Issue published October 3, 2022 Previous issue

On the cover: TDO2+ myofibroblasts suppress T cell–mediated antitumor responses

Hu et al. report that TDO2+ myofibroblasts in the tumor microenvironment shield tumor cells from T cell attack, induce transformation of CD4+ T cells into Tregs, and cause CD8+ T cell dysfunction.

News
Viewpoint
Commentaries
Abstract

With the advent of immune checkpoint blockade (ICB) therapy, treatment strategies for late-stage cancers have seen a radical advancement. In this issue of the JCI, Wang et al. characterize the functional role of miR-155 in breast cancer and its potential in harnessing the efficacy of immunotherapy. The study reports that high expression levels of miR-155 in breast cancer cells downregulated suppressor of cytokine signaling 1 (SOCS1), increased the phosphorylated STAT1 (pSTAT1)/pSTAT3 ratio, and thereby stimulated chemoattractants for tumor infiltration of effector T cells. Moreover, miR-155 overexpression set the stage for ICB therapy via increased programmed death ligand 1 (PD-L1) expression on cancer cells and enhanced immunological memory response via the release of miR-155–containing extracellular vesicles. Collectively, these data suggest that miR-155 is a strong candidate as a prognostic biomarker for ICB therapy.

Authors

Samantha Sharma, Mateusz Opyrchal, Xiongbin Lu

×

Abstract

Autism spectrum disorder (ASD) is a highly variable and heritable neurodevelopmental disease (NDD) with strong genetic underpinnings. In this issue of the JCI, Chen et al. analyzed 2 previously reported, large-scale sequenced ASD cohorts and reported that GIGYF1 is the second most mutated among ASD risk genes. In this issue of the JCI, Chen et al. used a conditional mouse model combined with molecular technologies based on human genetic analyses to determine the critical role of GIGYF1 in ASD. GIGYF1-deficiency affected the recycling of IGF-1R, thereby suppressing the IGF-1R/ERK signaling pathway. Disruption of GIGYF1 in the developing mouse brain led to social deficits and cognitive impairments. These findings extend our understanding of ASD pathogenesis and provide an avenue for developing potentially effective preventions and treatments for patients with ASD.

Authors

Mengen Xing, Qing Zhang, Weihong Song

×

Abstract

The SARS-CoV-2 vaccine NVX-CoV2373 is a protein-based vaccine that might circumvent the difficulties in distributing mRNA vaccines to regions with limited access to cold-chain and refrigeration. However, the NVX-CoV2373–induced T cell and antibody responses remain poorly understood. In this issue of the JCI, Moderbacher et al. characterized SARS-CoV-2–specific CD4+ and CD8+ T cell responses elicited by one or two doses of NVX-CoV2373 in individuals enrolled in a phase I/IIa trial. Substantially increased spike-specific CD4+ and T follicular helper cells were found after the first or second vaccine dose, with some individuals developing a modest spike-specific CD8+ T cell response. Correlation analysis revealed an association between spike-specific CD4+ T cells and neutralizing antibody titers. Notably, preexisting T cell immunity showed negligible effects on NVX-CoV2373–induced T cell responses. These findings indicate that the protein-based vaccine NVX-CoV2373 induces robust T cell immunity capable of recognizing SARS-CoV-2 antigens and supporting humoral immune responses.

