Issue published April 1, 2024 Previous issue

On the cover: IL-6 promotes FcRn-dependent antibody loss and viral reactivation

Zhang et al. report that during allogeneic bone marrow transplantation, IL-6 acts on donor T cells to promote the secretion of IFN-γ, which leads to endothelial injury, neonatal Fc receptor (FcRn) loss and rapid clearance of recipient-derived antibodies, and consequent viral reactivation. The cover art depicts the physiological recycling of immunoglobulins by FcRn on endothelial cells (left), which is disrupted by IFN-γ that is secreted by donor T cells in response to IL-6 (right). Image credit: Madeleine Flynn

Conversations with Giants in Medicine
Abstract

Authors

Ushma S. Neill

×
News
100th Anniversary Viewpoints
Review
Abstract

The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an “always-on” mode, rather than the more canonical “on-demand” response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group’s initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.

Authors

Nicole Calakos, Zachary F. Caffall

×
Commentaries
Abstract

Refractory acute graft-versus-host disease (GVHD) occurs when the immune injury exceeds the capacity of injured tissues to regenerate and repair. While glucocorticoids have been used for decades to treat GVHD, Arnhold, Chang, and colleagues in this issue of the JCI question whether this approach can in fact be counterproductive. Using in vivo experimental models of GVHD and in vitro intestinal organoids, the study authors show that glucocorticoid exposure directly impeded small intestinal epithelial proliferation and survival, thus preventing the resolution of injury. These findings suggest that future treatment approaches for acute GVHD should include measures to reduce immune reactivity as well as interventions to actively promote tissue resilience.

Authors

Daniel North, Ronjon Chakraverty

×

Abstract

While breast cancer 2 (BRCA2) loss of heterozygosity (LOH) promotes cancer initiation, it can also induce death in nontransformed cells. In contrast, mismatch repair gene mutL homolog 1 (MLH1) is a tumor-suppressor gene that protects cells from cancer development through repairing mismatched base pairs during DNA mismatch repair (MMR). Sengodan et al., in this issue of the JCI, reveal an interplay between the 2 genes: MLH1 promoted the survival of BRCA2-deficient cells independently of its MMR function. MLH1 protected replication forks from degradation, while also resolving R-loops, thereby reducing genomic instability. Moreover, MLH1 expression was regulated directly by estrogen, shedding light into the hormone-responsive nature of many BRCA2 mutant breast cancers. These results provide important insight into the genetics that drive the initiation of BRCA2-mutated breast cancers.

Authors

Neil Johnson

×

Abstract

There is unmet need for additional biomarkers to better select patients with non–small cell lung cancer (NSCLC) that are likely to benefit from immunotherapy in order to improve patient outcomes, reduce patient toxicity, and relieve the growing burden of healthcare costs. In this issue of the JCI, Hayashi and colleagues evaluated soluble forms of the immune checkpoint molecules PD-L1, PD-1, and CTLA-4 in the plasma of patients with advanced NSCLC who had been treated with anti-PD-1/L1 therapy. The findings suggest that these soluble immune-checkpoint factors may provide a complementary biomarker to PD-L1 IHC, although application into the clinic may not be straightforward.

Authors

Aaron C. Tan, Sarah L. Cook, Mustafa Khasraw

×

Abstract

Metabolic dysfunction–associated steatotic liver disease (MASLD) affects nearly 40% of the global adult population and may progress to metabolic dysfunction–associated steatohepatitis (MASH), and MASH-associated liver fibrosis and cirrhosis. Despite numerous studies unraveling the mechanism of hepatic fibrogenesis, there are still no approved antifibrotic therapies. The development of MASLD and liver fibrosis results from complex cell-cell interactions that often initiate within hepatocytes but remain incompletely understood. In this issue of the JCI, Yan and colleagues describe an ATF3/HES1/CEBPA/OPN pathway that links hepatocyte signals to fibrogenic activation of hepatic stellate cells and may provide new perspectives on therapeutic options for MASLD-induced liver fibrosis.

Authors

Marcella Steffani, Yana Geng, Utpal B. Pajvani, Robert F. Schwabe

×
Research Articles
Abstract

Corticosteroid treatment (CST) failure is associated with poor outcomes for patients with gastrointestinal (GI) graft-versus-host disease (GVHD). CST is intended to target the immune system, but the glucocorticoid receptor (GR) is widely expressed, including within the intestines, where its effects are poorly understood. Here, we report that corticosteroids (CS) directly targeted intestinal epithelium, potentially worsening immune-mediated GI damage. CS administered to mice in vivo and intestinal organoid cultures ex vivo reduced epithelial proliferation. Following irradiation, immediate CST mitigated GI damage but delayed treatment attenuated regeneration and exacerbated damage. In a murine steroid-refractory (SR) GVHD model, CST impaired epithelial regeneration, worsened crypt loss, and reduced intestinal stem cell (ISC) frequencies. CST also exacerbated immune-mediated damage in organoid cultures with SR, GR-deficient T cells or IFN-γ. These findings correlated with CS-dependent changes in apoptosis-related gene expression and STAT3-related epithelial proliferation. Conversely, IL-22 administration enhanced STAT3 activity and overcame CS-mediated attenuation of regeneration, reducing crypt loss and promoting ISC expansion in steroid-treated mice with GVHD. Therefore, CST has the potential to exacerbate GI damage if it fails to control the damage-inducing immune response, but this risk may be countered by strategies augmenting epithelial regeneration, thus providing a rationale for clinical approaches combining such tissue-targeted therapies with immunosuppression.

Authors

Viktor Arnhold, Winston Y. Chang, Suze A. Jansen, Govindarajan Thangavelu, Marco Calafiore, Paola Vinci, Ya-Yuan Fu, Takahiro Ito, Shuichiro Takashima, Anastasiya Egorova, Jason Kuttiyara, Adam Perlstein, Marliek van Hoesel, Chen Liu, Bruce R. Blazar, Caroline A. Lindemans, Alan M. Hanash

×

Abstract

Metabolic dysfunction–associated steatohepatitis (MASH) — previously described as nonalcoholic steatohepatitis (NASH) — is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.

Authors

Tingting Yan, Nana Yan, Yangliu Xia, Vorthon Sawaswong, Xinxin Zhu, Henrique Bregolin Dias, Daisuke Aibara, Shogo Takahashi, Keisuke Hamada, Yoshifumi Saito, Guangming Li, Hui Liu, Hualong Yan, Thomas J. Velenosi, Kristopher W. Krausz, Jing Huang, Shioko Kimura, Yaron Rotman, Aijuan Qu, Haiping Hao, Frank J. Gonzalez

×

Abstract

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/–), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/– mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/– mice and partially reversed gene expression changes in Kat6b+/– cortical neurons. Both compounds improved sociability in Kat6b+/– mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.

Authors

Maria I. Bergamasco, Hannah K. Vanyai, Alexandra L. Garnham, Niall D. Geoghegan, Adam P. Vogel, Samantha Eccles, Kelly L. Rogers, Gordon K. Smyth, Marnie E. Blewitt, Anthony J. Hannan, Tim Thomas, Anne K. Voss

×

Abstract

BACKGROUND Precise stratification of patients with non–small cell lung cancer (NSCLC) is needed for appropriate application of PD-1/PD-L1 blockade therapy.METHODS We measured soluble forms of the immune-checkpoint molecules PD-L1, PD-1, and CTLA-4 in plasma of patients with advanced NSCLC before PD-1/PD-L1 blockade. A prospective biomarker-finding trial (cohort A) included 50 previously treated patients who received nivolumab. A retrospective observational study was performed for patients treated with any PD-1/PD-L1 blockade therapy (cohorts B and C), cytotoxic chemotherapy (cohort D), or targeted therapy (cohort E). Plasma samples from all patients were assayed for soluble immune-checkpoint molecules with a highly sensitive chemiluminescence-based assay.RESULTS Nonresponsiveness to PD-1/PD-L1 blockade therapy was associated with higher concentrations of these soluble immune factors among patients with immune-reactive (hot) tumors. Such an association was not apparent for patients treated with cytotoxic chemotherapy or targeted therapy. Integrative analysis of tumor size, PD-L1 expression in tumor tissue (tPD-L1), and gene expression in tumor tissue and peripheral CD8+ T cells revealed that high concentrations of the 3 soluble immune factors were associated with hyper or terminal exhaustion of antitumor immunity. The combination of soluble PD-L1 (sPD-L1) and sCTLA-4 efficiently discriminated responsiveness to PD-1/PD-L1 blockade among patients with immune-reactive tumors.CONCLUSION Combinations of soluble immune factors might be able to identify patients unlikely to respond to PD-1/PD-L1 blockade as a result of terminal exhaustion of antitumor immunity. Our data suggest that such a combination better predicts, along with tPD-L1, for the response of patients with NSCLC.TRIAL REGISTRATION UMIN000019674.FUNDING This study was funded by Ono Pharmaceutical Co. Ltd. and Sysmex Corporation.

Authors

Hidetoshi Hayashi, Kenji Chamoto, Ryusuke Hatae, Takashi Kurosaki, Yosuke Togashi, Kazuya Fukuoka, Megumi Goto, Yasutaka Chiba, Shuta Tomida, Takayo Ota, Koji Haratani, Takayuki Takahama, Junko Tanizaki, Takeshi Yoshida, Tsutomu Iwasa, Kaoru Tanaka, Masayuki Takeda, Tomoko Hirano, Hironori Yoshida, Hiroaki Ozasa, Yuichi Sakamori, Kazuko Sakai, Keiko Higuchi, Hitoshi Uga, Chihiro Suminaka, Toyohiro Hirai, Kazuto Nishio, Kazuhiko Nakagawa, Tasuku Honjo

×

Abstract

Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti–PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239–infected rhesus macaques (RMs). Adoptive transfer of anti–PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti–PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti–PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.

Authors

Karsten Eichholz, Yoshinori Fukazawa, Christopher W. Peterson, Francoise Haeseleer, Manuel Medina, Shelby Hoffmeister, Derick M. Duell, Benjamin D. Varco-Merth, Sandra Dross, Haesun Park, Caralyn S. Labriola, Michael K. Axthelm, Robert D. Murnane, Jeremy V. Smedley, Lei Jin, Jiaxin Gong, Blake J. Rust, Deborah H. Fuller, Hans-Peter Kiem, Louis J. Picker, Afam A. Okoye, Lawrence Corey

×

Abstract

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.

Authors

Volodymyr Tsvilovskyy, Roger Ottenheijm, Ulrich Kriebs, Aline Schütz, Kalliope Nina Diakopoulos, Archana Jha, Wolfgang Bildl, Angela Wirth, Julia Böck, Dawid Jaślan, Irene Ferro, Francisco J. Taberner, Olga Kalinina, Staffan Hildebrand, Ulrich Wissenbach, Petra Weissgerber, Dominik Vogt, Carola Eberhagen, Stefanie Mannebach, Michael Berlin, Vladimir Kuryshev, Dagmar Schumacher, Koenraad Philippaert, Juan E. Camacho-Londoño, Ilka Mathar, Christoph Dieterich, Norbert Klugbauer, Martin Biel, Christian Wahl-Schott, Peter Lipp, Veit Flockerzi, Hans Zischka, Hana Algül, Stefan G. Lechner, Marina Lesina, Christian Grimm, Bernd Fakler, Uwe Schulte, Shmuel Muallem, Marc Freichel

×

Abstract

Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A–associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.

Authors

Victoria Bryson, Chaojian Wang, Zirui Zhou, Kavisha Singh, Noah Volin, Eda Yildirim, Paul Rosenberg

×

Abstract

Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.

Authors

Gopinath Prakasam, Akhilesh Mishra, Alana Christie, Jeffrey Miyata, Deyssy Carrillo, Vanina T. Tcheuyap, Hui Ye, Quyen N. Do, Yunguan Wang, Oscar Reig Torras, Ramesh Butti, Hua Zhong, Jeffrey Gagan, Kevin B. Jones, Thomas J. Carroll, Zora Modrusan, Steffen Durinck, Mai-Carmen Requena-Komuro, Noelle S. Williams, Ivan Pedrosa, Tao Wang, Dinesh Rakheja, Payal Kapur, James Brugarolas

×

Abstract

The measles, mumps, and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed trained immunity, that could at least partially mediate this heterologous protection. In a randomized, placebo-controlled trial, 39 healthy adults received either the MMR vaccine or a placebo. Using single-cell RNA-Seq, we found that MMR caused transcriptomic changes in CD14+ monocytes and NK cells, but most profoundly in γδ T cells. Monocyte function was not altered by MMR vaccination. In contrast, the function of γδ T cells was markedly enhanced by MMR vaccination, with higher production of TNF and IFN-γ, as well as upregulation of cellular metabolic pathways. In conclusion, we describe a trained immunity program characterized by modulation of γδ T cell function induced by MMR vaccination.

Authors

Rutger J. Röring, Priya A. Debisarun, Javier Botey-Bataller, Tsz Kin Suen, Özlem Bulut, Gizem Kilic, Valerie A.C.M. Koeken, Andrei Sarlea, Harsh Bahrar, Helga Dijkstra, Heidi Lemmers, Katharina L. Gössling, Nadine Rüchel, Philipp N. Ostermann, Lisa Müller, Heiner Schaal, Ortwin Adams, Arndt Borkhardt, Yavuz Ariyurek, Emile J. de Meijer, Susan L. Kloet, Jaap ten Oever, Katarzyna Placek, Yang Li, Mihai G. Netea

×

Abstract

Loss of BRCA2 (breast cancer 2) is lethal for normal cells. Yet it remains poorly understood how, in BRCA2 mutation carriers, cells undergoing loss of heterozygosity overcome the lethality and undergo tissue-specific neoplastic transformation. Here, we identified mismatch repair gene mutL homolog 1 (MLH1) as a genetic interactor of BRCA2 whose overexpression supports the viability of Brca2-null cells. Mechanistically, we showed that MLH1 interacts with Flap endonuclease 1 (FEN1) and competes to process the RNA flaps of Okazaki fragments. Together, they restrained the DNA2 nuclease activity on the reversed forks of lagging strands, leading to replication fork (RF) stability in BRCA2-deficient cells. In these cells, MLH1 also attenuated R-loops, allowing the progression of stable RFs, which suppressed genomic instability and supported cell viability. We demonstrated the significance of their genetic interaction by the lethality of Brca2-mutant mice and inhibition of Brca2-deficient tumor growth in mice by Mlh1 loss. Furthermore, we described estrogen as inducing MLH1 expression through estrogen receptor α (ERα), which might explain why the majority of BRCA2 mutation carriers develop ER-positive breast cancer. Taken together, our findings reveal a role of MLH1 in relieving replicative stress and show how it may contribute to the establishment of BRCA2-deficient breast tumors.

Authors

Satheesh K. Sengodan, Xiaoju Hu, Vaishnavi Peddibhotla, Kuppusamy Balamurugan, Alexander Y. Mitrophanov, Lois McKennett, Suhas S. Kharat, Rahul Sanawar, Vinod Kumar Singh, Mary E. Albaugh, Sandra S. Burkett, Yongmei Zhao, Bao Tran, Tyler Malys, Esta Sterneck, Subhajyoti De, Shyam K. Sharan

×

Abstract

In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.

Authors

Kahealani Uehara, Won Dong Lee, Megan Stefkovich, Dipsikha Biswas, Dominic Santoleri, Anna Garcia Whitlock, William Quinn III, Talia Coopersmith, Kate Townsend Creasy, Daniel J. Rader, Kei Sakamoto, Joshua D. Rabinowitz, Paul M. Titchenell

×

Abstract

Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell–specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ–dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.

Authors

Ping Zhang, Peter Fleming, Christopher E. Andoniou, Olivia G. Waltner, Shruti S. Bhise, Jose Paulo Martins, Benjamin A. McEnroe, Valentina Voigt, Sheridan Daly, Rachel D. Kuns, Adaeze P. Ekwe, Andrea S. Henden, Alda Saldan, Stuart Olver, Antiopi Varelias, Corey Smith, Christine R. Schmidt, Kathleen S. Ensbey, Samuel R.W. Legg, Tomoko Sekiguchi, Simone A. Minnie, Mark Gradwell, Irma Wagenaar, Andrew D. Clouston, Motoko Koyama, Scott N. Furlan, Glen A. Kennedy, E Sally Ward, Mariapia A. Degli-Esposti, Geoffrey R. Hill, Siok-Keen Tey

×

Abstract

Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.

Authors

Triet M. Bui, Lenore K. Yalom, Edward Ning, Jessica M. Urbanczyk, Xingsheng Ren, Caroline J. Herrnreiter, Jackson A. Disario, Brian Wray, Matthew J. Schipma, Yuri S. Velichko, David P. Sullivan, Kouki Abe, Shannon M. Lauberth, Guang-Yu Yang, Parambir S. Dulai, Stephen B. Hanauer, Ronen Sumagin

×

Abstract

BACKGROUND Malaria transmission-blocking vaccines aim to interrupt the transmission of malaria from one person to another.METHODS The candidates R0.6C and ProC6C share the 6C domain of the Plasmodium falciparum sexual-stage antigen Pfs48/45. R0.6C utilizes the glutamate-rich protein (GLURP) as a carrier, and ProC6C includes a second domain (Pfs230-Pro) and a short 36–amino acid circumsporozoite protein (CSP) sequence. Healthy adults (n = 125) from a malaria-endemic area of Burkina Faso were immunized with 3 intramuscular injections, 4 weeks apart, of 30 μg or 100 μg R0.6C or ProC6C each adsorbed to Alhydrogel (AlOH) adjuvant alone or in combination with Matrix-M (15 μg or 50 μg, respectively). The allocation was random and double-blind for this phase I trial.RESULTS The vaccines were safe and well tolerated with no vaccine-related serious adverse events. A total of 7 adverse events, mild to moderate in intensity and considered possibly related to the study vaccines, were recorded. Vaccine-specific antibodies were highest in volunteers immunized with 100 μg ProC6C-AlOH with Matrix-M, and 13 of 20 (65%) individuals in the group showed greater than 80% transmission-reducing activity (TRA) when evaluated in the standard membrane feeding assay at 15 mg/mL IgG. In contrast, R0.6C induced sporadic TRA.CONCLUSION All formulations were safe and well tolerated in a malaria-endemic area of Africa in healthy adults. The ProC6C-AlOH/Matrix-M vaccine elicited the highest levels of functional antibodies, meriting further investigation.TRIAL REGISTRATION Pan-African Clinical Trials Registry (https://pactr.samrc.ac.za) PACTR202201848463189.FUNDING The study was funded by the European and Developing Countries Clinical Trials Partnership (grant RIA2018SV-2311).

Authors

Alfred B. Tiono, Jordan L. Plieskatt, Alphonse Ouedraogo, Ben Idriss Soulama, Kazutoyo Miura, Edith C. Bougouma, Mohammad Naghizadeh, Aissata Barry, Jean Baptist B. Yaro, Sem Ezinmegnon, Noelie Henry, Ebenezer Addo Ofori, Bright Adu, Susheel K. Singh, Augustin Konkobo, Karin Lövgren Bengtsson, Amidou Diarra, Cecilia Carnrot, Jenny M. Reimer, Amidou Ouedraogo, Moussa Tienta, Carole A. Long, Issa N. Ouedraogo, Issaka Sagara, Sodiomon B. Sirima, Michael Theisen

×

Abstract

BACKGROUND HER2-targeting therapies have great efficacy in HER2-positive breast cancer, but resistance, in part due to HER2 heterogeneity (HET), is a significant clinical challenge. We previously described that in a phase II neoadjuvant trastuzumab emtansine (T-DM1) and pertuzumab (P) clinical trial in early-stage HER2-positive breast cancer, none of the patients with HER2-HET tumors had pathologic complete response (pCR).METHODS To investigate cellular and molecular differences among tumors according to HER2 heterogeneity and pCR, we performed RNA sequencing and ERBB2 FISH of 285 pretreatment and posttreatment tumors from 129 patients in this T-DM1+P neoadjuvant trial. A subset of cases was also subject to NanoString spatial digital profiling.RESULTS Pretreatment tumors from patients with pCR had the highest level of ERBB2 mRNA and ERBB signaling. HER2 heterogeneity was associated with no pCR, basal-like features, and low ERBB2 expression yet high ERBB signaling sustained by activation of downstream pathway components. Residual tumors showed decreased HER2 protein levels and ERBB2 copy number heterogeneity and increased PI3K pathway enrichment and luminal features. HET tumors showed minimal treatment-induced transcriptomic changes compared with non-HET tumors. Immune infiltration correlated with pCR and HER2-HET status.CONCLUSION Resistance mechanisms in HET and non-HET tumors are distinct. HER2-targeting antibodies have limited efficacy in HET tumors. Our results support the stratification of patients based on HET status and the use of agents that target downstream components of the ERBB signaling pathway in patients with HET tumors.TRIAL REGISTRATION ClinicalTrials.gov NCT02326974.FUNDING This study was funded by Roche and the National Cancer Institute.

Authors

Zheqi Li, Otto Metzger Filho, Giuseppe Viale, Patrizia dell’Orto, Leila Russo, Marie-Anne Goyette, Avni Kamat, Denise A. Yardley, Vandana Gupta Abramson, Carlos L. Arteaga, Laura M. Spring, Kami Chiotti, Carol Halsey, Adrienne G. Waks, Tari A. King, Susan C. Lester, Jennifer R. Bellon, Eric P. Winer, Paul T. Spellman, Ian E. Krop, Kornelia Polyak

×

In-Press Preview - More

Abstract

Tissue regeneration is limited in several organs including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here we identified neuronal differentiation features of MD cells that sense the local and systemic environment, secrete angiogenic, growth and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors including CCN1 as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue regenerative therapeutic strategies.

Authors

Georgina Gyarmati, Urvi Nikhil Shroff, Anne Riquier-Brison, Dorinne Desposito, Wenjun Ju, Sean D. Stocker, Audrey Izuhara, Sachin Deepak, Alejandra Becerra Calderon, James L. Burford, Hiroyuki Kadoya, Ju-Young Moon, Yibu Chen, Markus M. Rinschen, Nariman Ahmadi, Lester Lau, Daniel Biemesderfer, Aaron W. James, Liliana Minichiello, Berislav Zlokovic, Inderbir S. Gill, Matthias Kretzler, János Peti-Peterdi

×

Abstract

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP impacts risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2 knockout (Tet2–/–) and floxed control mice (Tet2f/f) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2–/– mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2–/– mice. We delineated the transcriptional landscape of Tet2–/– neutrophils and found that while inflammation-related pathways were upregulated in Tet2–/– neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake and neutrophil extracellular trap (NET) formation by Tet2–/– neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.

Authors

Candice Quin, Erica N. DeJong, Elina K. Cook, Yi Zhen Luo, Caitlyn Vlasschaert, Sanathan Sadh, Amy J.M. McNaughton, Marco M. Buttigieg, Jessica A Breznik, Allison E. Kennedy, Kevin Zhao, Jeffrey Mewburn, Kimberly J. Dunham-Snary, Charles C.T. Hindmarch, Alexander G. Bick, Stephen L. Archer, Michael J. Rauh, Dawn M.E. Bowdish

×

Abstract

BACKGROUND. The molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS). METHODS. In a single-center prospective cohort of intubated pediatric ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage associated molecular patterns were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models. RESULTS. In 279 subjects (64 [23%] non-survivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in non-survivors. Survivors and non-survivors showed different biomarker trajectories. IL-1α, sTNFR1, ANG2, and SPD increased in non-survivors, while DAMPs remained persistently elevated. ANG2 and P3NP were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality. CONCLUSIONS. Pediatric ARDS survivors and non-survivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in non-survivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.

Authors

Nadir Yehya, Thomas J. Booth, Gnana D. Ardhanari, Jill M. Thompson, L.K. Metthew Lam, Jacob E. Till, Mark V. Mai, Garrett Keim, Daniel J. McKeone, E. Scott Halstead, Patrick Lahni, Brian M. Varisco, Wanding Zhou, Erica L. Carpenter, Jason D. Christie, Nilam S. Mangalmurti

×

Abstract

Cancer-derived small extracellular vesicles (sEVs) are capable of modifying tumor microenvironment and promoting tumor progression. Ovarian cancer (OvCa) is a lethal malignancy that preferentially spreads through the abdominal cavity. Thus, the secretion of such vesicles into the peritoneal fluid could be a determinant factor in the dissemination and behavior of this disease. We designed a prospective observational study to assess the impact of peritoneal fluid-derived sEVs (PFD-sEVs) in OvCa clinical outcome. For this purpose, two patient cohorts were enrolled, including OvCa cases who underwent a diagnostic or cytoreductive surgery, and non-oncological patients as controls, who underwent abdominal surgery for benign gynecological conditions. PFD-sEVs systematic extraction from surgical samples enabled us to observe significant quantitative and qualitative differences associated with cancer diagnosis, disease stage and platinum chemosensitivity. Proteomic profiling of PFD-sEVs led to the identification of molecular pathways and proteins of interest and to the biological validation of S100A4 and STX5. In addition, unsupervised analysis of PFD-sEVs proteomic profiles in high-grade serous ovarian carcinomas (HGSOC) revealed two clusters with different outcomes in terms of overall survival. In conclusion, comprehensive characterization of the PFD-sEVs content provided a prognostic value with potential implications in HGSOC clinical management.

Authors

Miguel Quiralte, Arantzazu Barquín, Mónica Yagüe Fernández, Paloma Navarro, Tatiana P. Grazioso, Elena Sevillano, Juan F. Rodriguez Moreno, Alejandra Balarezo-Saldivar, Héctor Peinado, Elena Izquierdo, Carlos Millán, Irene López Carrasco, Mario Prieto, Rodrigo Madurga de Lacalle, Ismael Fernández-Miranda, Sergio Ruiz-Llorente, Jesús García-Donas

×

Abstract

Nuclear factor kappa-B (NFκB) is activated in arrhythmogenic cardiomyopathy (ACM) patient-derived iPSC-cardiac myocytes under basal conditions and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single cell RNA sequencing to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA sequencing and cellular indexing of transcriptomes and epitomes (CITE-seq) studies revealed marked pro-inflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells and fibroblasts in the pathogenesis of ACM.

Authors

Stephen P. Chelko, Vinay R. Penna, Morgan Engel, Emily A. Shiel, Ann M. Centner, Waleed Farra, Elisa N. Cannon, Maicon Landim-Vieira, Niccole Schaible, Kory Lavine, Jeffrey E. Saffitz

×

Advertisement

JCI's 100th anniversary

JCI celebrates a century of publishing scientific discoveries with a special collection highlighting major innovations in medicine and key contributing mechanistic studies.

Review Series - More

Lung inflammatory injury and tissue repair

Series edited by Susanne Herold

The lungs are regularly exposed to airborne irritants, pathogens, and other sources of inflammation that cause injury to the lung epithelium and its underlying structure. Repair and regeneration are essential for healthy lung function throughout life, yet these processes can also influence development and progression of acute and chronic conditions. Series editor Suzanne Herold developed this review series on lung inflammatory injury and tissue repair to reveal the many cell populations involved in normal and aberrant reparative responses. Ranging from discussion of lung stroma and vasculature to adaptive and innate immune systems, the reviews in this series describe the many complex mechanisms that influence pathogen-, inflammation-, and aging-driven injury to the lung and can contribute to aberrant healing, resolution of inflammation, and fibrosis. Reviews also discuss a wide range of potential therapies targeting injury and repair processes that represent promising progress toward better clinical options for patients with acute and chronic lung conditions.

×