Issue published March 1, 2024 Previous issue

On the cover: Targeting TRIM56 in treating fatty liver

Xu et al. report that ubiquitin ligase TRIM56 protects against nonalcoholic fatty liver disease (NAFLD) by promoting the ubiquitylation and degradation of fatty acid synthase (FASN). The cover art shows decreased hepatic TRIM56 expression in NAFLD. FASstatin, a small molecule targeting TRIM56-FASN interaction, reverses NAFLD pathologies in mice. Image credit: Yijun Jiang.

100th Anniversary Viewpoints
Reviews
Abstract

A proportion of somatic mutations in tumors create neoepitopes that can prime T cell responses that target the MHC I–neoepitope complexes on tumor cells, mediating tumor control or rejection. Despite the compelling centrality of neoepitopes to cancer immunity, we know remarkably little about what constitutes a neoepitope that can mediate tumor control in vivo and what distinguishes such a neoepitope from the vast majority of similar candidate neoepitopes that are inefficacious in vivo. Studies in mice as well as clinical trials have begun to reveal the unexpected paradoxes in this area. Because cancer neoepitopes straddle that ambiguous ground between self and non-self, some rules that are fundamental to immunology of frankly non-self antigens, such as viral or model antigens, do not appear to apply to neoepitopes. Because neoepitopes are so similar to self-epitopes, with only small changes that render them non-self, immune response to them is regulated at least partially the way immune response to self is regulated. Therefore, neoepitopes are viewed and understood here through the clarifying lens of negative thymic selection. Here, the emergent questions in the biology and clinical applications of neoepitopes are discussed critically and a mechanistic and testable framework that explains the complexity and translational potential of these wonderful antigens is proposed.

Authors

Pramod K. Srivastava

×

Abstract

Kawasaki disease (KD) is a systemic vasculitis that affects young children and can result in coronary artery aneurysms. The etiology is currently unknown, but new clues from the epidemiology of KD in Japan, the country of highest incidence, are beginning to shed light on what may trigger this acute inflammatory condition. Additional clues from the global changes in KD incidence during the COVID-19 pandemic, coupled with a new birth cohort study from Japan, point to the potential role of person-to-person transmission of an infectious agent. However, the rising incidence of KD in Japan, with coherent waves across the entire country, points to an increasing intensity of exposure that cannot be explained by person-to-person spread. This Review discusses new and historical observations that guide us toward a better understanding of KD etiology and explores hypotheses and interpretations that can provide direction for future investigations. Once the etiology of KD is determined, accurate diagnostic tests will become available, and new, less expensive, and more effective targeted therapies will likely be possible. Clearly, solving the mystery of the etiologies of KD remains a priority for pediatric research.

Authors

Jane C. Burns

×
Commentaries
Abstract

Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and the single-gene cause of autism, is caused by decreased expression of the fragile X messenger ribonucleoprotein protein (FMRP), a ribosomal-associated RNA-binding protein involved in translational repression. Extensive preclinical work in several FXS animal models supported the therapeutic potential of decreasing metabotropic glutamate receptor (mGluR) signaling to correct translation of proteins related to synaptic plasticity; however, multiple clinical trials failed to show conclusive evidence of efficacy. In this issue of the JCI, Berry-Kravis and colleagues conducted the FXLEARN clinical trial to address experimental design concerns from previous trials. Unfortunately, despite treatment of young children with combined pharmacological and learning interventions for a prolonged period, no efficacy of blocking mGluR activity was observed. Future systematic evaluation of potential therapeutic approaches should evaluate consistency between human and animal pathophysiological mechanisms, utilize innovative clinical trial design from FXLEARN, and incorporate translatable biomarkers.

Authors

Jeffrey L. Neul

×

Abstract

Colorectal cancer (CRC) is among the most common cancer types and the second deadliest malignancy for both sexes. Metastatic disease poses substantial therapeutic challenges, and peritoneal spread, in particular, reduces quality of life and has a dismal outcome. In this issue of the JCI, Berlin and authors have made considerable advancements in understanding the cellular and molecular composition of multivisceral CRC metastasis in a sophisticated murine orthotopic organoid model and in humans. The study provides unprecedented insights into the complex biology of the disease and points toward the development of compartmentalized immune-therapeutic strategies.

Authors

Dominik Wolf, Stefan Salcher, Andreas Pircher

×

Abstract

Chemotherapy, which primarily acts on cancer cells, can influence the tumor microenvironment and the recruitment and behavior of stromal cells. In this issue of the JCI, Li et al. explored the potent anticancer effect of the combination of a glutaminase inhibitor (CB-839) and 5-FU against PIK3CA-mutant colorectal cancer tumors. This chemotherapy treatment strongly induced the recruitment of neutrophils that formed neutrophil extracellular traps in cancer, which actively killed cancer cells by inducing apoptosis. This study substantially advances our understanding of the multifaceted role of neutrophils and NETs in the outcome of anticancer treatment.

