Mechanisms by which mucosal regeneration is abrogated in inflammatory bowel disease (IBD) are still under investigation, and a role for an intestinal stem cell (ISC) defect is now emerging. Herein, we report an abnormal ISC death that occurs in Crohn’s disease, which exacerbates colitis, limits ISC-dependent mucosal repair, and is controlled through the death factor Transmembrane protein 219 (TMEM219). Large alterations in TMEM219 expression were observed in patients with Crohn’s disease, particularly in those with active disease and/or those who were nonresponders to conventional therapy, confirming that TMEM219 signaling is abnormally activated and leads to failure of the mucosal regenerative response. Mechanistic studies revealed a proapoptotic TMEM219-mediated molecular signature in Crohn’s disease, which associates with Caspase-8 activation and ISC death. Pharmacological blockade of the IGFBP3/TMEM219 binding/signal with the recombinant protein ecto-TMEM219 restored the self-renewal abilities of miniguts generated from patients with Crohn’s disease in vitro and ameliorated DSS-induced and T cell-mediated colitis in vivo, ultimately leading to mucosal healing. Genetic tissue-specific deletion of TMEM219 in ISCs in newly generated TMEM219fl/flLGR5cre mice revived their mucosal regenerative abilities both in vitro and in vivo. Our findings demonstrate that a TMEM219-dependent ISC death exacerbates colitis and that TMEM219 blockade reestablishes intestinal self-renewal properties in IBD.
Francesca D’Addio, Giovanni Amabile, Emma Assi, Anna Maestroni, Adriana Petrazzuolo, Cristian Loretelli, Ahmed Abdelasalam, Moufida Ben Nasr, Ida Pastore, Maria Elena Lunati, Vera Usuelli, Monica Zocchi, Andy Joe Seelam, Domenico Corradi, Stefano La Rosa, Virna Marin, Monique Zangarini, Marta Nardini, Stefano Porzio, Filippo Canducci, Claudia Nardini, Basset El Essawy, Manuela Nebuloni, Jun Yang, Massimo Venturini, Giovanni Maconi, Franco Folli, Silvio Danese, Gianvincenzo Zuccotti, Gianluca M. Sampietro, Sandro Ardizzone, Paolo Fiorina
Alcohol-associated liver disease represents a significant global health challenge, with gut microbial dysbiosis and bacterial translocation playing a critical role in its pathogenesis. Patients with alcohol-associated hepatitis had increased fecal abundance of mammalian viruses including retroviruses. This study investigated the role of endogenous retroviruses (ERVs) in the development of alcohol-associated liver disease. Transcriptomic analysis of duodenal and liver biopsies revealed increased expression of several human ERVs, including HERV-K and HERV-H, in patients with alcohol-associated liver disease compared with controls. Chronic-binge ethanol feeding markedly induced ERV abundance in intestinal epithelial cells, but not the liver of mice. Ethanol increased ERV expression and activated the Z-DNA binding protein 1 (Zbp1)–mixed lineage kinase domain-like pseudokinase (Mlkl) signaling pathways to induce necroptosis in intestinal epithelial cells. Antiretroviral treatment reduced ethanol-induced intestinal ERV expression, stabilized the gut barrier, and decreased liver disease in microbiota-humanized mice. Furthermore, mice with an intestine-specific deletion of Zbp1 were protected against bacterial translocation and ethanol-induced steatohepatitis. These findings indicate that ethanol exploits this pathway by inducing ERVs and promoting innate immune responses, which results in the death of intestinal epithelial cells, gut barrier dysfunction and liver disease. Targeting the ERV-Zbp1 pathway may offer new therapies for patients with alcohol-associated liver disease.
Noemí Cabré, Marcos F. Fondevila, Wenchao Wei, Tomoo Yamazaki, Fernanda Raya Tonetti, Alvaro Eguileor, Ricard Garcia-Carbonell, Abraham S. Meijnikman, Yukiko Miyamoto, Susan Mayo, Yanhan Wang, Xinlian Zhang, Thorsten Trimbuch, Seija Lehnardt, Lars Eckmann, Derrick E. Fouts, Cristina Llorente, Hidekazu Tsukamoto, Peter Stärkel, Bernd Schnabl
Michaela A.A. Fuchs, Myles Wolf
The Wnt/β-catenin pathway regulates expression of the SOX9 gene, which encodes SRY-box transcription factor 9, a differentiation factor and potential β-catenin regulator. Because APC tumor suppressor defects in ~80% of colorectal cancers (CRCs) activate the Wnt/β-catenin pathway, we studied SOX9 inactivation in CRC biology. Compared to effects of Apc inactivation in mouse colon tumors, combined Apc and Sox9 inactivation instigated more invasive tumors with epithelial-mesenchymal transition (EMT) and SOX2 stem cell factor upregulation. In an independent mouse CRC model with combined Apc, Kras, and Trp53 defects, Sox9 inactivation promoted SOX2 induction and distant metastases. About 20% of 171 human CRCs showed loss of SOX9 protein expression, which correlated with higher tumor grade. In an independent group of 376 CRC patients, low SOX9 gene expression was linked to poor survival, earlier age at diagnosis, and increased lymph node involvement. SOX9 expression reductions in human CRC were linked to promoter methylation. EMT pathway gene expression changes were prominent in human CRCs with low SOX9 expression and in a mouse cancer model with high SOX2 expression. Our results indicate SOX9 has tumor suppressor function in CRC; its loss may promote progression, invasion, and poor prognosis by enhancing EMT and stem cell phenotypes.
