.9% vs. 19.5% to 18.8%) and fasting insulin (44.3 to 34.7 vs. 35.5 to 37.0 μIU/mL). Percentage change in DNL during the intervention correlated significantly with changes in free-sugar intake (r = 0.48, P = 0.011), insulin (r = 0.40, P = 0.047), and alanine aminotransferase (ALT) (r = 0.39, P = 0.049), but not hepatic fat (r = 0.13, P = 0.532).CONCLUSION Our results suggest that dietary sugar restriction reduces hepatic DNL and fasting insulin, in addition to reductions in hepatic fat and ALT, among adolescents with NAFLD. These results are consistent with the hypothesis that hepatic DNL is a critical metabolic abnormality linking dietary sugar and NAFLD.TRIAL REGISTRY ClinicalTrials.gov NCT02513121.FUNDING The Nutrition Science Initiative (made possible by gifts from the Laura and John Arnold Foundation, Ambrose Monell Foundation, and individual donors), the UCSD Altman Clinical and Translational Research Institute, the NIH, Children’s Healthcare of Atlanta and Emory University’s Children’s Clinical and Translational Discovery Core, Children’s Healthcare of Atlanta and Emory University Pediatric Biostatistical Core, the Georgia Clinical and Translational Science Alliance, and the NIH National Institute of Diabetes, Digestive, and Kidney Disease.
Catherine C. Cohen, Kelvin W. Li, Adina L. Alazraki, Carine Beysen, Carissa A. Carrier, Rebecca L. Cleeton, Mohamad Dandan, Janet Figueroa, Jack Knight-Scott, Cynthia J. Knott, Kimberly P. Newton, Edna M. Nyangau, Claude B. Sirlin, Patricia A. Ugalde-Nicalo, Jean A. Welsh, Marc K. Hellerstein, Jeffrey B. Schwimmer, Miriam B. Vos