Benavides-Nieto et al. report that heterozygous gain-of-function variants in the gene encoding the small GTPase RAP1B lead to thrombocytopenia and immunodeficiency. The cover image shows abnormal spreading and impaired organization of microtubules (green) in B lymphoblastic cells from a patient with the RAP1B gain-of-function variant p.G12E. Image credit: Charlotte Boussard and Béatrice Durel.
Sarah J. Morgan, Ellis Coulter, Hannah L. Betts, George M. Solomon, John P. Clancy, Steven M. Rowe, David P. Nichols, Pradeep K. Singh
The activation of innate immunity and associated interferon (IFN) signaling have been implicated in cancer, but the regulators are elusive and a link to tumor suppression undetermined. Here, we found that Parkin, an E3 ubiquitin ligase altered in Parkinson’s Disease was epigenetically silenced in cancer and its re-expression by clinically approved demethylating therapy stimulated transcription of a potent IFN response in tumor cells. This pathway required Parkin E3 ubiquitin ligase activity, involved the subcellular trafficking and release of the alarmin High Mobility Group Box 1 (HMGB1) and was associated with inhibition of NFκB gene expression. In turn, Parkin-expressing cells released an IFN secretome that upregulated effector and cytotoxic CD8 T cell markers, lowered the expression of immune inhibitory receptors, TIM3 and LAG3, and stimulated high content of the self-renewal/stem cell factor, TCF1. Parkin-induced CD8 T cells selectively accumulated in the microenvironment and inhibited transgenic and syngeneic tumor growth, in vivo. Therefore, Parkin is an epigenetically regulated activator of innate immunity and dual mode tumor suppressor, inhibiting intrinsic tumor traits of metabolism and cell invasion, while simultaneously reinvigorating CD8 T cell functions in the microenvironment.
Michela Perego, Minjeong Yeon, Ekta Agarwal, Andrew T. Milcarek, Irene Bertolini, Chiara Camisaschi, Jagadish C. Ghosh, Hsin-Yao Tang, Nathalie Grandvaux, Marcus Ruscetti, Andrew V. Kossenkov, Sarah Preston-Alp, Italo Tempera, Noam Auslander, Dario C. Altieri
Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus, West Nile Virus (WNV) and demonstrated intestinal transit defects. Here, we find that within one week of WNV infection, enteric neurons and glia become damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damage the enteric nervous system (ENS) and glia, which leads to intestinal dysmotility; these T cells use multiple and redundant effector functions including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appears to not require infiltrating monocytes and damage may be limited by resident muscularis macrophages. Overall, our experiments support a model whereby antigen specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.
Hana Janova, Fang R. Zhao, Pritesh Desai, Matthias Mack, Larissa B. Thackray, Thaddeus S. Stappenbeck, Michael S. Diamond
The blood-retina barrier (BRB), which is disrupted in diabetic retinopathy (DR) and uveitis, is an important anatomical characteristic of the retina, regulating nutrient, waste, water, protein, and immune cell flux. The BRB is composed of endothelial cell tight junctions, pericytes, astrocyte end feet, a collagen basement membrane, and perivascular macrophages. Despite the importance of the BRB, retinal perivascular macrophage function remains unknown. We found that retinal perivascular macrophages reside on post-capillary venules in the superficial vascular plexus and express MHCII. Using single-cell RNA-sequencing, we found that perivascular macrophages express a pro-chemotactic transcriptome and identified Pf4/CXCL4 as a perivascular macrophage marker. We used Pf4Cre mice to specifically deplete perivascular macrophages. To model retinal inflammation, we performed intraocular CCL2 injections. Ly6C+ monocytes crossed the BRB proximal to perivascular macrophages. Depletion of perivascular macrophages severely hampered Ly6C+ monocyte infiltration. These data suggest that retinal perivascular macrophages orchestrate immune cell migration across the BRB, with implications for inflammatory ocular diseases including DR and uveitis.
Jacob K. Sterling, Amrita Rajesh, Steven Droho, Joyce Gong, Andrew L. Wang, Andrew P. Voigt, C. Elysse Brookins, Jeremy A. Lavine
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells. Our previous data showed that the Bvax (B-cell-based vaccine) can induce therapeutic responses in preclinical models of GBM. In this study, we aim to characterize the antigenic reactivity of BVax-derived antibodies and evaluate their therapeutic potential. We performed immunoproteomics and functional assays in murine models and human GBM patient samples. Our investigations revealed that BVax distributes throughout the GBM tumor microenvironment (TME) and then differentiates into antibody-producing plasmablasts. Proteomic analyses indicate that the antibodies produced by BVax display unique reactivity, predominantly targeting factors associated with cell motility and the extracellular matrix. Crucially, these antibodies inhibit critical processes such as GBM cell migration and invasion. These findings provide valuable insights into the therapeutic potential of BVax-derived antibodies for GBM patients, pointing towards a novel direction in GBM immunotherapy.
Si Wang, Brandyn A. Castro, Joshua L. Katz, Victor A. Arrieta, Hinda Najem, Gustavo I. Vazquez-Cervantes, Hanxiao Wan, Ian E. Olson, David Hou, Mark Dapash, Leah K. Billingham, Tzu-Yi Chia, Chao Wei, Aida Rashidi, Leonidas C. Platanias, Kathleen McCortney, Craig M. Horbinski, Roger Stupp, Peng Zhang, Atique U. Ahmed, Adam M. Sonabend, Amy B. Heimberger, Maciej S. Lesniak, Cecile Riviere-Cazaux, Terry C. Burns, Jason Miska, Mariafausta Fischietti, Catalina Lee-Chang
JCI celebrates a century of publishing scientific discoveries with a special collection highlighting major innovations in medicine and key contributing mechanistic studies.
Vascular malformations in arteries, veins, and lymphatic vessels occur in a broad range of conditions that vary widely in severity and presentation. Leveraging the mechanisms specific to each type of malformation will be essential for optimizing disease management. This review series, developed with series editor Miikka Vikkula, will span hemangioma, hereditary hemorrhagic telangiectasia, lymphatic abnormalities, cerebral small vessel disease, capillary malformations, and more, with reviews contributed by leading experts in each condition.
×