Editor in Chief Elizabeth M. McNally reflects on the 100th anniversary of the Journal of Clinical Investigation, major breakthroughs in medicine in the last century, and emerging areas of innovation. We also celebrate this milestone with a special collection of 100th Anniversary Viewpoints that highlight important discoveries in medicine and underscore how understanding the molecular basis of disease can transform human health.
Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), telogen (quiescence), and catagen (regression). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF. Here, we report that the transcription factor Krox20 is enriched in an epidermal stem cell population located in the upper/ middle HF. Expression analyses and lineage tracing using inducible Krox20-CreERT showed that Krox20-lineage cells migrate out of this HF region and contribute to the formation of bulge in the HF, serving as ancestors of bulge stem cells. In vivo depletion of these cells arrests HF morphogenesis. This study identifies a novel marker for an epidermal stem cell population that is indispensable for hair homeostasis.
Elnaz Ghotbi, Edem Tchegnon, Zhiguo Chen, Stephen Li, Tracey Shipman, Yong Wang, Jenny Raman, Yumeng Zhang, Renee M. McKay, Chung-Ping Liao, Lu Q. Le
Microglia are recognized as the main cells in the central nervous system responsible for phagocytosis. The current study demonstrated that in prion disease, microglia effectively phagocytose prions or PrPSc during early preclinical stages. However, a critical shift occured in microglial activity during the late preclinical stage, transitioning from PrPSc uptake to establishing extensive neuron-microglia body-to-body cell contacts. This change was followed by a rapid accumulation of PrPSc in the brain. Microglia that enveloped neurons exhibited hypertrophic, cathepsin D-positive lysosomal compartments. However, most neurons undergoing envelopment were only partially encircled by microglia. Despite up to 40% of cortical neurons being partially enveloped at clinical stages, only a small percentage of envelopment proceeded to full engulfment. Partially enveloped neurons lacked apoptotic markers but showed signs of functional decline. Neuronal envelopment was independent of the CD11b pathway, previously associated with phagocytosis of newborn neurons during neurodevelopment. This phenomenon of partial envelopment was consistently observed across multiple prion-affected brain regions, various mouse-adapted strains, and different subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) in humans. The current work describes a new phenomenon of partial envelopment of neurons by reactive microglia in the context of an actual neurodegenerative disease, not a disease model.
Natallia Makarava, Tarek Safadi, Olga Bocharova, Olga Mychko, Narayan P. Pandit, Kara Molesworth, Simone Baiardi, Li Zhang, Piero Parchi, Ilia V. Baskakov
The acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1 knockout mice suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine-tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
S. Farshid Moussavi-Harami, Simon J. Cleary, Mélia Magnen, Yurim Seo, Catharina Conrad, Bevin C. English, Longhui Qiu, Kristin M. Wang, Clare L. Abram, Clifford A. Lowell, Mark R. Looney
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare disease caused by the expression of progerin, an aberrant protein produced by a point mutation in the LMNA gene. HGPS patients show accelerated aging and die prematurely mainly from complications of atherosclerosis such as myocardial infarction, heart failure, or stroke. However, the mechanisms underlying HGPS vascular pathology remain ill defined. We used single-cell RNA sequencing to characterize the aorta in progerin-expressing LmnaG609G/G609G mice and wild-type controls, with a special focus on endothelial cells (ECs). HGPS ECs showed gene expression changes associated with extracellular matrix alterations, increased leukocyte extravasation, and activation of the yes-associated protein 1/transcriptional activator with PDZ-binding domain (YAP/TAZ) mechanosensing pathway, all validated by different techniques. Atomic force microscopy experiments demonstrated stiffer subendothelial extracellular matrix in progeroid aortas, and ultrasound assessment of live HGPS mice revealed disturbed aortic blood flow, both key inducers of the YAP/TAZ pathway in ECs. YAP/TAZ inhibition with verteporfin reduced leukocyte accumulation in the aortic intimal layer and decreased atherosclerosis burden in progeroid mice. Our findings identify endothelial YAP/TAZ signaling as a key mechanism of HGPS vascular disease and open a new avenue for the development of YAP/TAZ targeting drugs to ameliorate progerin-induced atherosclerosis.
Ana Barettino, Cristina González-Gómez, Pilar Gonzalo, María J. Andrés-Manzano, Carlos R. Guerrero, Francisco M. Espinosa, Rosa M. Carmona, Yaazan Blanco, Beatriz Dorado, Carlos Torroja, Fátima Sánchez-Cabo, Ana Quintas, Alberto Benguría, Ana Dopazo, Ricardo García, Ignacio Benedicto, Vicente Andrés
Tumor-associated macrophages and microglia (TAMs) are critical for tumor progression and therapy resistance in glioblastoma (GBM), a type of incurable brain cancer. We previously identified lysyl oxidase (LOX) and olfactomedin like-3 (OLFML3) as essential macrophage and microglia chemokines, respectively, in GBM. Here, single-cell transcriptomics and multiplex sequential immunofluorescence followed by functional studies demonstrate that macrophages negatively correlate with microglia in the GBM tumor microenvironment. LOX inhibition in PTEN-deficient GBM cells upregulates OLFML3 expression via the NF-κB-PATZ1 signaling pathway, inducing a compensatory increase of microglia infiltration. Dual targeting macrophages and microglia via inhibition of LOX and the CLOCK-OLFML3 axis generates potent anti-tumor effects and offers a complete tumor regression in more than 60% of animals when combined with anti-PD1 therapy in PTEN-deficient GBM mouse models. Thus, our findings provide a translational triple therapeutic strategy for this lethal disease.
Yang Liu, Junyan Wu, Hinda Najem, Yiyun Lin, Lizhi Pang, Fatima Khan, Fei Zhou, Heba Ali, Amy B. Heimberger, Peiwen Chen
JCI celebrates a century of publishing scientific discoveries with a special collection highlighting major innovations in medicine and key contributing mechanistic studies.
All cells in the body accumulate somatic mutations over time, but the hematopoietic system is disproportionately affected by driver gene mutations that produce clonal events due to its high rate of turnover. When clonal HSPC expansion is detected in the absence of an overt hematological phenotype, it is referred to as clonal hematopoiesis. This collection of reviews, curated by series editor Kenneth Walsh, will explore factors that drive clonal hematopoiesis, including stress, aging, and cancer therapies. Other reviews will unpack the links between clonal hematopoiesis and disease.
×