Recently published - More

Abstract

The atypical cadherin FAT4 has established roles in the regulation of planar cell polarity and Hippo pathway signaling that are cell context dependent. The recent identification of FAT4 mutations in Hennekam syndrome, features of which include lymphedema, lymphangiectasia, and mental retardation, uncovered an important role for FAT4 in the lymphatic vasculature. Hennekam syndrome is also caused by mutations in collagen and calcium binding EGF domains 1 (CCBE1) and ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3), encoding a matrix protein and protease, respectively, that regulate activity of the key prolymphangiogenic VEGF-C/VEGFR3 signaling axis by facilitating the proteolytic cleavage and activation of VEGF-C. The fact that FAT4, CCBE1, and ADAMTS3 mutations underlie Hennekam syndrome suggested that all 3 genes might function in a common pathway. We identified FAT4 as a target gene of GATA-binding protein 2 (GATA2), a key transcriptional regulator of lymphatic vascular development and, in particular, lymphatic vessel valve development. Here, we demonstrate that FAT4 functions in a lymphatic endothelial cell–autonomous manner to control cell polarity in response to flow and is required for lymphatic vessel morphogenesis throughout development. Our data reveal a crucial role for FAT4 in lymphangiogenesis and shed light on the mechanistic basis by which FAT4 mutations underlie a human lymphedema syndrome.

Authors

Kelly L. Betterman, Drew L. Sutton, Genevieve A. Secker, Jan Kazenwadel, Anna Oszmiana, Lillian Lim, Naoyuki Miura, Lydia Sorokin, Benjamin M. Hogan, Mark L. Kahn, Helen McNeill, Natasha L. Harvey

×

Abstract

Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution.

Authors

Tracie Plant, Suttida Eamsamarng, Manuel A. Sanchez-Garcia, Leila Reyes, Stephen A. Renshaw, Patricia Coelho, Ananda S. Mirchandani, Jessie-May Morgan, Felix E. Ellett, Tyler Morrison, Duncan Humphries, Emily R. Watts, Fiona Murphy, Ximena L. Raffo-Iraolagoitia, Ailiang Zhang, Jenna L. Cash, Catherine Loynes, Philip M. Elks, Freek Van Eeden, Leo M. Carlin, Andrew J.W. Furley, Moira K.B. Whyte, Sarah R. Walmsley

×

Abstract

Authors

Arthur L. Caplan, Ross Upshur

×

Abstract

In patients with HBV and HCV coinfection, HBV reactivation leading to severe hepatitis has been reported with the use of direct-acting antivirals (DAAs) to treat HCV infection. Here we studied the molecular mechanisms behind this viral interaction. In coinfected cell culture and humanized mice, HBV replication was suppressed by HCV coinfection. In vitro, HBV suppression was attenuated when interferon (IFN) signaling was blocked. In vivo, HBV viremia, after initial suppression by HCV superinfection, rebounded following HCV clearance by DAA treatment that was accompanied by a reduced hepatic IFN response. Using blood samples of coinfected patients, IFN-stimulated gene products including C-X-C motif chemokine 10 (CXCL10), C-C motif chemokine ligand 5 (CCL5), and alanine aminotransferase (ALT) were identified to have predictive value for HBV reactivation after HCV clearance. Taken together, our data suggest that HBV reactivation is a result of diminished hepatic IFN response following HCV clearance and identify serologic markers that can predict HBV reactivation in DAA-treated HBV-HCV–coinfected persons.

Authors

Xiaoming Cheng, Takuro Uchida, Yuchen Xia, Regina Umarova, Chun-Jen Liu, Pei-Jer Chen, Anuj Gaggar, Vithika Suri, Marcus M. Mücke, Johannes Vermehren, Stefan Zeuzem, Yuji Teraoka, Mitsutaka Osawa, Hiroshi Aikata, Keiji Tsuji, Nami Mori, Shuhei Hige, Yoshiyasu Karino, Michio Imamura, Kazuaki Chayama, T. Jake Liang

×

Abstract

Infusion of the broadly neutralizing antibody VRC01 has been evaluated in individuals chronically infected with HIV-1. Here, we studied how VRC01 infusions affected viral rebound after cessation of antiretroviral therapy (ART) in 18 acutely treated and durably suppressed individuals. Viral rebound occurred in all individuals, yet VRC01 infusions modestly delayed rebound and participants who showed a faster decay of VRC01 in serum rebounded more rapidly. Participants with strains most sensitive to VRC01 or with VRC01 epitope motifs similar to known VRC01-susceptible strains rebounded later. Upon rebound, HIV-1 sequences were indistinguishable from those sampled at diagnosis. Across the cohort, participant-derived Env showed different sensitivity to VRC01 neutralization (including 2 resistant viruses), yet neutralization sensitivity was similar at diagnosis and after rebound, indicating the lack of selection for VRC01 resistance during treatment interruption. Our results showed that viremia rebounded despite the absence of HIV-1 adaptation to VRC01 and an average VRC01 trough of 221 μg/mL. Although VRC01 levels were insufficient to prevent a resurgent infection, knowledge that they did not mediate Env mutations in acute-like viruses is relevant for antibody-based strategies in acute infection.