Authors

Pengcheng Zhou

×
Research Articles
Abstract

BACKGROUND Hypoactive sexual desire disorder (HSDD) is characterized by a persistent deficiency of sexual fantasies and desire for sexual activity, causing marked distress and interpersonal difficulty. It is the most prevalent female sexual health problem globally, affecting approximately 10% of women, but has limited treatment options. Melanocortin 4 receptor (MC4R) agonists have emerged as a promising therapy for women with HSDD, through unknown mechanisms. Studying the pathways involved is crucial for our understanding of normal and abnormal sexual behavior.METHODS Using psychometric, functional neuroimaging, and hormonal analyses, we conducted a randomized, double-blinded, placebo-controlled, crossover clinical study to assess the effects of MC4R agonism compared with placebo on sexual brain processing in 31 premenopausal heterosexual women with HSDD.RESULTS MC4R agonism significantly increased sexual desire for up to 24 hours after administration compared with placebo. During functional neuroimaging, MC4R agonism enhanced cerebellar and supplementary motor area activity and deactivated the secondary somatosensory cortex, specifically in response to visual erotic stimuli, compared with placebo. In addition, MC4R agonism enhanced functional connectivity between the amygdala and the insula during visual erotic stimuli compared with placebo.CONCLUSION These data suggest that MC4R agonism enhanced sexual brain processing by reducing self-consciousness, increasing sexual imagery, and sensitizing women with HSDD to erotic stimuli. These findings provide mechanistic insight into the action of MC4R agonism in sexual behavior and are relevant to the ongoing development of HSDD therapies and MC4R agonist development more widely.TRIAL REGISTRATION ClinicalTrials.gov NCT04179734.FUNDING This is an investigator-sponsored study funded by AMAG Pharmaceuticals Inc., the Medical Research Council (MRC) (MR/T006242/1), and the National Institute for Health Research (NIHR) (CS-2018-18-ST2-002 and RP-2014-05-001).

Authors

Layla Thurston, Tia Hunjan, Edouard G. Mills, Matthew B. Wall, Natalie Ertl, Maria Phylactou, Beatrice Muzi, Bijal Patel, Emma C. Alexander, Sofiya Suladze, Manish Modi, Pei C. Eng, Paul A. Bassett, Ali Abbara, David Goldmeier, Alexander N. Comninos, Waljit S. Dhillo

×

Abstract

Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell–derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with the potential to affect MKL1 function and found that DYRK1A inhibition dramatically enhanced Mk morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal Mks. Mks derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss-of-function studies confirmed MKL1 involvement in this morphogenetic pathway. Expression of Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile Mks.

Authors

Kamaleldin E. Elagib, Ashton Brock, Cara M. Clementelli, Goar Mosoyan, Lorrie L. Delehanty, Ranjit K. Sahu, Alexandra Pacheco-Benichou, Corinne Fruit, Thierry Besson, Stephan W. Morris, Koji Eto, Chintan Jobaliya, Deborah L. French, Paul Gadue, Sandeep Singh, Xinrui Shi, Fujun Qin, Robert Cornelison, Hui Li, Camelia Iancu-Rubin, Adam N. Goldfarb

×

Abstract

Evidence suggests that increased microRNA-155 (miR-155) expression in immune cells enhances antitumor immune responses. However, given the reported association of miR-155 with tumorigenesis in various cancers, a debate is provoked on whether miR-155 is oncogenic or tumor suppressive. We aimed to interrogate the impact of tumor miR-155 expression, particularly that of cancer cell–derived miR-155, on antitumor immunity in breast cancer. We performed bioinformatic analysis of human breast cancer databases, murine experiments, and human specimen examination. We revealed that higher tumor miR-155 levels correlate with a favorable antitumor immune profile and better patient outcomes. Murine experiments demonstrated that miR-155 overexpression in breast cancer cells enhanced T cell influx, delayed tumor growth, and sensitized the tumors to immune checkpoint blockade (ICB) therapy. Mechanistically, miR-155 overexpression in breast cancer cells upregulated their CXCL9/10/11 production, which was mediated by SOCS1 inhibition and increased phosphorylated STAT1 (p-STAT1)/p-STAT3 ratios. We further found that serum miR-155 levels in breast cancer patients correlated with tumor miR-155 levels and tumor immune status. Our findings suggest that high serum and tumor miR-155 levels may be a favorable prognostic marker for breast cancer patients and that therapeutic elevation of miR-155 in breast tumors may improve the efficacy of ICB therapy via remodeling the antitumor immune landscape.