Ying Feng, Ningxin Zhu, Karan Bedi, Jinju Li, Chamila Perera, Maranne Green, Naziheh Assarzadegan, Yali Zhai, Qingzhi Liu, Veerabhadran Baladandayuthapani, Jason R. Spence, Kathleen R. Cho, Eric R. Fearon
Colorectal cancer (CRC) is characterized by an immune-suppressive microenvironment that contributes to tumor progression and immunotherapy resistance. The gut microbiome produces diverse metabolites that feature unique mechanisms of interaction with host targets, yet the role of many metabolites in CRC remains poorly understood. In this study, the microbial metabolite 4-hydroxybenzeneacetic acid (4-HPA) promoted the infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the tumor microenvironment, consequently inhibiting the anti-tumor response of CD8+ T cells and promoting CRC progression in vivo. Mechanistically, 4-HPA activates the JAK2/STAT3 pathway, which upregulates CXCL3 transcription, thereby recruiting PMN-MDSCs to the CRC microenvironment. Selective knockdown of CXCL3 re-sensitized tumors to anti-PD1 immunotherapy in vivo. Chlorogenic acid (CGA) reduces the production of 4-HPA by microbiota, likewise abolishing 4-HPA-mediated immunosuppression. The 4-HPA content in CRC tissues was notably increased in patients with advanced CRC. Overall, the gut microbiome uses 4-HPA as a messenger to control chemokine-dependent accumulation of PMN-MDSC cells and regulate anti-tumor immunity in CRC. Our findings provide a scientific basis for establishing clinical intervention strategies to reverse the tumor immune microenvironment and improve the efficacy of immunotherapy by reducing the interaction between intestinal microbiota, tumor cells and tumor immune cells.
Qing Liao, Ximing Zhou, Ling Wu, Yuyi Yang, Xiaohui Zhu, Hangyu Liao, Yujie Zhang, Weidong Lian, Feifei Zhang, Hui Wang, Yanqing Ding, Liang Zhao
Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice. We developed genetically modified mouse models with constitutively active Pik3ca that form intestinal tumors progressing to liver metastases with an intact immune system, addressing the limitations of previous Pik3ca-mutant models, including long tumor latency, mixed histology, and lack of distant metastases. The PI3Kα-specific inhibitor alpelisib reduced migration and invasion in vitro and metastasis in vivo. We present the first comprehensive analysis of vertical inhibition of the PI3K/AKT pathway in CRC using FDA-approved drugs alpelisib and capivasertib (an AKT inhibitor) in combination with LY2584702 (an S6K inhibitor) in CRC cell lines and mouse- and patient-derived organoids (PDOs). Tissue microarrays from CRC patients confirmed that LIN28B and PI3K/AKT pathway activation correlate with CRC progression. These findings highlight the critical role of the LIN28B-mediated PI3K/AKT pathway in CRC metastasis, the therapeutic potential of targeted inhibition, and the promise of PDOs in precision medicine in metastatic CRC.
Alice E. Shin, Kensuke Sugiura, Secunda W. Kariuki, David A. Cohen, Samuel P. Flashner, Andres J. Klein-Szanto, Noriyuki Nishiwaki, Dechokyab De, Neil Vasan, Joel T. Gabre, Christopher J. Lengner, Peter A. Sims, Anil K. Rustgi
Intestinal stem cells are crucial for maintaining intestinal homeostasis, yet their transformation into tumor stem cells in the context of microbial infection remains poorly understood. Fusobacterium nucleatum (F. nucleatum) is frequently associated with the onset and progression of colorectal cancer (CRC). In this study, we uncovered that F. nucleatum colonized the depths of gut crypts in both human CRC patients and mouse models. Through single-cell sequencing analysis, we demonstrated that F. nucleatum infection reprogrammed crypt cells and activated LY6A+ revival stem cells (RSCs), promoting their hyperproliferation and subsequent transformation into tumor stem cells, which accelerated intestinal carcinogenesis. Mechanistically, we identified LY6A as a GPI-anchored membrane receptor for F. nucleatum. Upon binding, F. nucleatum induced upregulation of RPS14 via the LY6A receptor, driving RSC hyperactivity and tumorigenic conversion. Functional studies showed that genetic ablation of Ly6a in intestinal epithelial cells or Rps14 in LY6A+ RSCs substantially reduced F. nucleatum colonization and tumorigenesis. Moreover, clinical CRC cohorts analysis revealed a strong correlation between F. nucleatum infection, RSC expansion, and elevated RPS14 expression in tumor tissues. These findings highlight an alternative F. nucleatum-LY6A-RPS14 signaling axis as a critical driver of CRC progression and propose potential therapeutic targets for effective CRC intervention.