Authors

Evan M. Cale, Hongjun Bai, Meera Bose, Michael A. Messina, Donn J. Colby, Eric Sanders-Buell, Bethany Dearlove, Yifan Li, Emily Engeman, Daniel Silas, Anne Marie O’Sullivan, Brendan Mann, Suteeraporn Pinyakorn, Jintana Intasan, Khunthalee Benjapornpong, Carlo Sacdalan, Eugène Kroon, Nittaya Phanuphak, Robert Gramzinski, Sandhya Vasan, Merlin L. Robb, Nelson L. Michael, Rebecca M. Lynch, Robert T. Bailer, Amélie Pagliuzza, Nicolas Chomont, Amarendra Pegu, Nicole A. Doria-Rose, Lydie Trautmann, Trevor A. Crowell, John R. Mascola, Jintanat Ananworanich, Sodsai Tovanabutra, Morgane Rolland, on behalf of the RV397 Study Group

×

Abstract

Single-nucleotide polymorphisms and locus amplification link the NF-κB transcription factor c-Rel to human autoimmune diseases and B cell lymphomas, respectively. However, the functional consequences of enhanced c-Rel levels remain enigmatic. Here, we overexpressed c-Rel specifically in mouse B cells from BAC-transgenic gene loci and demonstrate that c-Rel protein levels linearly dictated expansion of germinal center B (GCB) cells and isotype-switched plasma cells. c-Rel expression in B cells of otherwise c-Rel–deficient mice fully rescued terminal B cell differentiation, underscoring its critical B cell–intrinsic roles. Unexpectedly, in GCB cells transcription-independent regulation produced the highest c-Rel protein levels among B cell subsets. In c-Rel–overexpressing GCB cells this caused enhanced nuclear translocation, a profoundly altered transcriptional program, and increased proliferation. Finally, we provide a link between c-Rel gain and autoimmunity by showing that c-Rel overexpression in B cells caused autoantibody production and renal immune complex deposition.

Authors

Maike Kober-Hasslacher, Hyunju Oh-Strauß, Dilip Kumar, Valeria Soberon, Carina Diehl, Maciej Lech, Thomas Engleitner, Eslam Katab, Vanesa Fernández-Sáiz, Guido Piontek, Hongwei Li, Björn Menze, Christoph Ziegenhain, Wolfgang Enard, Roland Rad, Jan P. Böttcher, Hans-Joachim Anders, Martina Rudelius, Marc Schmidt-Supprian

×

Abstract

BACKGROUND Insulin is a key regulator of metabolic function. The effects of excess adiposity, insulin resistance, and hepatic steatosis on the complex integration of insulin secretion and hepatic and extrahepatic tissue extraction are not clear.METHODS A hyperinsulinemic-euglycemic clamp and a 3-hour oral glucose tolerance test were performed to evaluate insulin sensitivity and insulin kinetics after glucose ingestion in 3 groups: (a) lean subjects with normal intrahepatic triglyceride (IHTG) and glucose tolerance (lean-NL; n = 14), (b) obese subjects with normal IHTG and glucose tolerance (obese-NL; n = 24), and (c) obese subjects with nonalcoholic fatty liver disease (NAFLD) and prediabetes (obese-NAFLD; n = 22).RESULTS Insulin sensitivity progressively decreased and insulin secretion progressively increased from the lean-NL to the obese-NL to the obese-NAFLD groups. Fractional hepatic insulin extraction progressively decreased from the lean-NL to the obese-NL to the obese-NAFLD groups, whereas total hepatic insulin extraction (molar amount removed) was greater in the obese-NL and obese-NAFLD subjects than in the lean-NL subjects. Insulin appearance in the systemic circulation and extrahepatic insulin extraction progressively increased from the lean-NL to the obese-NL to the obese-NAFLD groups. Total hepatic insulin extraction plateaued at high rates of insulin delivery, whereas the relationship between systemic insulin appearance and total extrahepatic extraction was linear.CONCLUSION Hyperinsulinemia after glucose ingestion in obese-NL and obese-NAFLD is due to an increase in insulin secretion, without a decrease in total hepatic or extrahepatic insulin extraction. However, the liver’s maximum capacity to remove insulin is limited because of a saturable extraction process. The increase in insulin delivery to the liver and extrahepatic tissues in obese-NAFLD is unable to compensate for the increase in insulin resistance, resulting in impaired glucose homeostasis.TRIAL REGISTRATION ClinicalTrials.gov NCT02706262.FUNDING NIH grants DK56341 (Nutrition Obesity Research Center), DK052574 (Digestive Disease Research Center), RR024992 (Clinical and Translational Science Award), and T32 DK007120 (a T32 Ruth L. Kirschstein National Research Service Award); the American Diabetes Foundation (1-18-ICTS-119); Janssen Research & Development; and the Pershing Square Foundation.

