Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Top read articles in the last 30 days

This list is updated daily and reflects the last month of access data. Articles older than two years will not be shown.

  • Research
  • Review
Structural basis for simvastatin-induced skeletal muscle weakness associated with type 1 ryanodine receptor T4709M mutation
Gunnar Weninger, Haikel Dridi, Steven Reiken, Qi Yuan, Nan Zhao, Linda Groom, Jennifer Leigh, Yang Liu, Carl Tchagou, Jiayi Kang, Alexander Chang, Estefania Luna-Figueroa, Marco C. Miotto, Anetta Wronska, Robert T. Dirksen, Andrew R. Marks
Gunnar Weninger, Haikel Dridi, Steven Reiken, Qi Yuan, Nan Zhao, Linda Groom, Jennifer Leigh, Yang Liu, Carl Tchagou, Jiayi Kang, Alexander Chang, Estefania Luna-Figueroa, Marco C. Miotto, Anetta Wronska, Robert T. Dirksen, Andrew R. Marks
View: Text | PDF
Research Article Cell biology Metabolism Muscle biology

Structural basis for simvastatin-induced skeletal muscle weakness associated with type 1 ryanodine receptor T4709M mutation

  • Text
  • PDF
Abstract

Statins lower cholesterol, reducing the risk of heart disease, and are among the most frequently prescribed drugs. Approximately 10% of individuals develop statin-associated muscle symptoms (SAMS; myalgias, rhabdomyolysis, and muscle weakness), often rendering them statin intolerant. The mechanism underlying SAMS remains poorly understood. Patients with mutations in the skeletal muscle ryanodine receptor 1 (RyR1)/calcium release channel can be particularly intolerant of statins. High-resolution structures revealed simvastatin binding sites in the pore region of RyR1. Simvastatin stabilized the open conformation of the pore and activated the RyR1 channel. In a mouse expressing a mutant RyR1-T4709M found in a patient with profound statin intolerance, simvastatin caused muscle weakness associated with leaky RyR1 channels. Cotreatment with a Rycal drug that stabilizes the channel closed state prevented simvastatin-induced muscle weakness. Thus, statin binding to RyR1 can cause SAMS, and patients with RyR1 mutations may represent a high-risk group for statin intolerance.

Authors

Gunnar Weninger, Haikel Dridi, Steven Reiken, Qi Yuan, Nan Zhao, Linda Groom, Jennifer Leigh, Yang Liu, Carl Tchagou, Jiayi Kang, Alexander Chang, Estefania Luna-Figueroa, Marco C. Miotto, Anetta Wronska, Robert T. Dirksen, Andrew R. Marks

×

Total views: 3660


Curing autoimmune diabetes in mice with islet and hematopoietic cell transplantation after CD117 antibody-based conditioning
Preksha Bhagchandani, Stephan A. Ramos, Bianca Rodriguez, Xueying Gu, Shiva Pathak, Yuqi Zhou, Yujin Moon, Nadia Nourin, Charles A. Chang, Jessica Poyser, Brenda J. Velasco, Weichen Zhao, Hye-Sook Kwon, Richard Rodriguez, Diego M. Burgos, Mario A. Miranda, Everett Meyer, Judith A. Shizuru, Seung K. Kim
Preksha Bhagchandani, Stephan A. Ramos, Bianca Rodriguez, Xueying Gu, Shiva Pathak, Yuqi Zhou, Yujin Moon, Nadia Nourin, Charles A. Chang, Jessica Poyser, Brenda J. Velasco, Weichen Zhao, Hye-Sook Kwon, Richard Rodriguez, Diego M. Burgos, Mario A. Miranda, Everett Meyer, Judith A. Shizuru, Seung K. Kim
View: Text | PDF
Research Article Autoimmunity Endocrinology

Curing autoimmune diabetes in mice with islet and hematopoietic cell transplantation after CD117 antibody-based conditioning

  • Text
  • PDF
Abstract

Mixed hematopoietic chimerism after allogeneic hematopoietic cell transplantation (HCT) promotes tolerance of transplanted donor-matched solid organs, corrects autoimmunity, and could transform therapeutic strategies for autoimmune type 1 diabetes (T1D). However, development of nontoxic bone marrow conditioning protocols is needed to expand clinical use. We developed a chemotherapy-free, nonmyeloablative (NMA) conditioning regimen that achieves mixed chimerism and allograft tolerance across MHC barriers in NOD mice. We obtained durable mixed hematopoietic chimerism in prediabetic NOD mice using anti–CD117 monoclonal antibody, T cell depleting antibodies, JAK1/2 inhibition, and low-dose total body irradiation prior to transplantation of MHC-mismatched B6 hematopoietic cells, preventing diabetes in 100% of chimeric NOD:B6 mice. In overtly diabetic NOD mice, NMA conditioning followed by combined B6 HCT and islet transplantation durably corrected diabetes in 100% of chimeric mice without chronic immunosuppression or graft-versus-host disease (GVHD). Chimeric mice remained immunocompetent, as assessed by blood count recovery and rejection of third-party allogeneic islets. Adoptive transfer studies and analysis of autoreactive T cells confirmed correction of autoimmunity. Analysis of chimeric NOD mice revealed central thymic deletion and peripheral tolerance mechanisms. Thus, with NMA conditioning and cell transplantation, we achieved durable hematopoietic chimerism without GVHD, promoted islet allograft tolerance, and reversed established T1D.

