Issue published April 1, 2021 Previous issue

On the cover: Endoplasmic reticulum–associated degradation in podocytes

In this issue, Yoshida et al. explore the role of protein folding and degradation in the endoplasmic reticulum in kidney podocytes. Using mice with podocyte-specific loss of SEL1L, a component of an E3 ubiquitin ligase that is required for endoplasmic reticulum–associated degradation, they uncover severe defects in slit diaphragm formation and glomerular filtration function due to impairments in nephrin maturation. The cover image is a false-colored, ultra-high-resolution scanning electron micrograph of podocytes from a conditional knockout mouse.

S Indicates subscriber content

Research
Abstract

COVID-19 convalescent plasma, particularly plasma with high-titer SARS-CoV-2 (CoV2) antibodies, is one of the leading treatments for individuals with early COVID-19 infection. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the four endemic human coronavirus (HCoV) genomes in 126 COVID-19 convalescent plasma donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies to SARS-CoV-2. We also found that plasma preferentially reactive to the CoV2 spike receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a two-peptide serosignature that identifies plasma donations with high anti-spike titer, but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting therapeutic plasma with desired functionalities.

Authors

William R. Morgenlander, Stephanie N. Henson, Daniel R. Monaco, Athena Chen, Kirsten Littlefield, Evan M. Bloch, Eric Fujimura, Ingo Ruczinski, Andrew R. Crowley, Harini Natarajan, Savannah E. Butler, Joshua A. Weiner, Mamie Z. Li, Tania S. Bonny, Sarah E. Benner, Ashwin Balagopal, David Sullivan, Shmuel Shoham, Thomas C. Quinn, Susan Eshleman, Arturo Casadevall, Andrew D. Redd, Oliver Laeyendecker, Margaret E. Ackerman, Andrew Pekosz, Stephen J. Elledge, Matthew L. Robinson, Aaron A.R. Tobian, H. Benjamin Larman

×
Conversations with Giants in Medicine
Abstract

Authors

Ushma S. Neill

×
News
Viewpoints
Review
Abstract

Scientific progress and discovery of preventions and cures for life-threatening diseases depend on the vitality of the biomedical research workforce. We analyzed the workforce of cancer researchers applying for and receiving R01 awards from the National Cancer Institute (NCI) from fiscal years 1990 to 2016, the last year prior to implementation of the Next Generation Researchers Initiative. Here we report that the NCI R01 Principal Investigator (PI) workforce expanded 1.4-fold and aged over this time frame. We tracked 9 age groups and found that the number of PIs in the 3 oldest groups increased dramatically, in contrast with the younger groups. Sustained increases in the number of funded older PIs stemmed from increases in the number of older PIs submitting applications, rather than higher funding rates for older PIs. The decline in the number of funded younger PIs was driven in part by (a) a marked increase in time from PhD degree to first R01 application and award, as well as (b) a decrease in retention of PIs in the funded R01 workforce beyond their first R01 award. The NCI is using these and other analyses to inform strategies and policies for attracting, supporting, and retaining meritorious early-career researchers.

Authors

Melissa D. Antman, Roman Gorelik, Amy Kennedy, Grace F. Liou, Eddie N. Billingslea, James G. Corrigan, L. Michelle Bennett

×
Commentary
Abstract

Allergic asthma is a chronic inflammatory airway disease characterized by dysregulated type 2 immune responses, including degranulating airway eosinophils that induce tissue damage and airway hyperresponsiveness (AHR). The type 2 cytokines interleukin 5 (IL-5) and IL-13 and the eosinophil-specific chemokine CCL11/CCL24/CCL26 axis recruit, activate, and regulate eosinophils in the airways. In this issue of the JCI, Karcz et al. identified a mechanism involving the nucleotide sugar UDP-glucose (UDP-G) and the purinergic receptor P2Y14R in amplifying eosinophil accumulation in the lung. During type 2 inflammation, UDP-G activates P2Y14R on eosinophils, inducing the cells to move and migrate into the lung. Pharmacologically or genetically inhibiting P2Y14R on eosinophils attenuated eosinophil infiltration and AHR. Future experiments, including identifying additional type 2 factors regulating P2Y14R expression on lung eosinophils, are necessary to ascertain the impact of targeting P2Y14R as an alternative or adjunctive therapy to current type 2 biologics for the treatment of asthma.

Authors

Paul S. Foster, Hock L. Tay, Simon P. Hogan

×
Research Articles
Abstract

Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.