Authors

Gordon I. Smith, David C. Polidori, Mihoko Yoshino, Monica L. Kearney, Bruce W. Patterson, Bettina Mittendorfer, Samuel Klein

×

Abstract

Authors

James E. Rothman

×

Abstract

Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the synthesis of the amino acid serine, important for protein synthesis, one-carbon metabolism, lipid production, redox homeostasis, and other key processes of normal and cancer metabolism. While PHGDH is often overexpressed in cancer cells, how it is regulated has been unclear. In this issue of the JCI, Liu and colleagues describe a new aspect of PHGDH regulation, demonstrating that the Parkinson disease gene and tumor suppressor Parkin bound and ubiquitinated PHGDH. Parkin promoted PHGDH degradation, suppressed serine synthesis, and inhibited tumor growth in human cancer cell line xenografts. Conversely, inactivation of Parkin not only accelerated tumor growth, but also sensitized tumors to small molecule inhibitors of PHGDH. These results offer a new link between Parkin and the serine synthesis pathway, and they bear translational potential that warrants further study in Parkin-deficient human cancers.

Authors

W. Brian Dalton

×

Abstract

Treatment for hepatitis C virus (HCV) with direct-acting antivirals (DAAs) in hepatitis B virus (HBV) coinfection can result in HBV reactivation. In this issue of the JCI, Cheng and colleagues explored the role of interferon signaling in the complex interaction between HBV and HCV using cell lines, mouse models, and samples from people with coinfection. Notably, HCV enhanced interferon signaling, as measured by interferon-stimulated gene (ISG) expression, and decreased HBV transcription and replication. Blockade of interferon signaling reversed the effects on HBV replication. Further, pharmacologic inhibition of HCV replication in vitro and in coinfected humanized mice also reduced interferon signaling and, correspondingly, increased HBV replication. Intriguingly, baseline serum levels of the ISG CXCL10 predicted HBV reactivation in a cohort of coinfected people taking DAAs. Determining how interferon signaling silences HBV transcription and whether serum CXCL10 predicts HBV reactivation in a clinical setting are questions that warrant further investigation.

Authors

Ashwin Balagopal, Chloe L. Thio

×

Abstract

The critical role of suppressive myeloid cells in immune regulation has come to the forefront in cancer research, with myeloid-derived suppressor cells (MDSCs) as a main oncology immunotherapeutic target. Recent improvement and standardization of criteria classifying tumor-induced MDSCs have led to unified descriptions and also promoted MDSC research in tuberculosis (TB) and AIDS. Despite convincing evidence on the induction of MDSCs by pathogen-derived molecules and inflammatory mediators in TB and AIDS, very little attention has been given to their therapeutic modulation or roles in vaccination in these diseases. Clinical manifestations in TB are consequences of complex host-pathogen interactions and are substantially affected by HIV infection. Here we summarize the current understanding and knowledge gaps regarding the role of MDSCs in HIV and Mycobacterium tuberculosis (co)infections. We discuss key scientific priorities to enable application of this knowledge to the development of novel strategies to improve vaccine efficacy and/or implementation of enhanced treatment approaches. Building on recent findings and potential for cross-fertilization between oncology and infection biology, we highlight current challenges and untapped opportunities for translating new advances in MDSC research into clinical applications for TB and AIDS.

Authors

Anca Dorhoi, Leigh A. Kotzé, Jay A. Berzofsky, Yongjun Sui, Dmitry I. Gabrilovich, Ankita Garg, Richard Hafner, Shabaana A. Khader, Ulrich E. Schaible, Stefan H.E. Kaufmann, Gerhard Walzl, Manfred B. Lutz, Robert N. Mahon, Suzanne Ostrand-Rosenberg, William Bishai, Nelita du Plessis

×

Abstract

Despite widespread use of taxanes, mechanisms of action and resistance in vivo remain to be established, and there is no way of predicting who will respond to therapy. This study examined prostate cancer (PCa) xenografts and patient samples to identify in vivo mechanisms of taxane action and resistance. Docetaxel drug-target engagement was assessed by confocal anti-tubulin immunofluorescence to quantify microtubule bundling in interphase cells and aberrant mitoses. Tumor biopsies from metastatic PCa patients obtained 2 to 5 days after their first dose of docetaxel or cabazitaxel were processed to assess microtubule bundling, which correlated with clinical response. Microtubule bundling was evident in PCa xenografts 2 to 3 days after docetaxel treatment but was decreased or lost with acquired resistance. Biopsies after treatment with leuprolide plus docetaxel showed extensive microtubule bundling as did biopsies obtained 2 to 3 days after initiation of docetaxel or cabazitaxel in 2 patients with castration-resistant PCa with clinical responses. In contrast, microtubule bundling in biopsies 2 to 3 days after the first dose of docetaxel was markedly lower in 4 nonresponding patients. These findings indicate that taxanes target both mitotic and interphase cells in vivo and that resistance is through mechanisms that impair drug-target engagement. Moreover, the findings suggest that microtubule bundling after initial taxane treatment may be a predictive biomarker for clinical response.