Authors

Preksha Bhagchandani, Stephan A. Ramos, Bianca Rodriguez, Xueying Gu, Shiva Pathak, Yuqi Zhou, Yujin Moon, Nadia Nourin, Charles A. Chang, Jessica Poyser, Brenda J. Velasco, Weichen Zhao, Hye-Sook Kwon, Richard Rodriguez, Diego M. Burgos, Mario A. Miranda, Everett Meyer, Judith A. Shizuru, Seung K. Kim

×

Total views: 2562


Adipocyte-derived FABP4 promotes metabolism-associated steatotic liver–induced hepatocellular carcinoma by driving ITGB1-mediated β-catenin activation
Carmen Oi Ning Leung, Shilpa Gurung, Katherine Po Sin Chung, Rainbow Wing Hei Leung, Martina Mang Leng Lei, Mandy Sze Man Chan, Gregory Kenneth Muliawan, Shakeel Ahmad Khan, Xue Qian Wu, Jun Yu, Hui Lian Zhu, Yin Ying Lu, Stephanie Ma, Xiaoping Wu, Ruby Lai Chong Hoo, Terence Kin Wah Lee
Carmen Oi Ning Leung, Shilpa Gurung, Katherine Po Sin Chung, Rainbow Wing Hei Leung, Martina Mang Leng Lei, Mandy Sze Man Chan, Gregory Kenneth Muliawan, Shakeel Ahmad Khan, Xue Qian Wu, Jun Yu, Hui Lian Zhu, Yin Ying Lu, Stephanie Ma, Xiaoping Wu, Ruby Lai Chong Hoo, Terence Kin Wah Lee
View: Text | PDF
Research Article Hepatology Oncology

Adipocyte-derived FABP4 promotes metabolism-associated steatotic liver–induced hepatocellular carcinoma by driving ITGB1-mediated β-catenin activation

  • Text
  • PDF
Abstract

Metabolic dysfunction–associated steatotic liver disease–induced (MASLD-induced) hepatocellular carcinoma (HCC) is an emerging malignancy linked to excessive accumulation of adipose tissue and hepatic fat. Understanding the role of adipocytes in the development of MASLD-induced HCC is crucial. In an in vitro coculture system, differentiated adipocytes were found to enhance cancer stemness and drug resistance in HCC through paracrine signaling. Fatty acid–binding protein 4 (FABP4) was preferentially secreted by adipocytes, and recombinant FABP4 further augmented the cancer stem cell (CSC) properties of HCC cells. Notably, Fabp4–/– mice exhibited a marked delay in the progression of MASLD-HCC, which correlated with the increased HCC risk observed in MASLD patients with elevated FABP4 expression. Mass spectrometry analysis identified integrin β 1 (ITGB1) as a binding partner of FABP4. These data, together with a substantial downregulation of the Wnt/β-catenin pathway in Fabp4–/– mouse tumors, revealed that FABP4 augmented liver CSC functions by activating PI3K/AKT/β-catenin signaling via ITGB1. We developed an anti-FABP4 neutralizing antibody that successfully inhibited FABP4-driven CSC functions and suppressed MASLD-induced HCC. In conclusion, our findings indicate that adipocyte-derived FABP4 plays a critical role in the development of MASLD-induced HCC and targeting the ITGB1/PI3K/AKT/β-catenin signaling cascade may offer a promising approach to combat this aggressive disease.

Authors

Carmen Oi Ning Leung, Shilpa Gurung, Katherine Po Sin Chung, Rainbow Wing Hei Leung, Martina Mang Leng Lei, Mandy Sze Man Chan, Gregory Kenneth Muliawan, Shakeel Ahmad Khan, Xue Qian Wu, Jun Yu, Hui Lian Zhu, Yin Ying Lu, Stephanie Ma, Xiaoping Wu, Ruby Lai Chong Hoo, Terence Kin Wah Lee

×

Total views: 2552


DLL4+ neutrophils promote Notch1-mediated endothelial PANoptosis to exacerbate acute lung injury in sepsis
Hui Jin, Saoirse Holland, Alok Jha, Gaifeng Ma, Jingsong Li, Atsushi Murao, Monowar Aziz, Ping Wang
Hui Jin, Saoirse Holland, Alok Jha, Gaifeng Ma, Jingsong Li, Atsushi Murao, Monowar Aziz, Ping Wang
View: Text | PDF
Research Article Immunology Inflammation

DLL4+ neutrophils promote Notch1-mediated endothelial PANoptosis to exacerbate acute lung injury in sepsis

  • Text
  • PDF
Abstract

Neutrophils play a critical role in sepsis-induced acute lung injury (ALI). Extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, promotes neutrophil heterogeneity. While delta-like ligand 4 (DLL4) expression has been studied in various cell populations, its expression in neutrophils and impact on inflammation remain unknown. Here, we discovered that eCIRP induces DLL4+ neutrophils. These neutrophils trigger PANoptosis, a novel proinflammatory form of cell death initiated by Z-DNA–binding protein-1 (ZBP1) in pulmonary vascular endothelial cells (PVECs). In sepsis, DLL4+ neutrophils increase in the blood and lungs, upregulating ZBP1, cleaved gasdermin D, cleaved caspase-3, and phosphorylated MLKL, all of which are markers of PANoptosis, exacerbating ALI. DLL4 binds to Notch1 on PVECs and activates Notch1 intracellular domain to increase ZBP1-mediated endothelial PANoptosis. We discovered what we believe to be a novel Notch1-DLL4 inhibitor (NDI), derived from Notch1 to specifically block this interaction. Our findings reveal that NDI reduced endothelial PANoptosis in vitro and in vivo, attenuated pulmonary injury induced by DLL4+ neutrophils, and decreased lung water content and permeability, indicating improved barrier function. NDI also reduced serum injury and inflammatory markers and improved survival rate in sepsis. These findings underscore the Notch1-DLL4 pathway’s critical role in DLL4+ neutrophil–mediated ALI. Targeting the Notch1-DLL4 interaction with an NDI represents a promising therapeutic strategy for sepsis-induced ALI.