Authors

Junfeng Wang, Quanyi Wang, Yinan Guan, Yulu Sun, Xiaozhi Wang, Kaylie Lively, Yuzhen Wang, Ming Luo, Julian A. Kim, E. Angela Murphy, Yongzhong Yao, Guoshuai Cai, Daping Fan

×

Abstract

Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to antiangiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on “hijacker” tumor cells, whereas the function of the “hijackee” sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein α (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor–binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell–derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2/FGFR1/ERK1/-2/EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in tumor tissues derived from patients with CRCLM. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option–mediated bevacizumab resistance.

Authors

Ming Qi, Shuran Fan, Maohua Huang, Jinghua Pan, Yong Li, Qun Miao, Wenyu Lyu, Xiaobo Li, Lijuan Deng, Shenghui Qiu, Tongzheng Liu, Weiqing Deng, Xiaodong Chu, Chang Jiang, Wenzhuo He, Liangping Xia, Yunlong Yang, Jian Hong, Qi Qi, Wenqian Yin, Xiangning Liu, Changzheng Shi, Minfeng Chen, Wencai Ye, Dongmei Zhang

×

Abstract

Characterization of the dynamic change in the immunological landscape during malignant transformation from precancerous lesions to cancerous lesions in squamous cell carcinoma (SCC) is critical for the application of immunotherapy. Here, we performed single-cell RNA-Seq (scRNA-Seq) of 131,702 cells from 13 cancerous tissues of oral squamous cell carcinoma (OSCC), 3 samples of precancerous oral leukoplakia, and 8 adjacent normal samples. We found that tumor-infiltrating CD4+ and CD8+ T cells were functionally inhibited by immunosuppressive ligands expressed on various types of myeloid cells or neutrophils in the process of oral carcinogenesis. Notably, we identified a subset of myofibroblasts that exclusively expressed tryptophan 2,3-dioxygenase (TDO2). These TDO2+ myofibroblasts were located distally from tumor nests, and both CD4+ and CD8+ T cells were enriched around them. Functional experiments revealed that TDO2+ myofibroblasts were more likely to possess the ability for chemotaxis toward T cells but induced the transformation of CD4+ T cells into Tregs and caused CD8+ T cell dysfunction. We further showed that use of the TDO2 inhibitor LM10 attenuated the inhibitory states of T cells, restored the T cell antitumor response, and prevented the progression of OSCC malignant transformation in murine models. Our study reveals a multistep transcriptomic landscape of OSCC and demonstrates that TDO2+ myofibroblasts are potential targets for immunotherapy.

Authors

Simeng Hu, Huanzi Lu, Wenqiang Xie, Dikan Wang, Zhongyan Shan, Xudong Xing, Xiang-Ming Wang, Juan Fang, Wei Dong, Wenxiao Dai, Junyi Guo, Yanshu Zhang, Shuqiong Wen, Xin-Yu Guo, Qianming Chen, Fan Bai, Zhi Wang

×

Abstract

Bronchiolitis obliterans syndrome (BOS) is a major impediment to lung transplant survival and is generally resistant to medical therapy. Extracorporeal photophoresis (ECP) is an immunomodulatory therapy that shows promise in stabilizing BOS patients, but its mechanisms of action are unclear. In a mouse lung transplant model, we show that ECP blunts alloimmune responses and inhibits BOS through lowering airway TGF-β bioavailability without altering its expression. Surprisingly, ECP-treated leukocytes were primarily engulfed by alveolar macrophages (AMs), which were reprogrammed to become less responsive to TGF-β and reduce TGF-β bioavailability through secretion of the TGF-β antagonist decorin. In untreated recipients, high airway TGF-β activity stimulated AMs to express CCL2, leading to CCR2+ monocyte-driven BOS development. Moreover, we found TGF-β receptor 2–dependent differentiation of CCR2+ monocytes was required for the generation of monocyte-derived AMs, which in turn promoted BOS by expanding tissue-resident memory CD8+ T cells that inflicted airway injury through Blimp-1–mediated granzyme B expression. Thus, through studying the effects of ECP, we have identified an AM functional plasticity that controls a TGF-β–dependent network that couples CCR2+ monocyte recruitment and differentiation to alloimmunity and BOS.