Authors

Ada Gjyrezi, Fang Xie, Olga Voznesensky, Prateek Khanna, Carla Calagua, Yang Bai, Justin Kung, Jim Wu, Eva Corey, Bruce Montgomery, Sandrine Mace, Diego A. Gianolio, Glenn J. Bubley, Steven P. Balk, Paraskevi Giannakakou, Rupal S. Bhatt

×

Abstract

Phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme of serine synthesis, is frequently overexpressed in human cancer. PHGDH overexpression activates serine synthesis to promote cancer progression. Currently, PHGDH regulation in normal cells and cancer is not well understood. Parkin, an E3 ubiquitin ligase involved in Parkinson’s disease, is a tumor suppressor. Parkin expression is frequently downregulated in many types of cancer, and its tumor-suppressive mechanism is poorly defined. Here, we show that PHGDH is a substrate for Parkin-mediated ubiquitination and degradation. Parkin interacted with PHGDH and ubiquitinated PHGDH at lysine 330, leading to PHGDH degradation to suppress serine synthesis. Parkin deficiency in cancer cells stabilized PHGDH and activated serine synthesis to promote cell proliferation and tumorigenesis, which was largely abolished by targeting PHGDH with RNA interference, CRISPR/Cas9 KO, or small-molecule PHGDH inhibitors. Furthermore, Parkin expression was inversely correlated with PHGDH expression in human breast cancer and lung cancer. Our results revealed PHGDH ubiquitination by Parkin as a crucial mechanism for PHGDH regulation that contributes to the tumor-suppressive function of Parkin and identified Parkin downregulation as a critical mechanism underlying PHGDH overexpression in cancer.

Authors

Juan Liu, Cen Zhang, Hao Wu, Xiao-Xin Sun, Yanchen Li, Shan Huang, Xuetian Yue, Shou-En Lu, Zhiyuan Shen, Xiaoyang Su, Eileen White, Bruce G. Haffty, Wenwei Hu, Zhaohui Feng

×

Abstract

Glioblastoma multiforme (GBM) contains a subpopulation of cells, GBM stem cells (GSCs), that maintain the bulk tumor and represent a key therapeutic target. Norrin is a Wnt ligand that binds Frizzled class receptor 4 (FZD4) to activate canonical Wnt signaling. Although Norrin, encoded by NDP, has a well-described role in vascular development, its function in human tumorigenesis is largely unexplored. Here, we show that NDP expression is enriched in neurological cancers, including GBM, and its levels positively correlated with survival in a GBM subtype defined by low expression of ASCL1, a proneural factor. We investigated the function of Norrin and FZD4 in GSCs and found that it mediated opposing tumor-suppressive and -promoting effects on ASCL1lo and ASCL1hi GSCs. Consistent with a potential tumor-suppressive effect of Norrin suggested by the tumor outcome data, we found that Norrin signaling through FZD4 inhibited growth in ASCL1lo GSCs. In contrast, in ASCL1hi GSCs Norrin promoted Notch signaling, independently of WNT, to promote tumor progression. Forced ASCL1 expression reversed the tumor-suppressive effects of Norrin in ASCL1lo GSCs. Our results identify Norrin as a modulator of human brain cancer progression and reveal an unanticipated Notch-mediated function of Norrin in regulating cancer stem cell biology. This study identifies an unanticipated role of Norrin in human brain cancer progression. In addition, we provide preclinical evidence suggesting Norrin and canonical Wnt signaling as potential therapeutic targets for GBM subtype–restricted cancer stem cells.