Authors

Hui Jin, Saoirse Holland, Alok Jha, Gaifeng Ma, Jingsong Li, Atsushi Murao, Monowar Aziz, Ping Wang

×

Total views: 2397


Targeting kinesin family member 20A sensitizes stem-like triple-negative breast cancer cells to standard chemotherapy
Yayoi Adachi, Weilong Chen, Cheng Zhang, Tao Wang, Nina Gildor, Rachel Shi, Haoyong Fu, Masashi Takeda, Qian Liang, Fangzhou Zhao, Hongyi Liu, Jun Fang, Jin Zhou, Hongwei Yao, Lianxin Hu, Shina Li, Lei Guo, Lin Xu, Ling Xie, Xian Chen, Chengheng Liao, Qing Zhang
Yayoi Adachi, Weilong Chen, Cheng Zhang, Tao Wang, Nina Gildor, Rachel Shi, Haoyong Fu, Masashi Takeda, Qian Liang, Fangzhou Zhao, Hongyi Liu, Jun Fang, Jin Zhou, Hongwei Yao, Lianxin Hu, Shina Li, Lei Guo, Lin Xu, Ling Xie, Xian Chen, Chengheng Liao, Qing Zhang
View: Text | PDF
Research Article Cell biology Oncology

Targeting kinesin family member 20A sensitizes stem-like triple-negative breast cancer cells to standard chemotherapy

  • Text
  • PDF
Abstract

Triple-negative breast cancer (TNBC), being both aggressive and highly lethal, poses a major clinical challenge in terms of treatment. Its heterogeneity and lack of hormone receptors or HER2 expression further restrict the availability of targeted therapy. Breast cancer stem cells (BCSCs), known to fuel TNBC malignancy, are now being exploited as a vulnerability for TNBC treatment. Here, we dissected the transcriptome of BCSCs and identified kinesin family member 20A (KIF20A) as a key regulator of BCSC survival and TNBC tumorigenesis. Genetic depletion or pharmacological inhibition of KIF20A impairs BCSC viability and tumor initiation and development in vitro and in vivo. Mechanistically, KIF20A supports BCSC stemness through modulation of mitochondrial oxidative phosphorylation, which is repressed by SMARCA4, a component of the SWI/SNF chromatin remodeling complex. Therapeutically, KIF20A inhibition sensitizes TNBC xenografts to standard-of-care chemotherapy. Our study highlights the importance of targeting KIF20A to exploit BCSC vulnerabilities in TNBC.

Authors

Yayoi Adachi, Weilong Chen, Cheng Zhang, Tao Wang, Nina Gildor, Rachel Shi, Haoyong Fu, Masashi Takeda, Qian Liang, Fangzhou Zhao, Hongyi Liu, Jun Fang, Jin Zhou, Hongwei Yao, Lianxin Hu, Shina Li, Lei Guo, Lin Xu, Ling Xie, Xian Chen, Chengheng Liao, Qing Zhang

×

Total views: 2237


Estimation of prevalence of autoimmune diseases in the United States using electronic health record data
Aaron H. Abend, Ingrid He, Neil Bahroos, Stratos Christianakis, Ashley B. Crew, Leanna M. Wise, Gloria P. Lipori, Xing He, Shawn N. Murphy, Christopher D. Herrick, Jagannadha Avasarala, Mark G. Weiner, Jacob S. Zelko, Erica Matute-Arcos, Mark Abajian, Philip R.O. Payne, Albert M. Lai, Heath A. Davis, Asher A. Hoberg, Chris E. Ortman, Amit D. Gode, Bradley W. Taylor, Kristen I. Osinski, Damian N. Di Florio, Noel R. Rose, Frederick W. Miller, George C. Tsokos, DeLisa Fairweather
Aaron H. Abend, Ingrid He, Neil Bahroos, Stratos Christianakis, Ashley B. Crew, Leanna M. Wise, Gloria P. Lipori, Xing He, Shawn N. Murphy, Christopher D. Herrick, Jagannadha Avasarala, Mark G. Weiner, Jacob S. Zelko, Erica Matute-Arcos, Mark Abajian, Philip R.O. Payne, Albert M. Lai, Heath A. Davis, Asher A. Hoberg, Chris E. Ortman, Amit D. Gode, Bradley W. Taylor, Kristen I. Osinski, Damian N. Di Florio, Noel R. Rose, Frederick W. Miller, George C. Tsokos, DeLisa Fairweather
View: Text | PDF
Clinical Research and Public Health Autoimmunity

Estimation of prevalence of autoimmune diseases in the United States using electronic health record data

  • Text
  • PDF
Abstract

BACKGROUND Previous epidemiologic studies of autoimmune diseases in the US have included a limited number of diseases or used metaanalyses that rely on different data collection methods and analyses for each disease.METHODS To estimate the prevalence of autoimmune diseases in the US, we used electronic health record data from 6 large medical systems in the US. We developed a software program using common methodology to compute the estimated prevalence of autoimmune diseases alone and in aggregate that can be readily used by other investigators to replicate or modify the analysis over time.RESULTS Our findings indicate that over 15 million people, or 4.6% of the US population, have been diagnosed with at least 1 autoimmune disease from January 1, 2011, to June 1, 2022, and 34% of those are diagnosed with more than 1 autoimmune disease. As expected, females (63% of those with autoimmune disease) were almost twice as likely as males to be diagnosed with an autoimmune disease. We identified the top 20 autoimmune diseases based on prevalence and according to sex and age.CONCLUSION Here, we provide, for what we believe to be the first time, a large-scale prevalence estimate of autoimmune disease in the US by sex and age.FUNDING Autoimmune Registry Inc., the National Heart Lung and Blood Institute, the National Center for Advancing Translational Sciences, the Intramural Research Program of the National Institute of Environmental Health Sciences.