Authors

Maarten A.J. De Smet, Alessio Lissoni, Timur Nezlobinsky, Nan Wang, Eef Dries, Marta Pérez-Hernández, Xianming Lin, Matthew Amoni, Tim Vervliet, Katja Witschas, Eli Rothenberg, Geert Bultynck, Rainer Schulz, Alexander V. Panfilov, Mario Delmar, Karin R. Sipido, Luc Leybaert

×

Abstract

Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex–stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex–mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.

Authors

Gautam Sule, Basel H. Abuaita, Paul A. Steffes, Andrew T. Fernandes, Shanea K. Estes, Craig Dobry, Deepika Pandian, Johann E. Gudjonsson, J. Michelle Kahlenberg, Mary X. O’Riordan, Jason S. Knight

×

Abstract

The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown. The present study discovered that Rag-KO mice lacking T and B cells, as compared with WT mice, are insensitive to the anti-allodynic effects of A3AR agonists. Similar findings were observed in interleukin-10 and interleukin-10 receptor knockout mice. Adoptive transfer of CD4+ T cells from WT mice infiltrated the dorsal root ganglion (DRG) and restored A3AR agonist-mediated anti-allodynia in Rag-KO mice. CD4+ T cells from Adora3-KO or Il10-KO mice did not. Transfer of CD4+ T cells from WT mice, but not Il10-KO mice, into Il10-KO mice or Adora3-KO mice fully reinstated the anti-allodynic effects of A3AR activation. Notably, A3AR agonism reduced DRG neuron excitability when cocultured with CD4+ T cells in an IL-10–dependent manner. A3AR action on CD4+ T cells infiltrated in the DRG decreased phosphorylation of GluN2B-containing N-methyl-D-aspartate receptors at Tyr1472, a modification associated with regulating neuronal hypersensitivity. Our findings establish that activation of A3AR on CD4+ T cells to release IL-10 is required and sufficient evidence for the use of A3AR agonists as therapeutics.

Authors

Mariaconcetta Durante, Silvia Squillace, Filomena Lauro, Luigino Antonio Giancotti, Elisabetta Coppi, Federica Cherchi, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Grant Kolar, Carrie Wahlman, Adeleye Opejin, Cuiying Xiao, Marc L. Reitman, Dilip K. Tosh, Daniel Hawiger, Kenneth A. Jacobson, Daniela Salvemini

×

Abstract

Hepatic ischemia and reperfusion (IR) injury contributes to the morbidity and mortality associated with liver transplantation. microRNAs (miRNAs) constitute a family of noncoding RNAs that regulate gene expression at the posttranslational level through the repression of specific target genes. Here, we hypothesized that miRNAs could be targeted to enhance hepatic ischemia tolerance. A miRNA screen in a murine model of hepatic IR injury pointed us toward the liver-specific miRNA miR122. Subsequent studies in mice with hepatocyte-specific deletion of miR122 (miR122loxP/loxP Alb-Cre+ mice) during hepatic ischemia and reperfusion revealed exacerbated liver injury. Transcriptional studies implicated hypoxia-inducible factor–1α (HIF1α) in the induction of miR122 and identified the oxygen-sensing prolyl hydroxylase domain 1 (PHD1) as a miR122 target. Further studies indicated that HIF1α-dependent induction of miR122 participated in a feed-forward pathway for liver protection via the enhancement of hepatic HIF responses through PHD1 repression. Moreover, pharmacologic studies utilizing nanoparticle-mediated miR122 overexpression demonstrated attenuated liver injury. Finally, proof-of-principle studies in patients undergoing orthotopic liver transplantation showed elevated miR122 levels in conjunction with the repression of PHD1 in post-ischemic liver biopsies. Taken together, the present findings provide molecular insight into the functional role of miR122 in enhancing hepatic ischemia tolerance and suggest the potential utility of pharmacologic interventions targeting miR122 to dampen hepatic injury during liver transplantation.

Authors

Cynthia Ju, Meng Wang, Eunyoung Tak, Boyun Kim, Christoph Emontzpohl, Yang Yang, Xiaoyi Yuan, Huban Kutay, Yafen Liang, David R. Hall, Wasim A. Dar, J. Steve Bynon, Peter Carmeliet, Kalpana Ghoshal, Holger K. Eltzschig

×

Abstract

Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.