Authors

Alexandra Mousset, Jean Albrengues

×

Abstract

Immune tolerance to allogenic transplanted tissues remains elusive, and therapeutics promoting CD4+FOXP3+ Tregs are required to achieve this ultimate goal. In this issue of the JCI, Efe and colleagues engineered an Fc domain fused to a human mutein IL-2 (mIL-2–Fc) bearing mutations that confer preferential binding to the high-affinity IL-2 receptor expressed on Tregs. In vivo mIL-2–Fc therapy effectively heightened mouse, monkey, and human Treg numbers, promoted tolerance to minor antigen mismatched skin grafts in mice, and synergized with immunosuppressive drugs used in the clinic. These findings warrant clinical trials that assess the efficacy of mIL-2–Fc in transplantation.

Authors

Geoffrey Camirand, Fadi G. Lakkis

×

Abstract

Surfactants are essential for breathing. Although major progress has been made in the past half century toward an understanding of surfactant secretion mechanisms, the identity of the mechanosensor that couples breathing to surfactant secretion has remained elusive. In this issue of the JCI, Chen, Li, and colleagues provide evidence that the mechanosensor is the transmembrane 63 (TMEM63) ion channel. These findings open new avenues for future research into lung mechanobiology.

Authors

Jaime L. Hook

×
Research Letter
Abstract

Authors

Maggie E. Jones-Carr, Huma Fatima, Vineeta Kumar, Douglas J. Anderson, Julie Houp, Jackson C. Perry, Gavin A. Baker, Leigh McManus, Andrew J. Shunk, Paige M. Porrett, Jayme E. Locke

×
Research Articles
Abstract

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.

Authors

Sara Duarte-Silva, Jorge Diogo Da Silva, Daniela Monteiro-Fernandes, Marta Daniela Costa, Andreia Neves-Carvalho, Mafalda Raposo, Carina Soares-Cunha, Joana S. Correia, Gonçalo Nogueira-Goncalves, Henrique S. Fernandes, Stephanie Oliveira, Ana Rita Ferreira-Fernandes, Fernando Rodrigues, Joana Pereira-Sousa, Daniela Vilasboas-Campos, Sara Guerreiro, Jonas Campos, Liliana Meireles-Costa, Cecilia M.P. Rodrigues, Stephanie Cabantous, Sergio F. Sousa, Manuela Lima, Andreia Teixeira-Castro, Patricia Maciel

×

Abstract

Nonalcoholic fatty liver disease (NAFLD) encompasses a disease continuum from simple steatosis to nonalcoholic steatohepatitis (NASH). However, there are currently no approved pharmacotherapies for NAFLD, although several drugs are in advanced stages of clinical development. Because of the complex pathophysiology and heterogeneity of NAFLD, the identification of potential therapeutic targets is clinically important. Here, we demonstrated that tripartite motif 56 (TRIM56) protein abundance was markedly downregulated in the livers of individuals with NAFLD and of mice fed a high-fat diet. Hepatocyte-specific ablation of TRIM56 exacerbated the progression of NAFLD, while hepatic TRIM56 overexpression suppressed it. Integrative analyses of interactome and transcriptome profiling revealed a pivotal role of TRIM56 in lipid metabolism and identified the lipogenesis factor fatty acid synthase (FASN) as a direct binding partner of TRIM56. TRIM56 directly interacted with FASN and triggered its K48-linked ubiquitination–dependent degradation. Finally, using artificial intelligence–based virtual screening, we discovered an orally bioavailable small-molecule inhibitor of FASN (named FASstatin) that potentiates TRIM56-mediated FASN ubiquitination. Therapeutic administration of FASstatin improved NAFLD and NASH pathologies in mice with an optimal safety, tolerability, and pharmacokinetics profile. Our findings provide proof of concept that targeting the TRIM56/FASN axis in hepatocytes may offer potential therapeutic avenues to treat NAFLD.