Authors

Aaron H. Abend, Ingrid He, Neil Bahroos, Stratos Christianakis, Ashley B. Crew, Leanna M. Wise, Gloria P. Lipori, Xing He, Shawn N. Murphy, Christopher D. Herrick, Jagannadha Avasarala, Mark G. Weiner, Jacob S. Zelko, Erica Matute-Arcos, Mark Abajian, Philip R.O. Payne, Albert M. Lai, Heath A. Davis, Asher A. Hoberg, Chris E. Ortman, Amit D. Gode, Bradley W. Taylor, Kristen I. Osinski, Damian N. Di Florio, Noel R. Rose, Frederick W. Miller, George C. Tsokos, DeLisa Fairweather

×

Total views: 2205


S100a9 lactylation triggers neutrophil trafficking and cardiac inflammation in myocardial ischemia/reperfusion injury
Xiaoqi Wang, Xiangyu Yan, Ge Mang, Yujia Chen, Shuang Liu, Jiayu Sui, Zhonghua Tong, Penghe Wang, Jingxuan Cui, Qiannan Yang, Yafei Zhang, Dongni Wang, Ping Sun, Weijun Song, Zexi Jin, Ming Shi, Peng Zhao, Jia Yang, Mingyang Liu, Naixin Wang, Tao Chen, Yong Ji, Bo Yu, Maomao Zhang
Xiaoqi Wang, Xiangyu Yan, Ge Mang, Yujia Chen, Shuang Liu, Jiayu Sui, Zhonghua Tong, Penghe Wang, Jingxuan Cui, Qiannan Yang, Yafei Zhang, Dongni Wang, Ping Sun, Weijun Song, Zexi Jin, Ming Shi, Peng Zhao, Jia Yang, Mingyang Liu, Naixin Wang, Tao Chen, Yong Ji, Bo Yu, Maomao Zhang
View: Text | PDF
Research Article Cardiology Immunology

S100a9 lactylation triggers neutrophil trafficking and cardiac inflammation in myocardial ischemia/reperfusion injury

  • Text
  • PDF
Abstract

Lactylation, a posttranslational modification derived from glycolysis, plays a pivotal role in ischemic heart disease. Neutrophils are predominantly glycolytic cells that trigger intensive inflammation of myocardial ischemia/reperfusion (MI/R). However, whether lactylation regulates neutrophil function during MI/R remains unknown. We applied lactyl proteomics analysis and found that S100a9 was lactylated at lysine 26 (S100a9K26la) in neutrophils, with elevated levels observed in both patients with acute myocardial infarction (AMI) and MI/R model mice. We demonstrated that S100a9K26la drove the development of MI/R using mutant knockin mice. Mechanistically, lactylated S100a9 translocated to the nucleus of neutrophils, where it bound to the promoters of migration-related genes, thereby enhancing their transcription as a coactivator and promoting neutrophil migration and cardiac recruitment. Additionally, lactylated S100a9 was released during neutrophil extracellular trap (NET) formation, leading to cardiomyocyte death by disrupting mitochondrial function. The enzyme dihydrolipoyllysine-residue acetyltransferase (DLAT) was identified as the lactyltransferase facilitating neutrophil S100a9K26la following MI/R, a process that could be restrained by α-lipoic acid. Consistently, we found that targeting the DLAT/S100a9K26la axis suppressed neutrophil burden and improved cardiac function following MI/R. In patients with AMI, elevated S100a9K26la levels in plasma were positively correlated with cardiac death. These findings highlight S100a9 lactylation as a potential therapeutic target for MI/R and as a promising biomarker for evaluating poor MI/R outcomes.

Authors

Xiaoqi Wang, Xiangyu Yan, Ge Mang, Yujia Chen, Shuang Liu, Jiayu Sui, Zhonghua Tong, Penghe Wang, Jingxuan Cui, Qiannan Yang, Yafei Zhang, Dongni Wang, Ping Sun, Weijun Song, Zexi Jin, Ming Shi, Peng Zhao, Jia Yang, Mingyang Liu, Naixin Wang, Tao Chen, Yong Ji, Bo Yu, Maomao Zhang

×

Total views: 2193


Auranofin attenuates TOPBP1-mediated ATR replication stress response and improves chemotherapeutic response in breast tumor models
Shuai Ma, Yingying Han, Rui Gu, Qi Chen, Qiushi Guo, Yuan Yue, Cheng Cao, Ling Liu, Zhenzhen Yang, Yan Qin, Ying Yang, Kai Zhang, Fei Liu, Lin Liu, Na Yang, Jihui Hao, Jie Yang, Zhi Yao, Xiaoyun Mao, Lei Shi
Shuai Ma, Yingying Han, Rui Gu, Qi Chen, Qiushi Guo, Yuan Yue, Cheng Cao, Ling Liu, Zhenzhen Yang, Yan Qin, Ying Yang, Kai Zhang, Fei Liu, Lin Liu, Na Yang, Jihui Hao, Jie Yang, Zhi Yao, Xiaoyun Mao, Lei Shi
View: Text | PDF
Research Article Cell biology Oncology

Auranofin attenuates TOPBP1-mediated ATR replication stress response and improves chemotherapeutic response in breast tumor models