Authors

Zhiyi Liu, Fuyi Liao, Jihong Zhu, Dequan Zhou, Gyu Seong Heo, Hannah P. Leuhmann, Davide Scozzi, Antanisha Parks, Ramsey Hachem, Derek E. Byers, Laneshia K. Tague, Hrishikesh S. Kulkarni, Marlene Cano, Brian W. Wong, Wenjun Li, Howard J. Huang, Alexander S. Krupnick, Daniel Kreisel, Yongjian Liu, Andrew E. Gelman

×

Abstract

Adoptive cell therapy (ACT) with tumor-specific memory T cells has shown increasing efficacy in regressing solid tumors. However, tumor antigen heterogeneity represents a longitudinal challenge for durable clinical responses due to the therapeutic selective pressure for immune escape variants. Here, we demonstrated that delivery of the class I histone deacetylase inhibitor MS-275 promoted sustained tumor regression by synergizing with ACT in a coordinated manner to enhance cellular apoptosis. We found that MS-275 altered the tumor inflammatory landscape to support antitumor immunoactivation through the recruitment and maturation of cross-presenting CD103+ and CD8+ DCs and depletion of Tregs. Activated endogenous CD8+ T cell responses against nontarget tumor antigens were critically required for the prevention of tumor recurrence. Importantly, MS-275 altered the immunodominance hierarchy by directing epitope spreading toward the endogenous retroviral tumor–associated antigen p15E. Our data suggest that MS-275 in combination with ACT multimechanistically enhanced epitope spreading and promoted long-term clearance of solid tumors.

Authors

Andrew Nguyen, Louisa Ho, Richard Hogg, Lan Chen, Scott R. Walsh, Yonghong Wan

×

Abstract

Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high–confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.

Authors

Guodong Chen, Bin Yu, Senwei Tan, Jieqiong Tan, Xiangbin Jia, Qiumeng Zhang, Xiaolei Zhang, Qian Jiang, Yue Hua, Yaoling Han, Shengjie Luo, Kendra Hoekzema, Raphael A. Bernier, Rachel K. Earl, Evangeline C. Kurtz-Nelson, Michaela J. Idleburg, Suneeta Madan-Khetarpal, Rebecca Clark, Jessica Sebastian, Alberto Fernandez-Jaen, Sara Alvarez, Staci D. King, Luiza L.P. Ramos, Mara Lucia S.F. Santos, Donna M. Martin, Dan Brooks, Joseph D. Symonds, Ioana Cutcutache, Qian Pan, Zhengmao Hu, Ling Yuan, Evan E. Eichler, Kun Xia, Hui Guo

×

Abstract

NVX-CoV2373 is an adjuvanted recombinant full-length SARS-CoV-2 spike trimer protein vaccine demonstrated to be protective against COVID-19 in efficacy trials. Here we demonstrate that vaccinated individuals made CD4+ T cell responses after 1 and 2 doses of NVX-CoV2373, and a subset of individuals made CD8+ T cell responses. Characterization of the vaccine-elicited CD8+ T cells demonstrated IFN-γ production. Characterization of the vaccine-elicited CD4+ T cells revealed both circulating T follicular helper (cTfh) cells and Th1 cells (IFN-γ+, TNF-α+, and IL-2+) were detectable within 7 days of the primary immunization. Spike-specific CD4+ T cells were correlated with the magnitude of the later SARS-CoV-2–neutralizing antibody titers, indicating that robust generation of CD4+ T cells, capable of supporting humoral immune responses, may be a key characteristic of NVX-CoV2373 that utilizes Matrix-M adjuvant.

Authors

Carolyn Rydyznski Moderbacher, Christina Kim, Jose Mateus, Joyce Plested, Mingzhu Zhu, Shane Cloney-Clark, Daniela Weiskopf, Alessandro Sette, Louis Fries, Gregory Glenn, Shane Crotty

×

Abstract

Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1β, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares.