Authors

Ahmed El-Sehemy, Hayden Selvadurai, Arturo Ortin-Martinez, Neno Pokrajac, Yasin Mamatjan, Nobuhiko Tachibana, Katherine Rowland, Lilian Lee, Nicole Park, Kenneth Aldape, Peter Dirks, Valerie A. Wallace

×

Abstract

As there is growing evidence for the tumor microenvironment’s role in tumorigenesis, we investigated the role of fibroblast-expressed kinases in triple-negative breast cancer (TNBC). Using a high-throughput kinome screen combined with 3D invasion assays, we identified fibroblast-expressed PIK3Cδ (f-PIK3Cδ) as a key regulator of cancer progression. Although PIK3Cδ was expressed in primary fibroblasts derived from TNBC patients, it was barely detectable in breast cancer (BC) cell lines. Genetic and pharmacological gain- and loss-of-function experiments verified the contribution of f-PIK3Cδ in TNBC cell invasion. Integrated secretomics and transcriptomics analyses revealed a paracrine mechanism via which f-PIK3Cδ confers its protumorigenic effects. Inhibition of f-PIK3Cδ promoted the secretion of factors, including PLGF and BDNF, that led to upregulation of NR4A1 in TNBC cells, where it acts as a tumor suppressor. Inhibition of PIK3Cδ in an orthotopic BC mouse model reduced tumor growth only after inoculation with fibroblasts, indicating a role of f-PIK3Cδ in cancer progression. Similar results were observed in the MMTV-PyMT transgenic BC mouse model, along with a decrease in tumor metastasis, emphasizing the potential immune-independent effects of PIK3Cδ inhibition. Finally, analysis of BC patient cohorts and TCGA data sets identified f-PIK3Cδ (protein and mRNA levels) as an independent prognostic factor for overall and disease-free survival, highlighting it as a therapeutic target for TNBC.

Authors

Teresa Gagliano, Kalpit Shah, Sofia Gargani, Liyan Lao, Mansour Alsaleem, Jianing Chen, Vasileios Ntafis, Penghan Huang, Angeliki Ditsiou, Viviana Vella, Kritika Yadav, Kamila Bienkowska, Giulia Bresciani, Kai Kang, Leping Li, Philip Carter, Graeme Benstead-Hume, Timothy O’Hanlon, Michael Dean, Frances M.G. Pearl, Soo-Chin Lee, Emad A. Rakha, Andrew R. Green, Dimitris L. Kontoyiannis, Erwei Song, Justin Stebbing, Georgios Giamas

×

Abstract

Neutrophil accumulation is associated with lung pathology during active tuberculosis (ATB). However, the molecular mechanism or mechanisms by which neutrophils accumulate in the lung and contribute to TB immunopathology are not fully delineated. Using the well-established mouse model of TB, our new data provide evidence that the alarmin S100A8/A9 mediates neutrophil accumulation during progression to chronic TB. Depletion of neutrophils or S100A8/A9 deficiency resulted in improved Mycobacterium tuberculosis (Mtb) control during chronic but not acute TB. Mechanistically, we demonstrate that, following Mtb infection, S100A8/A9 expression is required for upregulation of the integrin molecule CD11b specifically on neutrophils, mediating their accumulation during chronic TB disease. These findings are further substantiated by increased expression of S100A8 and S100A9 mRNA in whole blood in human TB progressors when compared with nonprogressors and rapidly decreased S100A8/A9 protein levels in the serum upon TB treatment. Furthermore, we demonstrate that S100A8/A9 serum levels along with chemokines are useful in distinguishing between ATB and asymptomatic Mtb-infected latent individuals. Thus, our results support targeting S100A8/A9 pathways as host-directed therapy for TB.

Authors

Ninecia R. Scott, Rosemary V. Swanson, Noor Al-Hammadi, Racquel Domingo-Gonzalez, Javier Rangel-Moreno, Belinda A. Kriel, Allison N. Bucsan, Shibali Das, Mushtaq Ahmed, Smriti Mehra, Puthayalai Treerat, Alfredo Cruz-Lagunas, Luis Jimenez-Alvarez, Marcela Muñoz-Torrico, Karen Bobadilla-Lozoya, Thomas Vogl, Gerhard Walzl, Nelita du Plessis, Deepak Kaushal, Thomas J. Scriba, Joaquín Zúñiga, Shabaana A. Khader

×

Abstract

PD-1 expression is a hallmark of both early antigen-specific T cell activation and later chronic stimulation, suggesting key roles in both naive T cell priming and memory T cell responses. Although significant similarities exist between T cells and NK cells, there are critical differences in their biology and functions reflecting their respective adaptive and innate immune effector functions. Expression of PD-1 on NK cells is controversial despite rapid incorporation into clinical cancer trials. Our objective was to stringently and comprehensively assess expression of PD-1 on both mouse and human NK cells under multiple conditions and using a variety of readouts. We evaluated NK cells from primary human tumor samples, after ex vivo culturing, and from multiple mouse tumor and viral models using flow cytometry, quantitative reverse-transcriptase PCR (qRT-PCR), and RNA-Seq for PD-1 expression. We demonstrate that, under multiple conditions, human and mouse NK cells consistently lack PD-1 expression despite the marked upregulation of other activation/regulatory markers, such as TIGIT. This was in marked contrast to T cells, which were far more prominent within all tumors and expressed PD-1. These data have important implications when attempting to discern NK from T cell effects and to determine whether PD-1 targeting can be expected to have direct effects on NK cell functions.