Authors

Niccolò E. Mencacci, Marisa M. Brockmann, Jinye Dai, Sander Pajusalu, Burcu Atasu, Joaquin Campos, Gabriela Pino, Paulina Gonzalez-Latapi, Christopher Patzke, Michael Schwake, Arianna Tucci, Alan Pittman, Javier Simon-Sanchez, Gemma L. Carvill, Bettina Balint, Sarah Wiethoff, Thomas T. Warner, Apostolos Papandreou, Audrey Soo, Reet Rein, Liis Kadastik-Eerme, Sanna Puusepp, Karit Reinson, Tiiu Tomberg, Hasmet Hanagasi, Thomas Gasser, Kailash P. Bhatia, Manju A. Kurian, Ebba Lohmann, Katrin Õunap, Christian Rosenmund, Thomas C. Südhof, Nicholas W. Wood, Dimitri Krainc, Claudio Acuna

×

Abstract

Tregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Tregs from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared with mice in which PGI2 signaling was intact. IP KO Tregs had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared with WT Tregs, which may contribute to the impairment of the IP KO Treg’s ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naive T cells to Tregs in both mice and humans via repression of β-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target for enhancing Treg function.

Authors

Allison E. Norlander, Melissa H. Bloodworth, Shinji Toki, Jian Zhang, Weisong Zhou, Kelli Boyd, Vasiliy V. Polosukhin, Jacqueline-Yvonne Cephus, Zachary J. Ceneviva, Vivek D. Gandhi, Nowrin U. Chowdhury, Louis-Marie Charbonnier, Lisa M. Rogers, Janey Wang, David M. Aronoff, Lisa Bastarache, Dawn C. Newcomb, Talal A. Chatila, R. Stokes Peebles Jr.

×

Abstract

Airway eosinophilia is a hallmark of allergic asthma and is associated with mucus production, airway hyperresponsiveness, and shortness of breath. Although glucocorticoids are widely used to treat asthma, their prolonged use is associated with several side effects. Furthermore, many individuals with eosinophilic asthma are resistant to glucocorticoid treatment, and they have an unmet need for novel therapies. Here, we show that UDP-glucose (UDP-G), a nucleotide sugar, is selectively released into the airways of allergen-sensitized mice upon their subsequent challenge with that same allergen. Mice lacking P2Y14R, the receptor for UDP-G, had decreased airway eosinophilia and airway hyperresponsiveness compared with wild-type mice in a protease-mediated model of asthma. P2Y14R was dispensable for allergic sensitization and for the production of type 2 cytokines in the lung after challenge. However, UDP-G increased chemokinesis in eosinophils and enhanced their response to the eosinophil chemoattractant, CCL24. In turn, eosinophils triggered the release of UDP-G into the airway, thereby amplifying eosinophilic recruitment. This positive feedback loop was sensitive to therapeutic intervention, as a small molecule antagonist of P2Y14R inhibited airway eosinophilia. These findings thus reveal a pathway that can be therapeutically targeted to treat asthma exacerbations and glucocorticoid-resistant forms of this disease.

Authors

Tadeusz P. Karcz, Gregory S. Whitehead, Keiko Nakano, Hideki Nakano, Sara A. Grimm, Jason G. Williams, Leesa J. Deterding, Kenneth A. Jacobson, Donald N. Cook

×

Abstract

Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. GWAS have identified hundreds of loci influencing BMD, but few have been functionally analyzed. In this study, we show that SNPs within a BMD locus on chromosome 14q32.32 alter splicing and expression of PAR-1a/microtubule affinity regulating kinase 3 (MARK3), a conserved serine/threonine kinase known to regulate bioenergetics, cell division, and polarity. Mice lacking Mark3 either globally or selectively in osteoblasts have increased bone mass at maturity. RNA profiling from Mark3-deficient osteoblasts suggested changes in the expression of components of the Notch signaling pathway. Mark3-deficient osteoblasts exhibited greater matrix mineralization compared with controls that was accompanied by reduced Jag1/Hes1 expression and diminished downstream JNK signaling. Overexpression of Jag1 in Mark3-deficient osteoblasts both in vitro and in vivo normalized mineralization capacity and bone mass, respectively. Together, these findings reveal a mechanism whereby genetically regulated alterations in Mark3 expression perturb cell signaling in osteoblasts to influence bone mass.

Authors

Qian Zhang, Larry D. Mesner, Gina M. Calabrese, Naomi Dirckx, Zhu Li, Angela Verardo, Qian Yang, Robert J. Tower, Marie-Claude Faugere, Charles R. Farber, Thomas L. Clemens

×

Abstract

Ovarian cancer (OC) is the most deadly gynecological malignancy, with unmet clinical need for new therapeutic approaches. The relaxin peptide is a pleiotropic hormone with reproductive functions in the ovary. Relaxin induces cell growth in several types of cancer, but the role of relaxin in OC is poorly understood. Here, using cell lines and xenograft models, we demonstrate that relaxin and its associated GPCR RXFP1 form an autocrine signaling loop essential for OC in vivo tumorigenesis, cell proliferation, and viability. We determined that relaxin signaling activates expression of prooncogenic pathways, including RHO, MAPK, Wnt, and Notch. We found that relaxin is detectable in patient-derived OC tumors, ascites, and serum. Further, inflammatory cytokines IL-6 and TNF-α activated transcription of relaxin via recruitment of STAT3 and NF-κB to the proximal promoter, initiating an autocrine feedback loop that potentiated expression. Inhibition of RXFP1 or relaxin increased cisplatin sensitivity of OC cell lines and abrogated in vivo tumor formation. Finally, we demonstrate that a relaxin-neutralizing antibody reduced OC cell viability and sensitized cells to cisplatin. Collectively, these data identify the relaxin/RXFP1 autocrine loop as a therapeutic vulnerability in OC.