Authors

Marcia A. Munoz, Oliver P. Skinner, Etienne Masle-Farquhar, Julie Jurczyluk, Ya Xiao, Emma K. Fletcher, Esther Kristianto, Mark P. Hodson, Seán I. O’Donoghue, Sandeep Kaur, Robert Brink, David G. Zahra, Elissa K. Deenick, Kristen A. Perry, Avril A.B. Robertson, Sam Mehr, Pravin Hissaria, Catharina M. Mulders-Manders, Anna Simon, Michael J. Rogers

×

Abstract

The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide–expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.

Authors

Di Xie, Bernardo Stutz, Feng Li, Fan Chen, Haining Lv, Matija Sestan-Pesa, Jonatas Catarino, Jianlei Gu, Hongyu Zhao, Christopher E. Stoddard, Gordon G. Carmichael, Marya Shanabrough, Hugh S. Taylor, Zhong-Wu Liu, Xiao-Bing Gao, Tamas L. Horvath, Yingqun Huang

×
Corrigendum
Abstract

Authors

Angela M. Araujo, Andrea Abaurrea, Peio Azcoaga, Joanna I. López-Velazco, Sara Manzano, Javier Rodriguez, Ricardo Rezola, Leire Egia-Mendikute, Fátima Valdés-Mora, Juana M. Flores, Liam Jenkins, Laura Pulido, Iñaki Osorio-Querejeta, Patricia Fernández-Nogueira, Nicola Ferrari, Cristina Viera, Natalia Martín-Martín, Alexandar Tzankov, Serenella Eppenberger-Castori, Isabel Alvarez-Lopez, Ander Urruticoechea, Paloma Bragado, Nicholas Coleman, Asís Palazón, Arkaitz Carracedo, David Gallego-Ortega, Fernando Calvo, Clare M. Isacke, María M. Caffarel, Charles H. Lawrie

×

In-Press Preview - More

Abstract

Prevalent copy number alteration (CNA) is the most prominent genetic characteristic associated with ovarian cancer (OV) development, but its role in immune evasion has not been fully elucidated. In this study, we identified RAD21, a key component of the cohesin complex, as a frequently amplified oncogene that could modulate immnue response in OV. Through interrogating RAD21-regulated transcriptional program we found that RAD21 directly interacts with YAP/TEAD4 transcriptional co-repressors and recruits NuRD complex to suppress interferon (IFN) signaling. In multiple clinical cohorts, RAD21 overexpression is inversely correlated with IFN signature gene expression in OV. We further demonstrated in murine syngeneic tumor models that RAD21 ablation potentiated anti-PD-1 efficacy with increased intratumoral CD8+ T-cell effector activity. Our study identified a previously unrecognized RAD21-YAP/TEAD4-NuRD co-repressor complex in immune modulation, and thus provided a potential target and biomarker for precision immunotherapy in OV.

Authors

Peng Deng, Zining Wang, Jinghong Chen, Shini Liu, Xiaosai Yao, Shaoyan Liu, Lizhen Liu, Zhaoliang Yu, Yulin Huang, Zhongtang Xiong, Rong Xiao, Jiuping Gao, Weiting Liang, Jieping Chen, Hui Liu, Jing Han Hong, Jason Yongsheng Chan, Peiyong Guan, Jianfeng Chen, Yali Wang, Jiaxin Yin, Jundong Li, Min Zheng, Chao Zhang, Penghui Zhou, Tiebang Kang, Bin Tean Teh, Qiang Yu, Zhixiang Zuo, Qingping Jiang, Jihong Liu, Ying Xiong, Xiaojun Xia, Jing Tan