Authors

Suowen Xu, Xiumei Wu, Sichen Wang, Mengyun Xu, Tingyu Fang, Xiaoxuan Ma, Meijie Chen, Jiajun Fu, Juan Guo, Song Tian, Tian Tian, Xu Cheng, Hailong Yang, Junjie Zhou, Zhenya Wang, Yanjun Yin, Wen Xu, Fen Xu, Jinhua Yan, Zhihua Wang, Sihui Luo, Xiao-Jing Zhang, Yan-Xiao Ji, Jianping Weng

×

Abstract

Tissue-intrinsic mechanisms that regulate severity of systemic pathogenic immune-mediated diseases, such as acute graft-versus-host disease (GVHD), remain poorly understood. Following allogeneic hematopoietic stem cell transplantation, autophagy, a cellular stress protective response, is induced in host nonhematopoietic cells. To systematically address the role of autophagy in various host nonhematopoietic tissues, both specific classical target organs of acute GVHD (intestines, liver, and skin) and organs conventionally not known to be targets of GVHD (kidneys and heart), we generated mice with organ-specific knockout of autophagy related 5 (ATG5) to specifically and exclusively inhibit autophagy in the specific organs. When compared with wild-type recipients, animals that lacked ATG5 in the gastrointestinal tract or liver showed significantly greater tissue injury and mortality, while autophagy deficiency in the skin, kidneys, or heart did not affect mortality. Treatment with the systemic autophagy inducer sirolimus only partially mitigated GVHD mortality in intestine-specific autophagy-deficient hosts. Deficiency of autophagy increased MHC class I on the target intestinal epithelial cells, resulting in greater susceptibility to damage by alloreactive T cells. Thus, autophagy is a critical cell-intrinsic protective response that promotes tissue tolerance and regulates GVHD severity.

Authors

Katherine Oravecz-Wilson, Emma Lauder, Austin Taylor, Laure Maneix, Jeanine L. Van Nostrand, Yaping Sun, Lu Li, Dongchang Zhao, Chen Liu, Pavan Reddy

×

Abstract

Nuclear factor of activated T-cells 5 (NFAT5), an osmo-sensitive transcription factor, can be activated by isotonic stimuli, such as infection. It remains unclear, however, whether NFAT5 is required for damage-associated molecular pattern–triggered (DAMP-triggered) inflammation and immunity. Here, we found that several DAMPs increased NFAT5 expression in macrophages. In particular, serum amyloid A (SAA), primarily generated by the liver, substantially upregulated NFAT5 expression and activity through TLR2/4-JNK signalling pathway. Moreover, the SAA-TLR2/4-NFAT5 axis promoted migration and chemotaxis of macrophages in an IL-6– and chemokine ligand 2–dependent (CCL2-dependent) manner in vitro. Intraarticular injection of SAA markedly accelerated macrophage infiltration and arthritis progression in mice. By contrast, genetic ablation of NFAT5 or TLR2/4 rescued the pathology induced by SAA, confirming the SAA-TLR2/4-NFAT5 axis in vivo. Myeloid-specific depletion of NFAT5 also attenuated SAA-accelerated arthritis. Of note, inflammatory arthritis in mice strikingly induced SAA overexpression in the liver. Conversely, forced overexpression of the SAA gene in the liver accelerated joint damage, indicating that the liver contributes to bolstering chronic inflammation at remote sites by secreting SAA. Collectively, this study underscores the importance of the SAA-TLR2/4-NFAT5 axis in innate immunity, suggesting that acute phase reactant SAA mediates mutual interactions between liver and joints and ultimately aggravates chronic arthritis by enhancing macrophage activation.

Authors

Meiling Li, Yu-Mi Kim, Jung Hee Koh, Jihyun Park, H. Moo Kwon, Jong-Hwan Park, Jingchun Jin, Youngjae Park, Donghyun Kim, Wan-Uk Kim

×

Abstract

Metastasized colorectal cancer (CRC) is associated with a poor prognosis and rapid disease progression. Besides hepatic metastasis, peritoneal carcinomatosis is the major cause of death in Union for International Cancer Control (UICC) stage IV CRC patients. Insights into differential site-specific reconstitution of tumor cells and the corresponding tumor microenvironment are still missing. Here, we analyzed the transcriptome of single cells derived from murine multivisceral CRC and delineated the intermetastatic cellular heterogeneity regarding tumor epithelium, stroma, and immune cells. Interestingly, we found an intercellular site-specific network of cancer-associated fibroblasts and tumor epithelium during peritoneal metastasis as well as an autologous feed-forward loop in cancer stem cells. We furthermore deciphered a metastatic dysfunctional adaptive immunity by a loss of B cell–dependent antigen presentation and consecutive effector T cell exhaustion. Furthermore, we demonstrated major similarities of this murine metastatic CRC model with human disease and — based on the results of our analysis — provided an auspicious site-specific immunomodulatory treatment approach for stage IV CRC by intraperitoneal checkpoint inhibition.