Authors

Sean J. Judge, Cordelia Dunai, Ethan G. Aguilar, Sarah C. Vick, Ian R. Sturgill, Lam T. Khuat, Kevin M. Stoffel, Jonathan Van Dyke, Dan L. Longo, Morgan A. Darrow, Stephen K. Anderson, Bruce R. Blazar, Arta M. Monjazeb, Jonathan S. Serody, Robert J. Canter, William J. Murphy

×

Abstract

Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease hypothesized to promote inflammation via cleavage of protease-activated receptor 1 (PAR1) and PAR2. KLK6 levels are elevated in multiple inflammatory and autoimmune conditions, but no definitive role in pathogenesis has been established. Here, we show that skin-targeted overexpression of KLK6 causes generalized, severe psoriasiform dermatitis with spontaneous development of debilitating psoriatic arthritis-like joint disease. The psoriatic skin and joint phenotypes are reversed by normalization of skin KLK6 levels and attenuated following genetic elimination of PAR1 but not PAR2. Conservation of this regulatory pathway was confirmed in human psoriasis using vorapaxar, an FDA-approved PAR1 antagonist, on explanted lesional skin from patients with psoriasis. Beyond defining a critical role for KLK6/PAR1 signaling in promoting psoriasis, our results demonstrate that KLK6/PAR1-mediated inflammation in the skin alone is sufficient to drive inflammatory joint disease. Further, we identify PAR1 as a promising cytokine-independent target in therapy of psoriasis and psoriatic arthritis.

Authors

Allison C. Billi, Jessica E. Ludwig, Yi Fritz, Richard Rozic, William R. Swindell, Lam C. Tsoi, Dennis Gruzska, Shahla Abdollahi-Roodsaz, Xianying Xing, Doina Diaconu, Ranjitha Uppala, Maya I. Camhi, Philip A. Klenotic, Mrinal K. Sarkar, M. Elaine Husni, Jose U. Scher, Christine McDonald, J. Michelle Kahlenberg, Ronald J. Midura, Johann E. Gudjonsson, Nicole L. Ward

×

Abstract

As treatment of the early, inflammatory phase of sepsis improves, post-sepsis immunosuppression and secondary infection have increased in importance. How early inflammation drives immunosuppression remains unclear. Although IFN-γ typically helps microbial clearance, we found that increased plasma IFN-γ in early clinical sepsis was associated with the later development of secondary Candida infection. Consistent with this observation, we found that exogenous IFN-γ suppressed macrophage phagocytosis of zymosan in vivo, and antibody blockade of IFN-γ after endotoxemia improved survival of secondary candidemia. Transcriptomic analysis of innate lymphocytes during endotoxemia suggested that NKT cells drove IFN-γ production by NK cells via mTORC1. Activation of invariant NKT (iNKT) cells with glycolipid antigen drove immunosuppression. Deletion of iNKT cells in Cd1d–/– mice or inhibition of mTOR by rapamycin reduced immunosuppression and susceptibility to secondary Candida infection. Thus, although rapamycin is typically an immunosuppressive medication, in the context of sepsis, rapamycin has the opposite effect. These results implicated an NKT cell/mTOR/IFN-γ axis in immunosuppression following endotoxemia or sepsis. In summary, in vivo iNKT cells activated mTORC1 in NK cells to produce IFN-γ, which worsened macrophage phagocytosis, clearance of secondary Candida infection, and mortality.

Authors

Edy Y. Kim, Hadas Ner-Gaon, Jack Varon, Aidan M. Cullen, Jingyu Guo, Jiyoung Choi, Diana Barragan-Bradford, Angelica Higuera, Mayra Pinilla-Vera, Samuel A.P. Short, Antonio Arciniegas-Rubio, Tomoyoshi Tamura, David E. Leaf, Rebecca M. Baron, Tal Shay, Michael B. Brenner

×

Abstract

Mycobacterium tuberculosis (M. tuberculosis) has coevolved with humans for millennia and developed multiple mechanisms to evade host immunity. Restoring host immunity in order to improve outcomes and potentially shorten existing therapy will require identification of the full complement by which host immunity is inhibited. Perturbation of host DNA methylation is a mechanism induced by chronic infections such as HIV, HPV, lymphocytic choriomeningitis virus (LCMV), and schistosomiasis to evade host immunity. Here, we evaluated the DNA methylation status of patients with tuberculosis (TB) and their asymptomatic household contacts and found that the patients with TB have DNA hypermethylation of the IL-2/STAT5, TNF/NF-κB, and IFN-γ signaling pathways. We performed methylation-sensitive restriction enzyme–quantitative PCR (MSRE-qPCR) and observed that multiple genes of the IL-12/IFN-γ signaling pathway (IL12B, IL12RB2, TYK2, IFNGR1, JAK1, and JAK2) were hypermethylated in patients with TB. The DNA hypermethylation of these pathways was associated with decreased immune responsiveness with decreased mitogen-induced upregulation of IFN-γ, TNF, IL-6, CXCL9, CXCL10, and IL-1β production. The DNA hypermethylation of the IL-12/IFN-γ pathway was associated with decreased IFN-γ–induced gene expression and decreased IL-12–inducible upregulation of IFN-γ. This study demonstrates that immune cells from patients with TB are characterized by DNA hypermethylation of genes critical to mycobacterial immunity resulting in decreased mycobacteria-specific and nonspecific immune responsiveness.