×

Abstract

The various functions of the skeleton are influenced by extracellular cues, hormones and neurotransmitters. One type of neuronal regulation favors bone mass accrual by inhibiting sympathetic nervous system activity. This observation raises questions about the transcriptional mechanisms regulating catecholamine synthesis. Using a combination of genetic and pharmacological studies we have found that the histone deacetylase SIRT1 is a transcriptional modulator of the neuronal control of bone mass. Neuronal SIRT1 reduced bone mass by increasing SNS signaling. SIRT1 did so by increasing expression of monoamine oxidase A (MAO-A), a SIRT1 target that reduces brain serotonin levels by inducing its catabolism, and by suppressing Tph2 expression and serotonin synthesis in the brainstem. SIRT1 upregulated brain catecholamine synthesis indirectly through serotonin but did not directly affect Dbh expression in the locus coeruleus. These results help understand skeletal changes associated with SSRIs and may have implications for treating skeletal and metabolic diseases.

Authors

Na Luo, Ioanna Mosialou, Mattia Capulli, Brygida Bisikirska, Chyuan-Sheng Lin, Yung-yu Huang, Peter Timothy Shyu, X. Edward Guo, Aris Economides, J. John Mann, Stavroula Kousteni

×

Abstract

Platelets and megakaryocytes are critical players in immune responses. Recent reports suggest infection and inflammation alter the megakaryocyte and platelet transcriptome to induce altered platelet reactivity. We examined if non-viral sepsis induces differential platelet gene expression and reactivity. Non-viral sepsis upregulated IFITM3, an interferon responsive gene that restricts viral replication. As IFITM3 has been linked to clathrin-mediated endocytosis, we examined if IFITM3 promoted endocytosis of alpha granule proteins. Interferon stimulation enhanced fibrinogen endocytosis in megakaryocytes and platelets from Ifitm+/+ mice, but not Ifitm-/- mice. IFITM3 overexpression or deletion in megakaryocytes demonstrated IFITM3 was necessary and sufficient to regulate fibrinogen endocytosis. Mechanistically, IFITM3 interacts with clathrin and αIIb and altered their plasma membrane localization into lipid rafts. In vivo interferon administration increased fibrinogen endocytosis, platelet reactivity, and thrombosis in an IFITM-dependent manner. In contrast, Ifitm-/- mice were completely rescued from interferon-induced platelet hyperreactivity and thrombosis. During murine sepsis, platelets from Ifitm+/+ mice demonstrated increased fibrinogen content and platelet reactivity, which was dependent on interferon-alpha and IFITMs. Platelets from patients with non-viral sepsis had increases in platelet IFITM3 expression, fibrinogen content, and hyperreactivity. These data identify IFITM3 as a regulator of platelet endocytosis, hyperreactivity, and thrombosis during inflammatory stress.

Authors

Robert A. Campbell, Bhanu Kanth Manne, Meenakshi Banerjee, Elizabeth A. Middleton, Abigail Ajanel, Hansjorg Schwertz, Frederik Denorme, Chris Stubben, Emilie Montenont, Samantha Saperstein, Lauren Page, Neal D. Tolley, Diana L. Lim, Samuel M. Brown, Colin K. Grissom, Douglas W. Sborov, Anandi Krishnan, Matthew T. Rondina

×

Abstract

People with kidney disease are disproportionately affected by atherosclerosis for unclear reasons. Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived mediator of kidney disease, levels of which are strongly associated with cardiovascular outcomes. We assessed suPAR’s pathogenic involvement in atherosclerosis using epidemiologic, genetic, and experimental approaches. We found serum suPAR levels to be predictive of coronary artery calcification and cardiovascular events in 5,406 participants without known coronary disease. In a genome-wide association meta-analysis including over 25,000 individuals, we identified a missense variant in the PLAUR gene (rs4760) confirmed experimentally to lead to higher suPAR levels. Mendelian randomization analysis in the UK Biobank using rs4760 indicated a causal association between genetically predicted suPAR levels and atherosclerotic phenotypes. In an experimental model of atherosclerosis, Pcsk9 transfection in mice over-expressing suPAR (suPARTg) led to substantially increased atherosclerotic plaques with necrotic cores and macrophage infiltration compared to wild-type mice, despite similar cholesterol levels. Pre-atherosclerosis, aortas of suPARTg mice excreted higher levels of CCL2 and had higher monocyte counts compared to wild-type aortas. Aortic and circulating suPARTg monocytes exhibited a pro-inflammatory profile and enhanced chemotaxis. These findings characterize suPAR as a pathogenic factor for atherosclerosis acting at least partially through modulation of monocyte function.