Authors

Christopher Berlin, Bernhard Mauerer, Pierre Cauchy, Jost Luenstedt, Roman Sankowski, Lisa Marx, Reinhild Feuerstein, Luisa Schaefer, Florian R. Greten, Marina Pesic, Olaf Groß, Marco Prinz, Naomi Ruehl, Laura Miketiuk, Dominik Jauch, Claudia Laessle, Andreas Jud, Esther A. Biesel, Hannes Neeff, Stefan Fichtner-Feigl, Philipp A. Holzner, Rebecca Kesselring

×

Abstract

BACKGROUND FXLEARN, the first-ever large multisite trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a paradigm for measuring effects of mechanism-targeted treatment in fragile X syndrome (FXS). In FXLEARN, the effects of metabotropic glutamate receptor type 5 (mGluR5) negative allosteric modulator (NAM) AFQ056 on language learning were evaluated in 3- to 6-year-old children with FXS, expected to have more learning plasticity than adults, for whom prior trials of mGluR5 NAMs have failed.METHODS After a 4-month single-blind placebo lead-in, participants were randomized 1:1 to AFQ056 or placebo, with 2 months of dose optimization to the maximum tolerated dose, then 6 months of treatment during which a language-learning intervention was implemented for both groups. The primary outcome was a centrally scored videotaped communication measure, the Weighted Communication Scale (WCS). Secondary outcomes were objective performance-based and parent-reported cognitive and language measures.RESULTS FXLEARN enrolled 110 participants, randomized 99, and had 91 who completed the placebo-controlled period. Although both groups made language progress and there were no safety issues, the change in WCS score during the placebo-controlled period was not significantly different between the AFQ056 and placebo-treated groups, nor were there any significant between-group differences in change in any secondary measures.CONCLUSION Despite the large body of evidence supporting use of mGluR5 NAMs in animal models of FXS, this study suggests that this mechanism of action does not translate into benefit for the human FXS population and that better strategies are needed to determine which mechanisms will translate from preclinical models to humans in genetic neurodevelopmental disorders.TRIAL REGISTRATION ClincalTrials.gov NCT02920892.FUNDING SOURCES NeuroNEXT network NIH grants U01NS096767, U24NS107200, U24NS107209, U01NS077323, U24NS107183, U24NS107168, U24NS107128, U24NS107199, U24NS107198, U24NS107166, U10NS077368, U01NS077366, U24NS107205, U01NS077179, and U01NS077352; NIH grant P50HD103526; and Novartis IIT grant AFQ056X2201T for provision of AFQ056.

Authors

Elizabeth Berry-Kravis, Leonard Abbeduto, Randi Hagerman, Christopher S. Coffey, Merit Cudkowicz, Craig A. Erickson, Andrea McDuffie, David Hessl, Lauren Ethridge, Flora Tassone, Walter E. Kaufmann, Katherine Friedmann, Lauren Bullard, Anne Hoffmann, Jeremy Veenstra-VanderWeele, Kevin Staley, David Klements, Michael Moshinsky, Brittney Harkey, Jeff Long, Janel Fedler, Elizabeth Klingner, Dixie Ecklund, Michele Costigan, Trevis Huff, Brenda Pearson, NeuroNEXT FXLEARN Investigators

×

Abstract

Converging studies demonstrate the dysfunction of the dopaminergic neurons following chronic opioid administration. However, the therapeutic strategies targeting opioid-responsive dopaminergic ensembles that contribute to the development of opioid withdrawal remain to be elucidated. Here, we used the neuronal activity-dependent Tet-Off system to label dopaminergic ensembles in response to initial morphine exposure (Mor-Ens) in the ventral tegmental area (VTA). Fiber optic photometry recording and transcriptome analysis revealed downregulated spontaneous activity and dysregulated mitochondrial respiratory, ultrastructure, and oxidoreductase signal pathways after chronic morphine administration in these dopaminergic ensembles. Mitochondrial fragmentation and the decreased mitochondrial fusion gene mitofusin 1 (Mfn1) were found in these ensembles after prolonged opioid withdrawal. Restoration of Mfn1 in the dopaminergic Mor-Ens attenuated excessive oxidative stress and the development of opioid withdrawal. Administration of Mdivi-1, a mitochondrial fission inhibitor, ameliorated the mitochondrial fragmentation and maladaptation of the neuronal plasticity in these Mor-Ens, accompanied by attenuated development of opioid withdrawal after chronic morphine administration, without affecting the analgesic effect of morphine. These findings highlighted the plastic architecture of mitochondria as a potential therapeutic target for opioid analgesic-induced substance use disorders.

Authors

Changyou Jiang, Han Huang, Xiao Yang, Qiumin Le, Xing Liu, Lan Ma, Feifei Wang

×

Abstract

Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3–mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ–mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.