Authors

Helen E. Burston, Oliver A. Kent, Laudine Communal, Molly L. Udaskin, Ren X. Sun, Kevin R. Brown, Euihye Jung, Kyle E. Francis, Jose La Rose, Joshua Lowitz, Ronny Drapkin, Anne-Marie Mes-Masson, Robert Rottapel

×

Abstract

Adoptive T cell therapies (ACTs) hold great promise in cancer treatment, but low overall response rates in patients with solid tumors underscore remaining challenges in realizing the potential of this cellular immunotherapy approach. Promoting CD8+ T cell adaptation to tissue residency represents an underutilized but promising strategy to improve tumor-infiltrating lymphocyte (TIL) function. Here, we report that deletion of the HIF negative regulator von Hippel-Lindau (VHL) in CD8+ T cells induced HIF-1α/HIF-2α–dependent differentiation of tissue-resident memory–like (Trm-like) TILs in mouse models of malignancy. VHL-deficient TILs accumulated in tumors and exhibited a core Trm signature despite an exhaustion-associated phenotype, which led to retained polyfunctionality and response to αPD-1 immunotherapy, resulting in tumor eradication and protective tissue-resident memory. VHL deficiency similarly facilitated enhanced accumulation of chimeric antigen receptor (CAR) T cells with a Trm-like phenotype in tumors. Thus, HIF activity in CD8+ TILs promotes accumulation and antitumor activity, providing a new strategy to enhance the efficacy of ACTs.

Authors

Ilkka Liikanen, Colette Lauhan, Sara Quon, Kyla Omilusik, Anthony T. Phan, Laura Barceló Bartrolí, Amir Ferry, John Goulding, Joyce Chen, James P. Scott-Browne, Jason T. Yustein, Nicole E. Scharping, Deborah A. Witherden, Ananda W. Goldrath

×

Abstract

Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.

Authors

Sei Yoshida, Xiaoqiong Wei, Gensheng Zhang, Christopher L. O’Connor, Mauricio Torres, Zhangsen Zhou, Liangguang Lin, Rajasree Menon, Xiaoxi Xu, Wenyue Zheng, Yi Xiong, Edgar Otto, Chih-Hang Anthony Tang, Rui Hua, Rakesh Verma, Hiroyuki Mori, Yang Zhang, Chih-Chi Andrew Hu, Ming Liu, Puneet Garg, Jeffrey B. Hodgin, Shengyi Sun, Markus Bitzer, Ling Qi

×

Abstract

Background We conducted a phase I clinical trial that infused CCR5 gene–edited CD4+ T cells to determine how these T cells can better enable HIV cure strategies.Methods The aim of trial was to develop RNA-based approaches to deliver zinc finger nuclease (ZFN), evaluate the effect of CCR5 gene–edited CD4+ T cells on the HIV-specific T cell response, test the ability of infused CCR5 gene–edited T cells to delay viral rebound during analytical treatment interruption, and determine whether individuals heterozygous for CCR5 Δ32 preferentially benefit. We enrolled 14 individuals living with HIV whose viral load was well controlled by antiretroviral therapy (ART). We measured the time to viral rebound after ART withdrawal, the persistence of CCR5-edited CD4+ T cells, and whether infusion of 10 billion CCR5-edited CD4+ T cells augmented the HIV-specific immune response.Results Infusion of the CD4+ T cells was well tolerated, with no serious adverse events. We observed a modest delay in the time to viral rebound relative to historical controls; however, 3 of the 14 individuals, 2 of whom were heterozygous for CCR5 Δ32, showed post-viral rebound control of viremia, before ultimately losing control of viral replication. Interestingly, only these individuals had substantial restoration of HIV-specific CD8+ T cell responses. We observed immune escape for 1 of these reinvigorated responses at viral recrudescence, illustrating a direct link between viral control and enhanced CD8+ T cell responses.Conclusion These findings demonstrate how CCR5 gene–edited CD4+ T cell infusion could aid HIV cure strategies by augmenting preexisting HIV-specific immune responses.REGISTRATION ClinicalTrials.gov NCT02388594.Funding NIH funding (R01AI104400, UM1AI126620, U19AI149680, T32AI007632) was provided by the National Institute of Allergy and Infectious Diseases (NIAID), the National Institute on Drug Abuse (NIDA), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). Sangamo Therapeutics also provided funding for these studies.