  • Text
  • PDF
Abstract

Genome instability is most commonly caused by replication stress, which also renders cancer cells extremely vulnerable once their response to replication stress is impeded. Topoisomerase II binding protein 1 (TOPBP1), an allosteric activator of ataxia telangiectasia and Rad3-related kinase (ATR), coordinates ATR in replication stress response and has emerged as a potential therapeutic target for tumors. Here, we identify auranofin, the FDA-approved drug for rheumatoid arthritis, as a lead compound capable of binding to the BRCT 7–8 domains and blocking TOPBP1 interaction with PHF8 and FANCJ. The liquid-liquid phase separation of TOPBP1 is also disrupted by auranofin. Through targeting these TOPBP1-nucleated molecular machineries, auranofin leads to an accumulation of replication defects by impairing ATR activation and attenuating replication protein A loading on perturbed replication forks, and it shows significant anti–breast tumor activity in combination with a PARP inhibitor. This study provides mechanistic insights into how auranofin challenges replication integrity and expands the application of this FDA-approved drug in breast tumor intervention.

Authors

Shuai Ma, Yingying Han, Rui Gu, Qi Chen, Qiushi Guo, Yuan Yue, Cheng Cao, Ling Liu, Zhenzhen Yang, Yan Qin, Ying Yang, Kai Zhang, Fei Liu, Lin Liu, Na Yang, Jihui Hao, Jie Yang, Zhi Yao, Xiaoyun Mao, Lei Shi

×

Total views: 2166


Interlocking host and viral cis-regulatory networks drive Merkel cell carcinoma
Lingling Miao, David Milewski, Amy Coxon, Tara Gelb, Khalid A. Garman, Jadon Porch, Arushi Khanna, Loren Collado, Natasha T. Hill, Kenneth Daily, Serena Vilasi, Danielle Reed, Tiffany Alexander, Gabriel J. Starrett, Maharshi Chakraborty, Young Song, Rachel Choi, Vineela Gangalapudi, Josiah Seaman, Andrew Morton, Klaus J. Busam, Christopher R. Vakoc, Daniel J. Urban, Min Shen, Matthew D. Hall, Richard Sallari, Javed Khan, Berkley E. Gryder, Isaac Brownell
Lingling Miao, David Milewski, Amy Coxon, Tara Gelb, Khalid A. Garman, Jadon Porch, Arushi Khanna, Loren Collado, Natasha T. Hill, Kenneth Daily, Serena Vilasi, Danielle Reed, Tiffany Alexander, Gabriel J. Starrett, Maharshi Chakraborty, Young Song, Rachel Choi, Vineela Gangalapudi, Josiah Seaman, Andrew Morton, Klaus J. Busam, Christopher R. Vakoc, Daniel J. Urban, Min Shen, Matthew D. Hall, Richard Sallari, Javed Khan, Berkley E. Gryder, Isaac Brownell
View: Text | PDF
Research Article Dermatology Oncology

Interlocking host and viral cis-regulatory networks drive Merkel cell carcinoma

  • Text
  • PDF
Abstract

Over 15% of cancers worldwide are caused by viruses. Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncovirus and is the only polyomavirus that drives malignant tumors in humans. Here, we show that MCPyV+ Merkel cell carcinoma is defined by neuroendocrine-lineage core regulatory (CR) transcription factors (TFs) (ATOH1, INSM1, ISL1, LHX3, POU4F3, and SOX2) that were essential for tumor survival and that co-bound chromatin with the viral small T antigen at super enhancers. Moreover, MCPyV integration sites were enriched at these neuroendocrine super enhancers. We further discovered that the MCPyV noncoding control region contained a homeodomain binding motif absent in other polyomaviruses that bound ISL1 and LHX3 and depended on them for T antigen expression. To therapeutically target the CR factors, we used histone deacetylase (HDAC) inhibitors to collapse the chromatin architecture and induce topological blurring of superenhancer loops, abrogating core TF expression and halting tumor growth. To our knowledge, our study presents the first example of oncogenic cross-regulation between viral and human epigenomic circuitry to generate interlocking and essential transcriptional feedback circuits that explain why MCPyV causes neuroendocrine cancer and represent a tumor dependency that can be targeted therapeutically.

Authors

Lingling Miao, David Milewski, Amy Coxon, Tara Gelb, Khalid A. Garman, Jadon Porch, Arushi Khanna, Loren Collado, Natasha T. Hill, Kenneth Daily, Serena Vilasi, Danielle Reed, Tiffany Alexander, Gabriel J. Starrett, Maharshi Chakraborty, Young Song, Rachel Choi, Vineela Gangalapudi, Josiah Seaman, Andrew Morton, Klaus J. Busam, Christopher R. Vakoc, Daniel J. Urban, Min Shen, Matthew D. Hall, Richard Sallari, Javed Khan, Berkley E. Gryder, Isaac Brownell

×

Total views: 2127


Mitochondrial complex II orchestrates divergent effects in CD4+ and CD8+ T cells
Keisuke Seike, Shih-Chun A. Chu, Yuichi Sumii, Takashi Ikeda, Meng-Chih Wu, Laure Maneix, Dongchang Zhao, Yaping Sun, Marcin Cieslik, Pavan Reddy
Keisuke Seike, Shih-Chun A. Chu, Yuichi Sumii, Takashi Ikeda, Meng-Chih Wu, Laure Maneix, Dongchang Zhao, Yaping Sun, Marcin Cieslik, Pavan Reddy
View: Text | PDF
Research Article Hematology Immunology Metabolism