Authors

Somenath Datta, Brett M. Antonio, Nathan H. Zahler, Jonathan W. Theile, Doug Krafte, Hengtao Zhang, Paul B. Rosenberg, Alec B. Chaves, Deborah M. Muoio, Guofang Zhang, Daniel Silas, Guojie Li, Karen Soldano, Sarah Nystrom, Davis Ferreira, Sara E. Miller, James R. Bain, Michael J. Muehlbauer, Olga Ilkayeva, Thomas C. Becker, Hans-Ewald Hohmeier, Christopher B. Newgard, Opeyemi A. Olabisi

×

Abstract

Patients with chronic inflammatory disorders such as psoriasis have an increased risk of cardiovascular disease and elevated levels of LL37, a cathelicidin host defense peptide that has both antimicrobial and proinflammatory properties. To explore whether LL37 could contribute to the risk of heart disease, we examined its effects on lipoprotein metabolism and show that LL37 enhanced LDL uptake in macrophages through the LDL receptor (LDLR), scavenger receptor class B member 1 (SR-B1), and CD36. This interaction led to increased cytosolic cholesterol in macrophages and changes in expression of lipid metabolism genes consistent with increased cholesterol uptake. Structure-function analysis and synchrotron small-angle x-ray scattering showed structural determinants of the LL37-LDL complex that underlie its ability to bind its receptors and promote uptake. This function of LDL uptake is unique to cathelicidins from humans and some primates and was not observed with cathelicidins from mice or rabbits. Notably, Apoe–/– mice expressing LL37 developed larger atheroma plaques than did control mice, and a positive correlation between plasma LL37 and oxidized phospholipid on apolipoprotein B (OxPL-apoB) levels was observed in individuals with cardiovascular disease. These findings provide evidence that LDL uptake can be increased via interaction with LL37 and may explain the increased risk of cardiovascular disease associated with chronic inflammatory disorders.

Authors

Yoshiyuki Nakamura, Nikhil N. Kulkarni, Toshiya Takahashi, Haleh Alimohamadi, Tatsuya Dokoshi, Edward Liu, Michael Shia, Tomofumi Numata, Elizabeth W.C. Luo, Adrian F. Gombart, Xiaohong Yang, Patrick Secrest, Philip L.S.M. Gordts, Sotirios Tsimikas, Gerard C.L. Wong, Richard L. Gallo

×

Abstract

Long-term organ transplant survival remains suboptimal, and life-long immunosuppression predisposes transplant recipients to an increased risk of infection, malignancy, and kidney toxicity. Promoting the regulatory arm of the immune system by expanding Tregs may allow immunosuppression minimization and improve long-term graft outcomes. While low-dose IL-2 treatment can expand Tregs, it has a short half-life and off-target expansion of NK and effector T cells, limiting its clinical applicability. Here, we designed a humanized mutein IL-2 with high Treg selectivity and a prolonged half-life due to the fusion of an Fc domain, which we termed mIL-2. We showed selective and sustainable Treg expansion by mIL-2 in 2 murine models of skin transplantation. This expansion led to donor-specific tolerance through robust increases in polyclonal and antigen-specific Tregs, along with enhanced Treg-suppressive function. We also showed that Treg expansion by mIL-2 could overcome the failure of calcineurin inhibitors or costimulation blockade to prolong the survival of major-mismatched skin grafts. Validating its translational potential, mIL-2 induced a selective and sustainable in vivo Treg expansion in cynomolgus monkeys and showed selectivity for human Tregs in vitro and in a humanized mouse model. This work demonstrated that mIL-2 can enhance immune regulation and promote long-term allograft survival, potentially minimizing immunosuppression.

Authors

Orhan Efe, Rodrigo B. Gassen, Leela Morena, Yoshikazu Ganchiku, Ayman Al Jurdi, Isadora T. Lape, Pedro Ventura-Aguiar, Christian LeGuern, Joren C. Madsen, Zachary Shriver, Gregory J. Babcock, Thiago J. Borges, Leonardo V. Riella

×

Abstract

Early gestational loss occurs in approximately 20% of all clinically recognized human pregnancies and is an important cause of morbidity. Either embryonic or maternal defects can cause loss, but a functioning and receptive uterine endometrium is crucial for embryo implantation. We report that the switch/sucrose nonfermentable (SWI/SNF) remodeling complex containing polybromo-1 (PBRM1) and Brahma-related gene 1 (BRG1) is essential for implantation of the embryonic blastocyst on the wall of the uterus in mice. Although preimplantation development is unaffected, conditional ablation of Pbrm1 in uterine stromal cells disrupts progesterone pathways and uterine receptivity. Heart and neural crest derivatives expressed 2 (Hand2) encodes a basic helix-loop-helix (bHLH) transcription factor required for embryo implantation. We identify an enhancer of the Hand2 gene in stromal cells that requires PBRM1 for epigenetic histone modifications/coactivator recruitment and looping with the promoter. In Pbrm1cKO mice, perturbation of chromatin assembly at the promoter and enhancer sites compromises Hand2 transcription, adversely affects fibroblast growth factor signaling pathways, prevents normal stromal-epithelial crosstalk, and disrupts embryo implantation. The mutant female mice are infertile and provide insight into potential causes of early pregnancy loss in humans.