Authors

Pablo Tebas, Julie K. Jadlowsky, Pamela A. Shaw, Lifeng Tian, Erin Esparza, Andrea L. Brennan, Sukyung Kim, Soe Yu Naing, Max W. Richardson, Ashley N. Vogel, Colby R. Maldini, Hong Kong, Xiaojun Liu, Simon F. Lacey, Anya M. Bauer, Felicity Mampe, Lee P. Richman, Gary Lee, Dale Ando, Bruce L. Levine, David L. Porter, Yangbing Zhao, Don L. Siegel, Katharine J. Bar, Carl H. June, James L. Riley

×

Abstract

Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.

Authors

Shuai Yan, Manju Kumari, Haopeng Xiao, Christopher Jacobs, Shihab Kochumon, Mark Jedrychowski, Edward Chouchani, Rasheed Ahmad, Evan D. Rosen

×

Abstract

Multiple studies have shown loss of severe acute respiratory syndrome coronavirus 2–specific (SARS-CoV-2–specific) antibodies over time after infection, raising concern that humoral immunity against the virus is not durable. If immunity wanes quickly, millions of people may be at risk for reinfection after recovery from coronavirus disease 2019 (COVID-19). However, memory B cells (MBCs) could provide durable humoral immunity even if serum neutralizing antibody titers decline. We performed multidimensional flow cytometric analysis of S protein receptor binding domain–specific (S-RBD–specific) MBCs in cohorts of ambulatory patients with COVID-19 with mild disease (n = 7), and hospitalized patients with moderate to severe disease (n = 7), at a median of 54 days (range, 39–104 days) after symptom onset. We detected S-RBD–specific class-switched MBCs in 13 of 14 participants, failing only in the individual with the lowest plasma levels of anti–S-RBD IgG and neutralizing antibodies. Resting MBCs (rMBCs) made up the largest proportion of S-RBD–specific MBCs in both cohorts. FCRL5, a marker of functional memory on rMBCs, was more dramatically upregulated on S-RBD–specific rMBCs after mild infection than after severe infection. These data indicate that most SARS-CoV-2-infected individuals develop S-RBD–specific, class-switched rMBCs that resemble germinal center–derived B cells induced by effective vaccination against other pathogens, providing evidence for durable B cell–mediated immunity against SARS-CoV-2 after mild or severe disease.

Authors

Clinton O. Ogega, Nicole E. Skinner, Paul W. Blair, Han-Sol Park, Kirsten Littlefield, Abhinaya Ganesan, Santosh Dhakal, Pranay Ladiwala, Annukka A.R. Antar, Stuart C. Ray, Michael J. Betenbaugh, Andrew Pekosz, Sabra L. Klein, Yukari C. Manabe, Andrea L. Cox, Justin R. Bailey

×

Abstract

BACKGROUND Circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA may represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples.METHODS A CRISPR-augmented RT-PCR assay that sensitively detects SARS-CoV-2 RNA was employed to analyze viral RNA kinetics in longitudinal plasma samples from nonhuman primates (NHPs) after virus exposure; to evaluate the utility of blood SARS-CoV-2 RNA detection for coronavirus disease 2019 (COVID-19) diagnosis in adults cases confirmed by nasal/nasopharyngeal swab RT-PCR results; and to identify suspected COVID-19 cases in pediatric and at-risk adult populations with negative nasal swab RT-qPCR results. All blood samples were analyzed by RT-qPCR to allow direct comparisons.RESULTS CRISPR-augmented RT-PCR consistently detected SARS-CoV-2 RNA in the plasma of experimentally infected NHPs from 1 to 28 days after infection, and these increases preceded and correlated with rectal swab viral RNA increases. In a patient cohort (n = 159), this blood-based assay demonstrated 91.2% diagnostic sensitivity and 99.2% diagnostic specificity versus a comparator RT-qPCR nasal/nasopharyngeal test, whereas RT-qPCR exhibited 44.1% diagnostic sensitivity and 100% specificity for the same blood samples. This CRISPR-augmented RT-PCR assay also accurately identified patients with COVID-19 using one or more negative nasal swab RT-qPCR results.CONCLUSION Results of this study indicate that sensitive detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR permits accurate COVID-19 diagnosis, and can detect COVID-19 cases with transient or negative nasal swab RT-qPCR results, suggesting that this approach could improve COVID-19 diagnosis and the evaluation of SARS-CoV-2 infection clearance, and predict the severity of infection.TRIAL REGISTRATION ClinicalTrials.gov. NCT04358211.FUNDING Department of Defense, National Institute of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the National Center for Research Resources.