Qinying Wang, Tingting Hu, Qinyuan Zhang, Yichi Zhang, Xiaoxu Dong, Yutao Jin, Jinming Li, Yangyang Guo, Fanying Guo, Ziying Chen, Peijie Zhong, Yongzhi Yang, Yanlei Ma
Background: While most hypertriglyceridemia is asymptomatic, hypertriglyceridemia-associated acute pancreatitis (HTG-AP) can be more severe than other AP etiologies. The reasons underlying this are unclear. We thus studied whether lipolytic generation of non-esterified fatty acids (NEFA) from circulating triglycerides (TGs) could worsen clinical outcomes. Methods: Admission serum TGs, NEFA compositions and concentrations were analyzed prospectively in 269 patients with AP. These and demographics, clinical outcomes were compared between HTGAP (TGs >500mg/dL; American Heart Association 2018 guidelines) and other AP etiologies. Serum NEFAs were correlated with the serum triglyceride fatty acids (TGFAs) alone, and with the product of TGFA x serum lipase (NEFA-TGFA x lipase). Studies in mice, rats were done to understand the role of HTG lipolysis in organ failure and to interpret the NEFA-TGFA correlations. Results: HTG-AP patients had higher serum NEFAs and TGs and more severe AP (19% vs. 7% p<0.03) than other etiologies. Correlations of long-chain unsaturated NEFA with corresponding TGFAs increased with TG concentrations up to 500mg/dL and declined thereafter. However, NEFA-TGFA x lipase correlations got stronger with TGs >500mg/dL. AP, and intravenous lipase infusion in rodents caused lipolysis of circulating TGs to NEFA. This led to multi-system organ failure, which was prevented by pancreatic triglyceride lipase deletion, or lipase inhibition. Conclusions: HTG-AP is made severe by the NEFAs generated form intravascular lipolysis of circulating TGs. Strategies that prevent TG lipolysis may be effective in improving clinical outcomes of HTG-AP. Trial registration: Not applicable. Funding: This project was supported by Grant numbers RO1DK092460, R01DK119646 from the NIDDK, PR191945 under W81XWH-20-1-0400 from the DOD (VPS), and R01AA031257 from the NIAAA (VPS).
Prasad Rajalingamgari, Biswajit Khatua, Megan J. Summers, Sergiy Kostenko, Yu-Hui H Chang, Mohamed Elmallahy, Arti Anand, Anoop Narayana Pillai, Mahmoud Morsy, Shubham Trivedi, Bryce McFayden, Sarah Jahangir, Christine LH Snozek, Vijay P. Singh
BRAFV600E-mutant metastatic colorectal cancer (mCRC) is associated with poor prognosis. The combination of anti-BRAF/EGFR (encorafenib/cetuximab) treatment for patients with BRAFV600E-mutant mCRC improved clinical benefits; unfortunately, inevitable acquired resistance limits the treatment outcome, and the mechanism has not been validated. Here, we discovered that monoacylglycerol O-Acyltransferase 3 (MOGAT3) mediated diacylglycerol (DAG) accumulation contributed to acquired resistance to encorafenib/cetuximab by dissecting BRAFV600E-mutant mCRC patient-derived xenograft (PDX) model exposed to encorafenib/cetuximab administration. Mechanistically, upregulated MOGAT3 promotes DAG synthesis and reduces fatty acid oxidation (FAO)-promoting DAG accumulation and activating PKCα-CRAF-MEK-ERK, driving acquired resistance. Resistance-induced hypoxia promotes MOGAT3 transcriptional elevation; simultaneously, MOGAT3-mediated DAG accumulation increases HIF1A expression in translation level through PKCα-CRAF-eIF4E activation, strengthening the resistance status. Intriguingly, reducing intratumoral DAG by fenofibrate or Pf-06471553 restores the antitumor efficacy of encorafenib/cetuximab on resistant BRAFV600E-mutant mCRC, interrupted PKCα-CRAF-MEK-ERK signaling. These findings reveal the critical metabolite DAG as a modulator of encorafenib/cetuximab efficacy in BRAFV600E-mutant mCRC, suggesting that fenofibrate may prove beneficial for resistant BRAFV600E-mutant mCRC patients.
Jiawei Wang, Huogang Wang, Wei Zhou, Xin Luo, Huijuan Wang, Qing Meng, Jiaxin Chen, Xiaoyu Chen, Yinqiang Liu, David W. Chan, Zhenyu Ju, Zhangfa Song
Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus, West Nile Virus (WNV) and demonstrated intestinal transit defects. Here, we find that within one week of WNV infection, enteric neurons and glia become damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damage the enteric nervous system (ENS) and glia, which leads to intestinal dysmotility; these T cells use multiple and redundant effector functions including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appears to not require infiltrating monocytes and damage may be limited by resident muscularis macrophages. Overall, our experiments support a model whereby antigen specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.
Hana Janova, Fang R. Zhao, Pritesh Desai, Matthias Mack, Larissa B. Thackray, Thaddeus S. Stappenbeck, Michael S. Diamond