BACKGROUND We investigated residual β cell function in Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study participants with an average 35-year duration of type 1 diabetes mellitus (T1DM).METHODS Serum C-peptide was measured during a 4-hour mixed-meal tolerance test. Associations with metabolic outcomes and complications were explored among nonresponders (all C-peptide values after meal <0.003 nmol/L) and 3 categories of responders, classified by peak C-peptide concentration (nmol/L) as high (>0.2), intermediate (>0.03 to ≤0.2), and low (≥ 0.003 to ≤0.03).RESULTS Of the 944 participants, 117 (12.4%) were classified as responders. Residual C-peptide concentrations were associated with higher DCCT baseline concentrations of stimulated C-peptide (P value for trend = 0.0001). Residual C-peptide secretion was not associated with current or mean HbA1c, HLA high-risk haplotypes for T1DM, or the current presence of T1DM autoantibodies. The proportion of subjects with a history of severe hypoglycemia was lower with high (27%) and intermediate (48%) residual C-peptide concentrations than with low (74%) and no (70%) residual C-peptide concentrations (P value for trend = 0.0001). Responders and nonresponders demonstrated similar rates of advanced microvascular complications.CONCLUSION β Cell function can persist in long-duration T1DM. With a peak C-peptide concentration of >0.03 nmol/L, we observed clinically meaningful reductions in the prevalence of severe hypoglycemia.TRIAL REGISTRATION ClinicalTrials.gov NCT00360815 and NCT00360893.FUNDING Division of Diabetes Endocrinology and Metabolic Diseases of the National Institute of Diabetes and Digestive and Kidney Diseases (DP3-DK104438, U01 DK094176, and U01 DK094157).
Rose A. Gubitosi-Klug, Barbara H. Braffett, Susan Hitt, Valerie Arends, Diane Uschner, Kimberly Jones, Lisa Diminick, Amy B. Karger, Andrew D. Paterson, Delnaz Roshandel, Santica Marcovina, John M. Lachin, Michael Steffes, Jerry P. Palmer, the DCCT/EDIC Research Group
Omega-3 fatty acids from fish oil reduce triglyceride levels in mammals, yet the mechanisms underlying this effect have not been fully clarified despite the clinical use of omega-3 ethyl esters to treat severe hypertriglyceridemia and reduce cardiovascular disease risk in humans. Here we identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that, after dietary omega-3 fatty acid supplementation, increased to concentrations similar to those of steroidal bile acids. The biliary docosahexaenoic acid (DHA) containing NAT, C22:6 NAT, was increased in human and mouse plasma after dietary omega-3 fatty acid supplementation and potently inhibited intestinal triacylglycerol hydrolysis and lipid absorption. Supporting this observation, genetic elevation of endogenous NAT levels in mice impaired lipid absorption, while selective augmentation of C22:6 NAT levels protected against hypertriglyceridemia and fatty liver. When administered pharmacologically, C22:6 NAT accumulated in bile and reduced high fat diet-induced, but not sucrose-induced, hepatic lipid accumulation in mice, suggesting that C22:6 NAT was a negative feedback mediator that limited excess intestinal lipid absorption. Thus, biliary omega-3 NATs may contribute to the hypotriglyceridemic mechanism of action of fish oil and could influence the design of more potent omega-3 fatty acid-based therapeutics.
Trisha J. Grevengoed, Samuel A. J. Trammell, Jens S. Svenningsen, Mikhail Makarov, Thomas Svava Nielsen, Jens C. B. Jacobsen, Philip C. Calder, Marie E. Migaud, Benjamin Cravatt, Matthew P. Gillum
Chronic pancreatitis affects over 250,000 people in the US and millions worldwide. It is associated with chronic debilitating pain, pancreatic exocrine failure, high-risk of pancreatic cancer, and usually progresses to diabetes. Treatment options are limited and ineffective. We developed a new potential therapy, wherein a pancreatic ductal infusion of 1-2% acetic acid in mice and non-human primates resulted in a non-regenerative, near-complete ablation of the exocrine pancreas, with complete preservation of the islets. Pancreatic ductal infusion of acetic acid in a mouse model of chronic pancreatitis led to resolution of chronic inflammation and pancreatitis-associated pain. Furthermore, acetic acid-treated animals showed improved glucose tolerance and insulin secretion. The loss of exocrine tissue in this procedure would not typically require further management in patients with chronic pancreatitis because they usually have pancreatic exocrine failure requiring dietary enzyme supplements. Thus, this procedure, which should be readily translatable to humans through an endoscopic retrograde cholangiopancreatography (ERCP), may offer a potential innovative non-surgical therapy for chronic pancreatitis that relieves pain and prevents the progression of pancreatic diabetes.
Mohamed Saleh, Kartikeya Sharma, Ranjeet S. Kalsi, Joseph C. Fusco, Anuradha Sehrawat, Jami L. Saloman, Ping Guo, Ting Zhang, Nada Mohamed, Yan Wang, Krishna Prasadan, George Gittes
By restoring glucose-regulated insulin secretion, glucagon-like peptide-1–based (GLP-1–based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic β cells. However, the reason why only GLP-1–based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to β cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of β cells due to genetic (β cell–specific Kcnj11–/– mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse β cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in β cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.