Authors

Andrew R. DiNardo, Kimal Rajapakshe, Tomoki Nishiguchi, Sandra L. Grimm, Godwin Mtetwa, Qiniso Dlamini, Jaqueline Kahari, Sanjana Mahapatra, Alexander Kay, Gugu Maphalala, Emily M. Mace, George Makedonas, Jeffrey D. Cirillo, Mihai G. Netea, Reinout van Crevel, Cristian Coarfa, Anna M. Mandalakas

×

In-Press Preview - More

Abstract

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy, characterized by a pathognomonic hindbrain malformation. All known JBTS-genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we use the recently identified JBTS-associated protein ARMC9 in tandem-affinity purification and yeast two-hybrid screens to identify a novel ciliary module whose dysfunction underlies JBTS. In addition to known JBTS-associated proteins CEP104 and CSPP1, we identify CCDC66 and TOGARAM1 as ARMC9 interaction partners. We show that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses and characterization of patient-derived fibroblasts, CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrate that dysfunction of ARMC9 or TOGARAM1 results in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant cold- and serum-induced ciliary loss in both ARMC9 and TOGARAM1 patient cell lines suggests a role for this new JBTS-associated protein module in ciliary stability.

Authors

Brooke L. Latour, Julie C. Van De Weghe, Tamara D.S. Rusterholz, Stef J.F. Letteboer, Arianna Gomez, Ranad Shaheen, Matthias Gesemann, Arezou Karamzade, Mostafa Asadollahi, Miguel Barroso-Gil, Manali Chitre, Megan E. Grout, Jeroen van Reeuwijk, Sylvia E.C. van Beersum, Caitlin V. Miller, Jennifer C. Dempsey, Heba Morsy, Michael J. Bamshad, Deborah A. Nickerson, Stephan C.F. Neuhauss, Karsten Boldt, Marius Ueffing, Mohammad Keramatipour, John A. Sayer, Fowzan S. Alkuraya, Ruxandra Bachmann-Gagescu, Ronald Roepman, Dan Doherty

×

Abstract

The transcription factor ISL1 is expressed in pituitary gland stem cells and the thyrotrope and gonadotrope lineages. Pituitary-specific Isl1 deletion causes hypopituitarism with increased stem cell apoptosis, reduced differentiation of thyrotropes and gonadotropes, and reduced body size. Conditional Isl1 deletion causes development of multiple Rathke’s cleft-like cysts, with 100% penetrance. Foxa1 and Foxj1 are abnormally expressed in the pituitary gland and associated with a ciliogenic gene expression program in the cysts. We confirmed expression of FOXA1, FOXJ1 and stem cell markers in human Rathke's cleft cyst tissue, but not craniopharyngiomas, which suggests these transcription factors are useful, pathological markers for diagnosis of Rathke's cleft cysts. These studies support a model whereby expression of ISL1 in pituitary progenitors drives differentiation into thyrotropes and gonadotropes, and without it, activation of FOXA1 and FOXJ1 permits development of an oral epithelial cell fate with mucinous cysts. This pituitary specific Isl1 mouse knockout sheds light on the etiology of Rathke's cleft cysts and the role of ISL1 in normal pituitary development.

Authors

Michelle L. Brinkmeier, Hironori Bando, Adriana C. Camarano, Shingo Fujio, Koji Yoshimoto, Flávio S. J. de Souza, Sally A. Camper

×

Abstract

Myelopoiesis is invariably present, and contributes to pathology, in animal models of graft versus host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties and role in pathogenesis of these cells, we isolated single cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and nanostring gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9, and transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and co-stimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells, and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a cell line and mediated pathological damage to skin explants, independently of T cells. Together, these results define the origin, functional properties and potential pathogenic roles of human GVHD macrophages.