Authors

Zhen Huang, Bo Ning, He S. Yang, Brady M. Youngquist, Alex Niu, Christopher J. Lyon, Brandon J. Beddingfield, Alyssa C. Fears, Chandler H. Monk, Amelie E. Murrell, Samantha J. Bilton, Joshua P. Linhuber, Elizabeth B. Norton, Monika L. Dietrich, Jim Yee, Weihua Lai, John W. Scott, Xiao-Ming Yin, Jay Rappaport, James E. Robinson, Nakhle S. Saba, Chad J. Roy, Kevin J. Zwezdaryk, Zhen Zhao, Tony Y. Hu

×

Abstract

BACKGROUND Vaccines that block human-to-mosquito Plasmodium transmission are needed for malaria eradication, and clinical trials have targeted zygote antigen Pfs25 for decades. We reported that a Pfs25 protein-protein conjugate vaccine formulated in alum adjuvant induced serum functional activity in both US and Malian adults. However, antibody levels declined rapidly, and transmission-reducing activity required 4 vaccine doses. Functional immunogenicity and durability must be improved before advancing transmission-blocking vaccines further in clinical development. We hypothesized that the prefertilization protein Pfs230 alone or in combination with Pfs25 would improve functional activity.METHODS Transmission-blocking vaccine candidates based on gamete antigen Pfs230 or Pfs25 were conjugated with Exoprotein A, formulated in Alhydrogel, and administered to mice, rhesus macaques, and humans. Antibody levels were measured by ELISA and transmission-reducing activity was assessed by the standard membrane feeding assay.RESULTS Pfs25-EPA/Alhydrogel and Pfs230D1-EPA/Alhydrogel induced similar serum functional activity in mice, but Pfs230D1-EPA induced significantly greater activity in rhesus monkeys that was enhanced by complement. In US adults, 2 vaccine doses induced complement-dependent activity in 4 of 5 Pfs230D1-EPA/Alhydrogel recipients but no significant activity in 5 Pfs25-EPA recipients, and combination with Pfs25-EPA did not increase activity over Pfs230D1-EPA alone.CONCLUSION The complement-dependent functional immunogenicity of Pfs230D1-EPA represents a significant improvement over Pfs25-EPA in this comparative study. The rhesus model is more predictive of the functional human immune response to Pfs230D1 than is the mouse model.TRIAL REGISTRATION ClinicalTrials.gov NCT02334462.FUNDING Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Authors

Sara A. Healy, Charles Anderson, Bruce J. Swihart, Agnes Mwakingwe, Erin E. Gabriel, Hope Decederfelt, Charlotte V. Hobbs, Kelly M. Rausch, Daming Zhu, Olga Muratova, Raul Herrera, Puthupparampil V. Scaria, Nicholas J. MacDonald, Lynn E. Lambert, Irfan Zaidi, Camila H. Coelho, Jonathan P. Renn, Yimin Wu, David L. Narum, Patrick E. Duffy

×

Abstract

Autophagy modulates lipid turnover, cell survival, inflammation, and atherogenesis. Scavenger receptor class B type I (SR-BI) plays a crucial role in lysosome function. Here, we demonstrate that SR-BI regulates autophagy in atherosclerosis. SR-BI deletion attenuated lipid-induced expression of autophagy mediators in macrophages and atherosclerotic aortas. Consequently, SR-BI deletion resulted in 1.8- and 2.5-fold increases in foam cell formation and apoptosis, respectively, and increased oxidized LDL–induced inflammatory cytokine expression. Pharmacological activation of autophagy failed to reduce lipid content or apoptosis in Sr-b1–/– macrophages. SR-BI deletion reduced both basal and inducible levels of transcription factor EB (TFEB), a master regulator of autophagy, causing decreased expression of autophagy genes encoding VPS34 and Beclin-1. Notably, SR-BI regulated Tfeb expression by enhancing PPARα activation. Moreover, intracellular macrophage SR-BI localized to autophagosomes, where it formed cholesterol domains resulting in enhanced association of Barkor and recruitment of the VPS34–Beclin-1 complex. Thus, SR-BI deficiency led to lower VPS34 activity in macrophages and in atherosclerotic aortic tissues. Overexpression of Tfeb or Vps34 rescued the defective autophagy in Sr-b1–/– macrophages. Taken together, our results show that macrophage SR-BI regulates autophagy via Tfeb expression and recruitment of the VPS34–Beclin-1 complex, thus identifying previously unrecognized roles for SR-BI and potentially novel targets for the treatment of atherosclerosis.