Authors

Qiliang Xin, Iris Feng, Guoyun Yu, Jurrien Dean

×

Abstract

Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.

Authors

Gui-Lan Chen, Jing-Yi Li, Xin Chen, Jia-Wei Liu, Qian Zhang, Jie-Yu Liu, Jing Wen, Na Wang, Ming Lei, Jun-Peng Wei, Li Yi, Jia-Jia Li, Yu-Peng Ling, He-Qiang Yi, Zhenying Hu, Jingjing Duan, Jin Zhang, Bo Zeng

×

Abstract

Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow–induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.

Authors

Rolando Carrisoza-Gaytan, Stephanie M. Mutchler, Francisco Carattino, Joanne Soong, Marianela G. Dalghi, Peng Wu, WenHui Wang, Gerard Apodaca, Lisa M. Satlin, Thomas R. Kleyman

×

Abstract

Neutrophil extracellular traps (NETs), a web-like structure of cytosolic and granule proteins assembled on decondensed chromatin, kill pathogens and cause tissue damage in diseases. Whether NETs can kill cancer cells is unexplored. Here, we report that a combination of glutaminase inhibitor CB-839 and 5-FU inhibited the growth of PIK3CA-mutant colorectal cancers (CRCs) in xenograft, syngeneic, and genetically engineered mouse models in part through NETs. Disruption of NETs by either DNase I treatment or depletion of neutrophils in CRCs attenuated the efficacy of the drug combination. Moreover, NETs were present in tumor biopsies from patients treated with the drug combination in a phase II clinical trial. Increased NET levels in tumors were associated with longer progression-free survival. Mechanistically, the drug combination induced the expression of IL-8 preferentially in PIK3CA-mutant CRCs to attract neutrophils into the tumors. Further, the drug combination increased the levels of ROS in neutrophils, thereby inducing NETs. Cathepsin G (CTSG), a serine protease localized in NETs, entered CRC cells through the RAGE cell surface protein. The internalized CTSG cleaved 14-3-3 proteins, released BAX, and triggered apoptosis in CRC cells. Thus, our studies illuminate a previously unrecognized mechanism by which chemotherapy-induced NETs kill cancer cells.

Authors

Yamu Li, Sulin Wu, Yiqing Zhao, Trang Dinh, Dongxu Jiang, J. Eva Selfridge, George Myers, Yuxiang Wang, Xuan Zhao, Suzanne Tomchuck, George Dubyak, Richard T. Lee, Bassam Estfan, Marc Shapiro, Suneel Kamath, Amr Mohamed, Stanley Ching-Cheng Huang, Alex Y. Huang, Ronald Conlon, Smitha Krishnamurthi, Jennifer Eads, Joseph E. Willis, Alok A. Khorana, David Bajor, Zhenghe Wang

×

Abstract

Early-life seizures (ELSs) can cause permanent cognitive deficits and network hyperexcitability, but it is unclear whether ELSs induce persistent changes in specific neuronal populations and whether these changes can be targeted to mitigate network dysfunction. We used the targeted recombination of activated populations (TRAP) approach to genetically label neurons activated by kainate-induced ELSs in immature mice. The ELS-TRAPed neurons were mainly found in hippocampal CA1, remained uniquely susceptible to reactivation by later-life seizures, and displayed sustained enhancement in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–mediated (AMPAR-mediated) excitatory synaptic transmission and inward rectification. ELS-TRAPed neurons, but not non-TRAPed surrounding neurons, exhibited enduring decreases in Gria2 mRNA, responsible for encoding the GluA2 subunit of the AMPARs. This was paralleled by decreased synaptic GluA2 protein expression and heightened phosphorylated GluA2 at Ser880 in dendrites, indicative of GluA2 internalization. Consistent with increased GluA2-lacking AMPARs, ELS-TRAPed neurons showed premature silent synapse depletion, impaired long-term potentiation, and impaired long-term depression. In vivo postseizure treatment with IEM-1460, an inhibitor of GluA2-lacking AMPARs, markedly mitigated ELS-induced changes in TRAPed neurons. These findings show that enduring modifications of AMPARs occur in a subpopulation of ELS-activated neurons, contributing to synaptic dysplasticity and network hyperexcitability, but are reversible with early IEM-1460 intervention.

Authors

Bo Xing, Aaron J. Barbour, Joseph Vithayathil, Xiaofan Li, Sierra Dutko, Jessica Fawcett-Patel, Eunjoo Lancaster, Delia M. Talos, Frances E. Jensen

×

Abstract

The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on β-adrenergic–initiated reversal of the small RGK G protein Rad–mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavβ subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad’s polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad’s N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad’s association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVβ, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad’s C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVβ, is sufficient for sympathetic upregulation of Ca2+ currents.

Authors

Arianne Papa, Pedro J. del Rivero Morfin, Bi-Xing Chen, Lin Yang, Alexander N. Katchman, Sergey I. Zakharov, Guoxia Liu, Michael S. Bohnen, Vivian Zheng, Moshe Katz, Suraj Subramaniam, Joel A. Hirsch, Sharon Weiss, Nathan Dascal, Arthur Karlin, Geoffrey S. Pitt, Henry M. Colecraft, Manu Ben-Johny, Steven O. Marx

×
Corrigenda
Abstract

Authors

Nidhi S. Dey, Sujai Senaratne, Vijani Somaratne, Nayani P. Madarasinghe, Bimalka Seneviratne, Sarah Forrester, Marcela Montes de Oca, Luiza Campos Reis, Srija Moulik, Pegine B. Walrad, Mitali Chatterjee, Hiro Goto, Renu Wickremasinghe, Dimitris Lagos, Paul M. Kaye, Shalindra Ranasinghe

×


In-Press Preview - More

Abstract

RAD54 and BLM helicase play pivotal roles during homologous recombination repair (HRR) ensuring genome maintenance. BLM amino acids (181-212) interacts with RAD54 and enhances its chromatin remodelling activity. Functionally, this interaction heightens HRR, leading to a decrease in residual DNA damage in colon cancer cells. This contributes to chemoresistance in colon cancer cells against cisplatin, camptothecin and oxaliplatin, eventually promoting tumorigenesis in preclinical colon cancer mouse models. ChIP-seq analysis and validation revealed increased BLM/RAD54 co-recruitment on MRP2 promoter in camptothecin resistant colon cancer cells, leading to BLM-dependent enhancement of RAD54-mediated chromatin remodelling. We screened Prestwick small molecule library intending to revert camptothecin and oxaliplatin induced chemoresistance by disrupting BLM-RAD54 interaction. Three FDA/EMA approved candidates were identified which could disrupt this interaction. These drugs bind to RAD54, alter its conformation and abrogate BLM-RAD54 dependent chromatin remodeling on G5E4 and MRP2 arrays. Notably, the small molecules also reduced HRR repair efficiency in resistant lines, diminished anchorage independent growth, hampered the proliferation of tumors generated using camptothecin and oxaliplatin resistant colon cancer cells in both xenograft and syngeneic mouse models in BLM dependent manner. Hence the three identified small molecules can serve as possible viable candidates for adjunct therapy in colon cancer treatment.

Authors

Ekjot Kaur, Ritu Agrawal, Rimpy Arun, Vinoth Madhavan, Vivek Srivastava, Dilip Kumar, Pragyan Parimita Rath, Nitin Kumar, Sreekanth Vedagopuram, Nishant Pandey, Swati Priya, Patrick Legembre, Samudrala Gourinath, Avinash Bajaj, Sagar Sengupta

×

Abstract

Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs) that are critical for orchestrating the anti-inflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through hypoxia-inducible factor-1 alpha (HIF-1a) were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted HIF-1a conditional knockout mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, scRNA-seq analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia response genes. These findings support the importance of a glycolysis/HIF-1a axis in promoting G-MDSC anti-inflammatory activity and biofilm persistence during PJI.

Authors

Christopher M. Horn, Prabhakar Arumugam, Zachary Van Roy, Cortney E. Heim, Rachel W. Fallet, Blake P. Bertrand, Dhananjay Shinde, Vinai C. Thomas, Svetlana G. Romanova, Tatiana K. Bronich, Curtis W. Hartman, Kevin L. Garvin, Tammy Kielian

×

Abstract

Adoptive transfer of T cell receptor-engineered T cells (TCR-T) is a promising strategy for immunotherapy against solid tumors. However, the potential of CD4+ T cells in mediating tumor regression has been neglected. Nasopharyngeal cancer is consistently associated with EBV. Here, to evaluate the therapeutic potential of CD4 TCR-T in nasopharyngeal cancer, we screened for CD4 TCRs recognizing EBV nuclear antigen 1 (EBNA1) presented by HLA-DP5. Using mass spectrometry, we identified EBNA567-581, a peptide naturally processed and presented by HLA-DP5. We isolated TCR135, a CD4 TCR with high functional avidity, that can function in both CD4+ and CD8+ T cells and recognizes HLA-DP5-restricted EBNA1567-581. TCR135-transduced T cells functioned in two ways: directly killing HLA-DP5+EBNA1+ tumor cells after recognizing EBNA1 presented by tumor cells and indirectly killing HLA-DP5-negative tumor cells after recognizing EBNA1 presented by antigen-presenting cells. TCR135-transduced T cells preferentially infiltrated into the tumor microenvironment and significantly inhibited tumor growth in xenograft nasopharyngeal tumor models. Additionally, we found that 62% of nasopharyngeal cancer patients showed 50%-100% expression of HLA-DP on tumor cells, indicating that nasopharyngeal cancer is well-suited for CD4 TCR-T therapy. These findings suggest that TCR135 may provide a new strategy for EBV-related nasopharyngeal cancer immunotherapy in HLA-DP5+ patients.

Authors

Chenwei Wang, Jiewen Chen, Jingyao Li, Zhihong Xu, Lihong Huang, Qian Zhao, Lei Chen, Xiaolong Liang, Hai Hu, Gang Li, Chengjie Xiong, Bin Wu, Hua You, Danyi Du, Xiaoling Wang, Hongle Li, Zibing Wang, Lin Chen

×

Abstract

Chromosomal instability is a prominent biological feature of Myelodysplastic Syndromes (MDS), with over 50% of MDS patients harboring chromosomal abnormalities or a complex karyotype. Despite this observation, the mechanisms underlying mitotic and chromosomal defects in MDS remain elusive. In this study, we identified a ectopic expression of transcription factor ONECUT3, associated with complex karyotypes and poorer survival outcomes in MDS. ONECUT3-overexpressing cell models exhibited enrichment of several notable pathways, including signatures of sister chromosome exchange separation and mitotic nuclear division with the upregulation of INCENP and CDCA8 genes. Notably, dysregulation of Chromosome Passenger Complex (CPC) accumulation besides the cell equator and midbody during mitotic phases consequently caused cytokinesis failure and defective chromosome segregation. Mechanistically, the Homeobox (HOX) domain of ONECUT3, serving as the DNA binding domain, occupied the unique genomic regions of INCENP and CDCA8, and transcriptionally activated these two genes. A novel lead compound C5484617, was identified that functionally targeted the HOX domain of ONECUT3 inhibiting its transcriptional activity on downstream genes, and synergistically resensitized MDS cells to hypomethylating agents. This study revealed that ONECUT3 promoted chromosomal instability by transcriptional activation of INCENP and CDCA8, suggesting potential prognosis and therapeutic roles for targeting high-risk MDS patients with complex karyotype.

Authors

Yingwan Luo, Xiaomin Feng, Wei Lang, Weihong Xu, Wei Wang, Chen Mei, Li Ye, Shuanghong Zhu, Lu Wang, Xinping Zhou, Huimin Zeng, Liya Ma, Yanling Ren, Jie Jin, Rongzhen Xu, Gang Huang, Hongyan Tong

×

Abstract

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the two core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet, the relationship between NOTCH3 receptor activity, Notch3ECD accumulation and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the central nervous system of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knock-in Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD co-aggregated with mutant Notch3ECD and that elimination of one copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.

Authors

Nicolas Dupré, Florian Gueniot, Valérie Domenga-Denier, Virginie Dubosclard, Christelle Nilles, David Hill-Eubanks, Christelle Morgenthaler-Roth, Mark T. Nelson, Céline Keime, Lydia Danglot, Anne Joutel

×

Advertisement

JCI's 100th anniversary

JCI celebrates a century of publishing scientific discoveries with a special collection highlighting major innovations in medicine and key contributing mechanistic studies.

Review Series - More

Lung inflammatory injury and tissue repair

Series edited by Susanne Herold

The lungs are regularly exposed to airborne irritants, pathogens, and other sources of inflammation that cause injury to the lung epithelium and its underlying structure. Repair and regeneration are essential for healthy lung function throughout life, yet these processes can also influence development and progression of acute and chronic conditions. Series editor Suzanne Herold developed this review series on lung inflammatory injury and tissue repair to reveal the many cell populations involved in normal and aberrant reparative responses. Ranging from discussion of lung stroma and vasculature to adaptive and innate immune systems, the reviews in this series describe the many complex mechanisms that influence pathogen-, inflammation-, and aging-driven injury to the lung and can contribute to aberrant healing, resolution of inflammation, and fibrosis. Reviews also discuss a wide range of potential therapies targeting injury and repair processes that represent promising progress toward better clinical options for patients with acute and chronic lung conditions.

×