Authors

Laura Jardine, Urszula Cytlak, Merry Gunawan, Gary Reynolds, Kile Green, Xiao-nong Wang, Sarah Pagan, Maharani Paramitha, Christopher A. Lamb, Anna Long, Erin Hurst, Smeera Nair, Graham H. Jackson, Amy Publicover, Venetia Bigley, Muzlifah Haniffa, AJ Simpson, Matthew Collin

×

Abstract

Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin-inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated, conventional CD4+ T cells (Tconv) and proinflammatory dendritic cells (DC); which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, significantly increase the ratio of regulatory T cells (Treg) to allo-activated Tconv, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show human, acute myeloid leukemia (AML) expresses CD83 and myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to prevent two critical complications of allo-HCT; GVHD and relapse. Thus, human CD83 CAR T cells warrant clinical investigation in GVHD prevention and treatment, as well as targeting CD83+ AML.

Authors

Bishwas Shrestha, Kelly Walton, Jordan Reff, Elizabeth M. Sagatys, Nhan Tu, Justin C. Boucher, Gongbo Li, Tayyeb Ghafoor, Martin Felices, Jeffrey Miller, Joseph Pidala, Bruce R. Blazar, Claudio Anasetti, Brian C. Betts, Marco L. Davila

×

Abstract

Despite the widespread use of antibiotics, bacterial pneumonias in donors strongly predispose to the fatal syndrome of primary graft dysfunction (PGD) following lung transplantation. We report that bacterial endotoxin persists in human donor lungs after pathogen is cleared with antibiotics and is associated with neutrophil infiltration and PGD. In mouse models, depletion of tissue-resident alveolar macrophages (TRAM) attenuated neutrophil recruitment in response to endotoxin as shown by compartmental staining and intravital imaging. Bone marrow chimeric mice revealed that neutrophils were recruited by TRAM through activation of TLR4 in a MyD88-dependent manner. Intriguingly, low levels of endotoxin, insufficient to cause donor lung injury, promoted TRAM-dependent production of CXCL2, increased neutrophil recruitment, and led to PGD, which was independent of donor non-classical monocytes. Reactive oxygen species (ROS) increased in human donor lungs starting from the warm-ischemia phase and were associated with increased transcription and translocation to the plasma membrane of TLR4 in donor TRAM. Consistently, scavenging ROS or inhibiting their production to prevent TLR4 transcription/translocation or blockade of TLR4 or co-receptor CD14 on donor TRAM prevented neutrophil recruitment in response to endotoxin and ameliorated PGD. Our studies demonstrate that residual endotoxin after successful treatment of donor bacterial pneumonia promotes PGD through ischemia-reperfusion-primed donor TRAM..

Authors

Mahzad Akbarpour, Emilia Lecuona, Stephen Chiu, Qiang Wu, Melissa Querrey, Ramiro Fernandez, Felix Luis Nunez-Santana, Haiying Sun, Sowmya Ravi, Chitaru Kurihara, James M. Walter, Nikita Joshi, Ziyou Ren, Scott C. Roberts, Alan R. Hauser, Daniel Kreisel, Wenjun Li, Navdeep Chandel, Alexander V. Misharin, Thalachallour Mohanakumar, G.R. Scott Budinger, Ankit Bharat

×

Advertisement

May 2020

May 2020 Issue

On the cover:
Qki-activated lipid metabolism preserves myelin integrity

In multiple sclerosis and other demyelinating diseases, reductions in axon-insulating myelin impair the propagation of electrical impulses within the CNS. Although myelin is thought to undergo little turnover in the adult brain, increasing evidence points to the importance of active metabolic processes in myelin integrity. In this issue, Zhou et al. reveal that the oligodendrocyte protein Qki regulates lipid metabolism to support myelin maintenance in adult mice. Oligodendrocyte-specific depletion of Qki reduced the levels of myelin-associated lipids and was associated with rapid demyelination and the development of neurological deficits. These effects of Qki loss were mitigated by high-fat diet or treatment with agonists of the PPARβ-RXRα complex, which controls lipid metabolic gene transcription. These insights provide rationale for further study of lipid metabolism in demyelinating disorders. The cover image depicts myelin sheaths (in green) with active lipid supply from oligodendrocytes and an oligodendrocyte (in yellow) without proper lipid supply. Image credit: Ella Maru Studio. 

×

May 2020 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Immunotherapy in Hematological Cancers

Series edited by Leo Luznik

Immunotherapeutic strategies leveraging the immune system’s antitumor activity have become a mainstay of cancer treatment. Strategies including antibody-directed approaches, stem cell transplantation, immunomodulatory drugs, immune checkpoint inhibitors, CAR T cells, and vaccines have demonstrated particular success in controlling and even eradicating hematological cancers. This Review Series, developed by JCI’s associate editor Leo Luznik, discusses ongoing progress in immunotherapeutic targeting of hematological cancers. Reviews will address the state-of-the-art in immunotherapies for acute myeloid leukemia, multiple myeloma, and lymphoma and highlight recent successes and challenges in clinical trials for these diseases; take a detailed look at recent developments in CAR T therapies for B cell malignancies; and describe how personalized antigen targeting can be applied to immunotherapeutic treatment of blood malignancies.

×