Authors

Huan Tao, Patricia G. Yancey, John L. Blakemore, Youmin Zhang, Lei Ding, W. Gray Jerome, Jonathan D. Brown, Kasey C. Vickers, MacRae F. Linton

×
Corrigendums
Abstract

Authors

Feng-Wei Wang, Chen-Hui Cao, Kai Han, Yong-Xiang Zhao, Mu-Yan Cai, Zhi-Cheng Xiang, Jia-Xing Zhang, Jie-Wei Chen, Li-Ping Zhong, Yong Huang, Su-Fang Zhou, Xiao-Han Jin, Xin-Yuan Guan, Rui-Hua Xu, Dan Xie

×

Abstract

Authors

Myrthala Moreno-Smith, J.B. Halder, Paul S. Meltzer, Tamas A. Gonda, Lingegowda S. Mangala, Rajesha Rupaimoole, Chunhua Lu, Archana S. Nagaraja, Kshipra M. Gharpure, Yu Kang, Cristian Rodriguez-Aguayo, Pablo E. Vivas-Mejia, Behrouz Zand, Rosemarie Schmandt, Hua Wang, Robert R. Langley, Nicholas B. Jennings, Cristina Ivan, Jeremy E. Coffin, Guillermo N. Armaiz, Justin Bottsford-Miller, Sang Bae Kim, Margaret S. Halleck, Mary J.C. Hendrix, William Bornman, Menashe Bar-Eli, Ju-Seog Lee, Zahid H. Siddik, Gabriel Lopez-Berestein, Anil K. Sood

×
Addendum
Abstract

Authors

Haiyan Qiu, Sebum Lee, Yulei Shang, Wen-Yuan Wang, Kin Fai Au, Sherry Kamiya, Sami J. Barmada, Steven Finkbeiner, Hansen Lui, Caitlin E. Carlton, Amy A. Tang, Michael C. Oldham, Hejia Wang, James Shorter, Anthony J. Filiano, Erik D. Roberson, Warren G. Tourtellotte, Bin Chen, Li-Huei Tsai, Eric J. Huang

×

In-Press Preview - More

Abstract

Background. Recent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to cross-recognition by T-cells specific for common cold coronaviruses (CCCs). True T-cell cross-reactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2. Methods. We used the ViraFEST platform to identify T cell responses cross-reactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC cross-reactivity and assessments of functional avidity were performed using a TCR cloning and transfection system. Results. Memory CD4+ T-cell clonotypes that cross-recognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Cross-reactive T-cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to mono-specific CD4+ T-cells, which was consistent with lower functional avidity of their TCRs for SARS CoV-2 relative to CCC. Conclusions. For the first time, our data confirm the existence of unique memory CD4+ T cell clonotypes cross-recognizing SARS-CoV-2 and CCCs. The lower avidity of cross-reactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that pre-existing CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these cross-reactive T-cell responses impact clinical outcomes in COVID-19 patients.

Authors

Arbor G. Dykema, Boyang Zhang, Bezawit A. Woldemeskel, Caroline C. Garliss, Laurene S. Cheung, Dilshad Choudhury, Jiajia Zhang, Luis Aparicio, Sadhana Bom, Rufiaat Rashid, Justina X. Caushi, Emily Han-Chung Hsiue, Katherine Cascino, Elizabeth A. Thompson, Abena K. Kwaa, Dipika Singh, Sampriti Thapa, Alvaro A. Ordonez, Andrew Pekosz, Franco R. D'Alessio, Jonathan D. Powell, Srinivasan Yegnasubramanian, Shibin Zhou, Drew M. Pardoll, Hongkai Ji, Andrea L. Cox, Joel N. Blankson, Kellie N. Smith

×

Abstract

A complete carcinogen, Ultraviolet B radiation (290-320 nm; UVB), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator Platelet-activating factor. A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF Receptor (PAFR) activation in keratinocytes induce large amounts of microvesicle particle (extracellular vesicles 100-1000nm; MVP) release. MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVP) are dependent upon the keratinocyte PAFR. The present studies used both pharmacologic and genetic approaches in cells and mice to determine that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVP leaving the keratinocyte can be found systemically in mice and in human subjects following UVB. Moreover, UVB-MVP contain bioactive contents including PAFR agonists which allow them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.