Mitochondrial complex II orchestrates divergent effects in CD4+ and CD8+ T cells

  • Text
  • PDF
Abstract

Mitochondrial metabolism orchestrates T cell functions, yet the role of specific mitochondrial components in distinct T cell subsets remains poorly understood. Here, we explored the role of mitochondrial complex II (MC II), the only complex from the electron transport chain (ETC) that plays a role in both ETC and metabolism, in regulating T cell functions. Surprisingly, MC II exerts divergent effects on CD4+ and CD8+ T cell activation and function. Using T cell–specific MC II subunit, succinate dehydrogenase A–deficient (SDHA-deficient) mice, we integrated single-cell RNA-seq and metabolic profiling, with in vitro and in vivo T cell functional assays to illuminate these differences. SDHA deficiency induced metabolic changes and remodeled gene expression exclusively in activated T cells. In CD4+ T cells, SDHA loss dampened both oxidative phosphorylation (OXPHOS) and glycolysis, impaired cytokine production, proliferation, and reduced CD4+ T cell–mediated graft-versus-host disease after allogeneic stem cell transplantation (SCT). In contrast, SDHA deficiency in CD8+ T cells reduced OXPHOS but paradoxically upregulated glycolysis and demonstrated enhanced cytotoxic functions in vitro and in vivo. This metabolic reprogramming endowed SDHA-KO CD8+ T cells with superior in vivo antitumor efficacy after immune checkpoint inhibitor therapy and allogeneic SCT. These findings reveal MC II as a bifurcation point for metabolic and functional specialization in CD4+ and CD8+ T cells.

Authors

Keisuke Seike, Shih-Chun A. Chu, Yuichi Sumii, Takashi Ikeda, Meng-Chih Wu, Laure Maneix, Dongchang Zhao, Yaping Sun, Marcin Cieslik, Pavan Reddy

×

Total views: 2061

Show more results

Mechanisms and clinical implications of gut-brain interactions
Zachary S. Lorsch, Rodger A. Liddle
Zachary S. Lorsch, Rodger A. Liddle
View: Text | PDF
Review

Mechanisms and clinical implications of gut-brain interactions

  • Text
  • PDF
Abstract

Connections between the digestive system and the brain have been postulated for over 2000 years. Despite this, only recently have specific mechanisms of gut-brain interaction been identified. Due in large part to increased interest in the microbiome, the wide use of incretin-based therapies (i.e., glucagon-like peptide 1 [GLP-1] receptor agonists), technological advancements, increased understanding of neuroimmunology, and the identification of a direct enteroendocrine cell–neural circuit, research in the past 10 years has made it abundantly clear that the gut-brain connection plays a role both in clinical disease as well as the actions of therapeutics. In this Review, we describe mechanisms by which the gut and brain communicate and highlight human and animal studies that implicate changes in gut-brain communication in disease states in gastroenterology, neurology, psychiatry, and endocrinology. Furthermore, we define how GLP-1 receptor agonists for obesity and guanylyl cyclase C agonists for irritable bowel syndrome leverage gut-brain mechanisms to improve patient outcomes. This Review illustrates the critical nature of gut-brain communication in human disease and the potential to target gut-brain pathways for therapeutic benefit.

Authors

Zachary S. Lorsch, Rodger A. Liddle

×

Total views: 8274


Revisiting sex as a biological variable in hypertension research
Michael J. Ryan, John S. Clemmer, Roy O. Mathew, Jessica L. Faulkner, Erin B. Taylor, Justine M. Abais-Battad, Fiona Hollis, Jennifer C. Sullivan
Michael J. Ryan, John S. Clemmer, Roy O. Mathew, Jessica L. Faulkner, Erin B. Taylor, Justine M. Abais-Battad, Fiona Hollis, Jennifer C. Sullivan
View: Text | PDF
Review Series

Revisiting sex as a biological variable in hypertension research

  • Text
  • PDF
Abstract

Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.

Authors

Michael J. Ryan, John S. Clemmer, Roy O. Mathew, Jessica L. Faulkner, Erin B. Taylor, Justine M. Abais-Battad, Fiona Hollis, Jennifer C. Sullivan

×

Total views: 6978


Antiinflammatory actions of glucagon-like peptide-1–based therapies beyond metabolic benefits
Chi Kin Wong, Daniel J. Drucker
Chi Kin Wong, Daniel J. Drucker
View: Text | PDF
Review Series

Antiinflammatory actions of glucagon-like peptide-1–based therapies beyond metabolic benefits

  • Text
  • PDF
Abstract

Therapies based on glucagon-like peptide-1 (GLP-1) reduce rates of cardiovascular and chronic kidney disease in people with type 2 diabetes and/or obesity, with ongoing clinical trials investigating their effects in people with metabolic liver disease, arthritis, and both substance use and neurodegenerative disorders. Acute and chronic activation of GLP-1 receptor signaling also reduces systemic and tissue inflammation in mice and humans, through weight loss–dependent and –independent mechanisms, actions that may contribute to the expanding spectrum of clinical benefits ascribed to GLP-1 medicines. In this Review, we highlight current understanding of the direct and indirect antiinflammatory effects and mechanisms of GLP-1 medicines in both preclinical and clinical studies, covering emerging concepts, clinical relevance, and areas of uncertainty that require further investigation.