Authors

George Hindy, Daniel J. Tyrrell, Alexi Vasbinder, Changli Wei, Feriel Presswalla, Hui Wang, Pennelope K. Blakely, Ayse Bilge Ozel, Sarah E. Graham, Grace H. Holton, Joseph Dowsett, Akl C. Fahed, Kingsley-Michael Amadi, Grace K. Erne, Annika Tekumulla, Anis Ismail, Christopher Launius, Nona Sotoodehnia, James S. Pankow, Lise Wegner Thørner, Christian Erikstrup, Ole Birger Pedersen, Karina Banasik, Søren Brunak, Henrik Ullum, Jesper Eugen-Olsen, Sisse Rye Ostrowski, Mary E. Haas, Jonas B. Nielsen, Luca A. Lotta, Gunnar Engström, Olle Melander, Marju Orho-Melander, Lili Zhao, Venkatesh L. Murthy, David J. Pinsky, Cristen J. Willer, Susan R. Heckbert, Jochen Reiser, Daniel R. Goldstein, Karl C. Desch, Salim S. Hayek

×

Abstract

Testosterone is the canonical growth factor of prostate cancer but can paradoxically suppress its growth when present at supraphysiological levels. We have previously demonstrated that the cyclical administration of supraphysiological androgen (SPA), termed Bipolar Androgen Therapy (BAT), can result in tumor regression and clinical benefit for patients with castration-resistant prostate cancer. However, predictors and mechanisms of response and resistance have been ill-defined. Here we show that growth inhibition of prostate cancer models by SPA required high androgen receptor (AR) activity and was driven in part by downregulation of MYC. Using matched sequential patient biopsies, we show that high pre-treatment AR activity predicted downregulation of MYC, clinical response, and prolonged progression-free and overall survival for patients on BAT. BAT induced strong downregulation of AR in all patients, which is shown to be a primary mechanism of acquired resistance to SPA. Acquired resistance could be overcome by alternating SPA with the AR inhibitor enzalutamide, which induced adaptive upregulation of AR and re-sensitized prostate cancer to SPA. This work identifies high AR activity as a predictive biomarker of response to BAT and supports a treatment paradigm for prostate cancer involving alternating between AR inhibition and activation.

Authors

Laura A. Sena, Rajendra Kumar, David E. Sanin, Elizabeth A. Thompson, D. Marc Rosen, Susan L. Dalrymple, Lizamma Antony, Yuhan Yang, Carolina Gomes-Alexandre, Jessica L. Hicks, Tracy Jones, Kiara A. Bowers, Jillian N. Eskra, Jennifer Meyers, Anuj Gupta, Alyza Skaist, Srinivasan Yegnasubramanian, Jun Luo, W. Nathaniel Brennen, Sushant K. Kachhap, Emmanuel S. Antonarakis, Angelo M. De Marzo, John T. Isaacs, Mark C. Markowski, Samuel R. Denmeade

×

Advertisement

October 2022 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Aging

Series edited by James L. Kirkland

Aging plays a central role in many chronic diseases affecting all systems of the body. Nine hallmarks of aging have been identified: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. This new review series on Aging closely examines how these hallmarks contribute to the initiation and progression of disease. Curated by series editor Dr. James Kirkland, topics span aging’s role in immune system function, cancer, cognitive decline and neurodegenerative disease, and metabolism. The reviews also discuss the latest developments in senotherapeutic strategies that destroy senescent cells, reverse senescence, or target specific aging hallmarks with a critical eye.

×