Authors

Langni Liu, Azeezat A. Awoyemi, Katherine E. Fahy, Pariksha Thapa, Christina Borchers, Benita Y. Wu, Cameron L. McGlone, Benjamin Schmeusser, Zafer Sattouf, Craig A. Rohan, Amy R. Williams, Elizabeth E. Cates, Christina Knisely, Lisa E. Kelly, Ji C. Bihl, David R. Cool, Ravi P. Sahu, Jinju Wang, Yanfang Chen, Christine M. Rapp, Michael G. Kemp, R. Michael Johnson, Jeffrey B. Travers

×

Abstract

One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-I) that significantly promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non-ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced major histocompatibility class I (MHC-I)-mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient-derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation, empowers T-cell cytotoxicity, and thus elevates the tumor response to immunotherapy.

Authors

Hanchen Xu, Kevin Van der Jeught, Zhuolong Zhou, Lu Zhang, Tao Yu, Yifan Sun, Yujing Li, Changlin Wan, Kaman So, Degang Liu, Michael Frieden, Yuanzhang Fang, Amber L. Mosley, Xiaoming He, Xinna Zhang, George E. Sandusky, Yunlong Liu, Samy O. Meroueh, Chi Zhang, Aruna B. Wijeratne, Cheng Huang, Guang Ji, Xiongbin Lu

×

Abstract

BACKGROUND. Recently the α1 adrenergic receptor antagonist terazosin was shown to activate PGK1, a possible target for the mitochondrial deficits in Parkinson disease related to its function as the initial enzyme in ATP synthesis during glycolysis. An epidemiologic study of terazosin users showed a lower incidence of Parkinson disease when compared to users of tamsulosin, an α1 adrenergic receptor antagonist of a different class that does not activate PGK1. However, prior research on tamsulosin has suggested that it may in fact potentiate neurodegeneration, raising the question of whether it is an appropriate control group. METHODS. To address this question, we undertook an epidemiological study on Parkinson disease occurrence rate in 113,450 individuals from the U.S.A. with > 5 years of follow-up. Patients were classified as tamsulosin users (n = 45,380), terazosin/alfuzosin/doxazosin users (n = 22,690) or controls matched on age, gender and Charlson Comorbidity Index score (n = 45,380). RESULTS. Incidence of Parkinson disease in tamsulosin users was 1.53%, which was significantly higher than that in both terazosin/alfuzosin/doxazosin users (1.10%; p<0.0001) and matched controls (1.01%; p < 0.0001). Terazosin/alfuzosin/doxazosin users did not differ in Parkinson disease risk from matched controls (p = 0.29). CONCLUSION. These results suggest that zosins may not confer a protective effect against Parkinson disease, but rather that tamsulosin may in some way potentiate Parkinson disease progression. FUNDING. This work was supported by Cerevel Therapeutics.

Authors

Rahul Sasane, Amy Bartels, Michelle Field, Maria I. Sierra, Sridhar Duvvuri, David L. Gray, Sokhom S. Pin, John J. Renger, David J. Stone

×

Abstract

Recent studies have shown T cell cross-recognition of SARS-CoV-2 and common cold coronavirus spike proteins. However, the effect of SARS-CoV-2 vaccines on T cell responses to common cold coronaviruses remain unknown. In this study, we analyzed CD4+ T cell responses to spike peptides from SARS-CoV-2 and 3 common cold coronaviruses (HCoV-229E, HCoV-NL63, and HCoV-OC43) before and after study participants received Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) mRNA-based COVID-19 vaccines. Vaccine recipients made broad T cell responses to the SARS-CoV-2 spike protein and we identified 23 distinct targeted peptides in 9 participants including one peptide that was targeted by 6 individuals. Only 4 out of these 23 targeted peptides would potentially be affected by mutations in the UK (B.1.1.7) and South African (B.1.351) variants and CD4+ T cells from vaccine recipients recognized the 2 variant spike proteins as effectively as the spike protein from the ancestral virus. Interestingly, we saw a 3-fold increase in the CD4+ T cell responses to HCoV-NL63 spike peptides post-vaccination. Our results suggest that T cell responses elicited or enhanced by SARS-CoV-2 mRNA vaccines may be able to control SARS-CoV-2 variants and lead to cross-protection from some endemic coronaviruses.

Authors

Bezawit A. Woldemeskel, Caroline C. Garliss, Joel N. Blankson

×

Advertisement

April 2021 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Tumor Microenvironment

Series edited by Andrew J Ewald

Cancer cells in a solid tumor are supported by vasculature, extracellular matrix, nerves, and an immunological milieu collectively known as the tumor microenvironment. Elements within the tumor microenvironment can act in a coordinated fashion to support tumor growth, immune evasion, and metastasis. In this series, reviews curated by Series Editor Andrew Ewald highlight the tumor microenvironment’s complex effects in cancer, describing its modulation of immune cells and the tumor stroma as well as its role in disseminating metastases.

×