Authors

Chi Kin Wong, Daniel J. Drucker

×

Total views: 3916


GLP-1 receptor agonists and cancer: current clinical evidence and translational opportunities for preclinical research
Estefania Valencia-Rincón, Rajani Rai, Vishal Chandra, Elizabeth A. Wellberg
Estefania Valencia-Rincón, Rajani Rai, Vishal Chandra, Elizabeth A. Wellberg
View: Text | PDF
Review Series

GLP-1 receptor agonists and cancer: current clinical evidence and translational opportunities for preclinical research

  • Text
  • PDF
Abstract

Cancer diagnoses are prevalent in people with obesity and type 2 diabetes, and abundant clinical evidence supports the protective effects of weight loss for cancer prevention. Glucagon-like peptide-1 (GLP-1) receptor agonists have revolutionized obesity and type 2 diabetes medicine and alleviate many comorbidities of these metabolic diseases. In this Review, we summarize the current clinical evidence for GLP-1 receptor agonists and cancer risk, including thyroid, pancreatic, gastrointestinal, and hormone-dependent malignancies. With few exceptions, recent meta-analyses report that GLP-1 receptor therapies do not increase cancer incidence and may lower risk in some cases. Preclinical studies reinforce the anticancer effects of GLP-1 receptor therapies, even in non-obese models. However, there are still many opportunities for translational insight as the field grows. Immune-modulating effects of GLP-1 receptor agonists are reported in several preclinical cancer studies, which may reflect direct action on immune cells or result from improved metabolic function. We highlight ongoing clinical trials for GLP-1 receptor therapies in cancer patients, and offer considerations for preclinical studies, including perspectives on the timing and duration of GLP-1 receptor agonist treatment, concurrent use of standard anticancer therapies, and interpretation of models of cancer risk versus progression.

Authors

Estefania Valencia-Rincón, Rajani Rai, Vishal Chandra, Elizabeth A. Wellberg

×

Total views: 2692


Stress and substance use disorders: risk, relapse, and treatment outcomes
Rajita Sinha
Rajita Sinha
View: Text | PDF
Review Series

Stress and substance use disorders: risk, relapse, and treatment outcomes

  • Text
  • PDF
Abstract

Stress has long been associated with substance misuse and substance use disorders (SUDs). The past two decades have seen a surge in research aimed at understanding the underlying mechanisms driving this association. This Review introduces a multilevel “adaptive stress response” framework, encompassing a stress baseline, acute reaction, and recovery with return-to-homeostasis phase that occurs at varying response times and across domains of analysis. It also discusses evidence showing the disruption of this adaptive stress response in the context of chronic and repeated stressors, trauma, adverse social and drug-related environments, as well as with acute and chronic drug misuse and with drug withdrawal and abstinence sequelae. Subjective, cognitive, peripheral, and neurobiological disruptions in the adaptive stress response phases and their link to inflexible, maladaptive coping; increased craving; relapse risk; and maintenance of drug intake are also presented. Finally, the prevention and treatment implications of targeting this “stress pathophysiology of addiction” are discussed, along with specific aspects that may be targeted in intervention development to rescue stress-related alterations in drug motivation and to improve SUD treatment outcomes.

Authors

Rajita Sinha

×

Total views: 2362


Cannabis use disorder: from neurobiology to treatment
Bernard Le Foll, Victor M. Tang, Sergio Rueda, Leanne V. Trick, Isabelle Boileau
Bernard Le Foll, Victor M. Tang, Sergio Rueda, Leanne V. Trick, Isabelle Boileau
View: Text | PDF
Review Series

Cannabis use disorder: from neurobiology to treatment

  • Text
  • PDF
Abstract

Cannabis has been legalized for medical and recreational purposes in multiple countries. A large number of people are using cannabis and some will develop cannabis use disorder (CUD). There is a growing recognition that CUD requires specific interventions. This Review will cover this topic from a variety of perspectives, with a particular emphasis on neurobiological findings and innovative treatment approaches that are being pursued. We will first describe the epidemiology and burden of disease of CUD, including risk factors associated with CUD (both in terms of general risk and genetic risk variants). Neurobiological alterations identified in brain imaging studies will be presented. Several psychosocial interventions that are useful for the management of CUD, including motivational enhancement therapy, behavioral and cognitive therapy, and contingency management, will be covered. Although no pharmacological interventions are yet approved for CUD, we present the most promising pharmacological interventions being tested.

Authors

Bernard Le Foll, Victor M. Tang, Sergio Rueda, Leanne V. Trick, Isabelle Boileau

×

Total views: 2122


KRAS: the Achilles’ heel of pancreas cancer biology
Kristina Drizyte-Miller, Taiwo Talabi, Ashwin Somasundaram, Adrienne D. Cox, Channing J. Der
Kristina Drizyte-Miller, Taiwo Talabi, Ashwin Somasundaram, Adrienne D. Cox, Channing J. Der
View: Text | PDF
Review Series

KRAS: the Achilles’ heel of pancreas cancer biology

  • Text
  • PDF
Abstract

The genetic landscape of pancreatic ductal adenocarcinoma (PDAC) is well-established and dominated by four key genetic driver mutations. Mutational activation of the KRAS oncogene is the initiating genetic event, followed by genetic loss of function of the CDKN2A, TP53, and SMAD4 tumor suppressor genes. Disappointingly, this information has not been leveraged to develop clinically effective targeted therapies for PDAC treatment, where current standards of care remain cocktails of conventional cytotoxic drugs. Nearly all (~95%) PDAC harbors KRAS mutations, and experimental studies have validated the essential role of KRAS mutation in PDAC tumorigenic and metastatic growth. Identified in 1982 as the first gene shown to be aberrantly activated in human cancer, KRAS has been the focus of intensive drug discovery efforts. Widely considered “undruggable,” KRAS has been the elephant in the room for PDAC treatment. This perception was shattered recently with the approval of two KRAS inhibitors for the treatment of KRASG12C-mutant lung and colorectal cancer, fueling hope that KRAS inhibitors will lead to a breakthrough in PDAC therapy. In this Review, we summarize the key role of aberrant KRAS signaling in the biology of pancreatic cancer; provide an overview of past, current, and emerging anti-KRAS treatment strategies; and discuss current challenges that limit the clinical efficacy of directly targeting KRAS for pancreatic cancer treatment.