Okechi S. Oduori, Naoya Murao, Kenju Shimomura, Harumi Takahashi, Quan Zhang, Haiqiang Dou, Shihomi Sakai, Kohtaro Minami, Belen Chanclon, Claudia Guida, Lakshmi Kothegala, Johan Tolö, Yuko Maejima, Norihide Yokoi, Yasuhiro Minami, Takashi Miki, Patrik Rorsman, Susumu Seino
BACKGROUND Kisspeptin is a key regulator of hypothalamic gonadotropin-releasing hormone (GnRH) neurons and is essential for reproductive health. A specific kisspeptin receptor (KISS1R) agonist could significantly expand the potential clinical utility of therapeutics targeting the kisspeptin pathway. Herein, we investigate the effects of a KISS1R agonist, MVT-602, in healthy women and in women with reproductive disorders.METHODS We conducted in vivo and in vitro studies to characterize the action of MVT-602 in comparison with native kisspeptin-54 (KP54). We determined the pharmacokinetic and pharmacodynamic properties of MVT-602 (doses 0.01 and 0.03 nmol/kg) versus KP54 (9.6 nmol/kg) in the follicular phase of healthy women (n = 9), and in women with polycystic ovary syndrome (PCOS; n = 6) or hypothalamic amenorrhea (HA; n = 6). Further, we investigated their effects on KISS1R-mediated inositol monophosphate (IP1) and Ca2+ signaling in cell lines and on action potential firing of GnRH neurons in brain slices.RESULTS In healthy women, the amplitude of luteinizing hormone (LH) rise was similar to that after KP54, but peaked later (21.4 vs. 4.7 hours; P = 0.0002), with correspondingly increased AUC of LH exposure (169.0 vs. 38.5 IU∙h/L; P = 0.0058). LH increases following MVT-602 were similar in PCOS and healthy women, but advanced in HA (P = 0.004). In keeping with the clinical data, MVT-602 induced more potent signaling of KISS1R-mediated IP1 accumulation and a longer duration of GnRH neuron firing than KP54 (115 vs. 55 minutes; P = 0.0012).CONCLUSION Taken together, these clinical and mechanistic data identify MVT-602 as having considerable therapeutic potential for the treatment of female reproductive disorders.TRIAL REGISTRATION International Standard Randomised Controlled Trial Number (ISRCTN) Registry, ISRCTN21681316.FUNDING National Institute for Health Research and NIH.
Ali Abbara, Pei Chia Eng, Maria Phylactou, Sophie A. Clarke, Rachel Richardson, Charlene M. Sykes, Chayarndorn Phumsatitpong, Edouard Mills, Manish Modi, Chioma Izzi-Engbeaya, Debbie Papadopoulou, Kate Purugganan, Channa N. Jayasena, Lisa Webber, Rehan Salim, Bryn Owen, Paul Bech, Alexander N. Comninos, Craig A. McArdle, Margaritis Voliotis, Krasimira Tsaneva-Atanasova, Suzanne Moenter, Aylin Hanyaloglu, Waljit S. Dhillo
Obesity occurs when energy expenditure is outweighed by energy intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), control for food intake and energy expenditure. Here we reported that, contrary to females, male mice lacking circadian nuclear receptors REV-ERB alpha and beta in the tuberal hypothalamus (HDKO) gained excessive weight on an obesogenic high fat diet due to both decreased energy expenditure and increased food intake during the light phase. Moreover, rebound food intake after fasting was markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior was due to perturbed REV-ERB-dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity was impaired in HDKO mice on an obesogenic diet in a diurnal manner. Thus, REV-ERBs play a crucial role in hypothalamic control of food intake and diurnal leptin sensitivity in diet-induced obesity.
Marine Adlanmerini, Hoang C. B. Nguyen, Brianna M. Krusen, Clare W. Teng, Caroline E. Geisler, Lindsey C. Peed, Bryce J. Carpenter, Matthew R. Hayes, Mitchell A. Lazar
Dysfunction of primary cilia is related to dyshomeostasis, leading to a wide range of disorders. The ventromedial hypothalamus (VMH) is known to regulate several homeostatic processes, but those modulated specifically by VMH-primary cilia are not yet known. In this study, we identify VMH-primary cilia as an important organelle that maintains energy and skeletal homeostasis by modulating the autonomic nervous system. We established loss-of-function models of primary cilia in the VMH by either targeting IFT88 (IFT88 KOSF-1) using steroidogenic factor 1-Cre (SF1-Cre) or injecting an adeno-associated virus Cre (AAV-Cre) directly into the VMH. Functional impairments of VMH-primary cilia were linked to decreased sympathetic activation and central leptin resistance, which led to marked obesity and bone density accrual. Obesity was caused by hyperphagia, decreased energy expenditure, and blunted brown fat function, as well as associated with insulin and leptin resistance. The effect of bone density accrual was independent from obesity, as it was caused by the decreased sympathetic tone resulting in increased osteoblastic and decreased osteoclastic activities in the IFT88 KOSF-1 and VMH-primary cilia knock-down mice. Overall, our current study identifies VMH-primary cilia as a critical hypothalamic organelle that maintains energy and skeletal homeostasis.
Ji Su Sun, Dong Joo Yang, Ann W. Kinyua, Seul Gi Yoon, Je Kyung Seong, Juwon Kim, Seok Jun Moon, Dong Min Shin, Yun-Hee Choi, Ki Woo Kim
The sodium-phosphate co-transporter NPT2a plays a key role in reabsorbing filtered phosphate in proximal renal tubules thereby critically contributing to phosphate homeostasis. Inadequate urinary phosphate excretion can lead to severe hyperphosphatemia as in tumoral calcinosis, and in chronic kidney disease (CKD). Pharmacological inhibition of NPT2a may therefore represent a novel approach for treating hyperphosphatemic conditions. The NPT2a-selective small molecule inhibitor, PF-06869206, was previously shown to reduce phosphate uptake in human proximal tubular cells in vitro. We now investigated the acute and chronic effects of the inhibitor in vivo and report that administration of PF-06869206 was well-tolerated and elicited a dose-dependent increase in fractional phosphate excretion. This phosphaturic effect lowered plasma phosphate levels in wild-type mice and in rats with CKD due to subtotal nephrectomy. PF-06869206 had no effect in Npt2a-null mice, but promoted phosphate excretion and reduced plasma phosphate in normophophatemic mice lacking Npt2c and in hyperphosphatemic mice lacking Fgf23 or Galnt3. In CKD rats, once daily administration of PF-06869206 for eight weeks induced an unabated acute phosphaturic and hypophosphatemic effect, but had no significant effect on FGF23 or PTH levels. Selective pharmacological inhibition of NPT2a thus holds promises as a novel therapeutic option for genetic and acquired hyperphosphatemic disorders.
Valerie Clerin, Hiroshi Saito, Kevin J. Filipski, An Hai Nguyen, Jeonifer Garren, Janka Kisucka, Monica Reyes, Harald Jüppner
Hypoxia can be defined as a relative deficiency in the amount of oxygen reaching the tissues. Hypoxia inducible factors (HIFs) are critical regulators of the mammalian response to hypoxia. In normal circumstances, HIF-1α protein turnover is rapid, and hyperglycemia further destabilizes the protein. In addition to their role in diabetes pathogenesis, HIFs are implicated in development of the microvascular and macrovascular complications of diabetes. Improving glucose control in people with diabetes increases HIF-1α protein and has wide-ranging benefits, some of which are at least partially mediated by HIF-1α. Despite this, most strategies to improve diabetes or its complications via regulating HIF-1α have not proven currently clinically useful. The intersection of HIF biology with diabetes is a complex area in which many further questions remain, especially around the well-conducted and clearly-described discrepant effects of different methods of increasing HIF-1α, even within the same tissues. This review will present a brief overview of HIFs, discuss the range of evidence implicating HIFs in β-cell dysfunction, diabetes pathogenesis, and diabetes complications, and examine the differing outcomes of HIF-targeting approaches in these conditions.
Jenny E. Gunton
Particulate matter < 2.5 micrometers (PM2.5) air pollution is the world’s leading environmental risk factor contributing to mortality through cardiometabolic pathways. In this study, we modeled early life exposure using chow-fed C57BL/6J male mice, exposed to real-world inhaled concentrated PM2.5 (~10 times ambient levels / ~60-120ug/m3) or filtered air over 14 weeks. We investigated PM2.5 effects on phenotype, transcriptome and chromatin accessibility, compared the effects with a prototypical high-fat diet (HFD) stimulus, and examined cessation of exposure on reversibility of phenotype. Exposure to PM2.5 impaired glucose and insulin tolerance, reduced energy expenditure and 18FDG-PET uptake in brown adipose tissue. Multiple differentially expressed gene (DEG) clusters in pathways involving metabolism and circadian rhythm were noted in insulin responsive tissues. Although the magnitude of transcriptional change seen with PM2.5 was lower than HFD, the degree of alteration in chromatin accessibility after PM2.5 exposure was significant. A novel chromatin remodeler SMARCA5 (SWI/SNF complex) was regulated in response to PM2.5 with cessation of exposure associated with reversal of insulin resistance, restoration of chromatin accessibility/nucleosome positioning near transcription start sites (TSS) and exposure induced changes in the transcriptome including SMARCA5, indicating pliable epigenetic control mechanisms following exposure cessation.
Sanjay Rajagopalan, Bongsoo Park, Rengasamy Palanivel, Vinesh Vinayachandran, Jeffrey A. Deiuliis, Roopesh Singh Gangwar, Lopa M. Das, Jinhu Yin, Youngshim Choi, Sadeer Al-Kindi, Mukesh K. Jain, Kasper D. Hansen, Shyam Biswal