Authors

Kristina Drizyte-Miller, Taiwo Talabi, Ashwin Somasundaram, Adrienne D. Cox, Channing J. Der

×

Total views: 1932


Recent clinical and mechanistic insights into vitiligo offer new treatment options for cell-specific autoimmunity
Khaled Ezzedine, Rim Tannous, Todd F. Pearson, John E. Harris
Khaled Ezzedine, Rim Tannous, Todd F. Pearson, John E. Harris
View: Text | PDF
Review

Recent clinical and mechanistic insights into vitiligo offer new treatment options for cell-specific autoimmunity

  • Text
  • PDF
Abstract

Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell–mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials. Despite these impressive advances, many questions remain, which will be answered through integration of additional basic, translational, and clinical research studies. This vitiligo revolution has led to great excitement for individuals with vitiligo, those who know them, and the dermatologists who care for their patients. But just as importantly, these advances have great potential to shed light on autoimmune diseases that are more difficult to study, possibly leading to treatment advances that could not be achieved otherwise.

Authors

Khaled Ezzedine, Rim Tannous, Todd F. Pearson, John E. Harris

×

Total views: 1854


Bacteriophage therapy for multidrug-resistant infections: current technologies and therapeutic approaches
Minyoung Kevin Kim, Gina A. Suh, Grace D. Cullen, Saumel Perez Rodriguez, Tejas Dharmaraj, Tony Hong Wei Chang, Zhiwei Li, Qingquan Chen, Sabrina I. Green, Rob Lavigne, Jean-Paul Pirnay, Paul L. Bollyky, Jessica C. Sacher
Minyoung Kevin Kim, Gina A. Suh, Grace D. Cullen, Saumel Perez Rodriguez, Tejas Dharmaraj, Tony Hong Wei Chang, Zhiwei Li, Qingquan Chen, Sabrina I. Green, Rob Lavigne, Jean-Paul Pirnay, Paul L. Bollyky, Jessica C. Sacher
View: Text | PDF
Review

Bacteriophage therapy for multidrug-resistant infections: current technologies and therapeutic approaches

  • Text
  • PDF
Abstract

Bacteriophage (phage) therapy has emerged as a promising solution to combat the growing crisis of multidrug-resistant (MDR) infections. There are several international centers actively engaged in implementation of phage therapy, and recent case series have reported encouraging success rates in patients receiving personalized, compassionate phage therapy for difficult-to-treat infections. Nonetheless, substantial hurdles remain in the way of more widespread adoption and more consistent success. This Review offers a comprehensive overview of current phage therapy technologies and therapeutic approaches. We first delineate the common steps in phage therapy development, from phage bank establishment to clinical administration, and examine the spectrum of therapeutic approaches, from personalized to fixed phage cocktails. Using the framework of a conventional drug development pipeline, we then identify critical knowledge gaps in areas such as cocktail design, formulation, pharmacology, and clinical trial design. We conclude that, while phage therapy holds promise, a structured drug development pipeline and sustained government support are crucial for widespread adoption of phage therapy for MDR infections.

Authors

Minyoung Kevin Kim, Gina A. Suh, Grace D. Cullen, Saumel Perez Rodriguez, Tejas Dharmaraj, Tony Hong Wei Chang, Zhiwei Li, Qingquan Chen, Sabrina I. Green, Rob Lavigne, Jean-Paul Pirnay, Paul L. Bollyky, Jessica C. Sacher

×

Total views: 1835


MASH: the nexus of metabolism, inflammation, and fibrosis
Gregory R. Steinberg, Andre C. Carpentier, Dongdong Wang
Gregory R. Steinberg, Andre C. Carpentier, Dongdong Wang
View: Text | PDF
Review Series

MASH: the nexus of metabolism, inflammation, and fibrosis

  • Text
  • PDF
Abstract

Metabolic dysfunction–associated steatohepatitis (MASH) is a progressive form of liver disease characterized by hepatocyte injury, inflammation, and fibrosis. The transition from metabolic dysfunction–associated steatotic liver disease (MASLD) to MASH is driven by the accumulation of toxic lipid and metabolic intermediates resulting from increased hepatic uptake of fatty acids, elevated de novo lipogenesis, and impaired mitochondrial oxidation. These changes promote hepatocyte stress and cell death, activate macrophages, and induce a fibrogenic phenotype in hepatic stellate cells (HSCs). Key metabolites, including saturated fatty acids, free cholesterol, ceramides, lactate, and succinate, act as paracrine signals that reinforce inflammatory and fibrotic responses across multiple liver cell types. Crosstalk between hepatocytes, macrophages, and HSCs, along with spatial shifts in mitochondrial activity, creates a feed-forward cycle of immune activation and tissue remodeling. Systemic inputs, such as insulin-resistant adipose tissue and impaired clearance of dietary lipids and branched-chain amino acids, further contribute to liver injury. Together, these pathways establish a metabolically driven network linking nutrient excess to chronic liver inflammation and fibrosis. This Review outlines how coordinated disruptions in lipid metabolism and intercellular signaling drive MASH pathogenesis and provides a framework for understanding disease progression across tissue and cellular compartments.

Authors

Gregory R. Steinberg, Andre C. Carpentier, Dongdong Wang

×

Total views: 1780

Show more results

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts