Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Top read articles in the last 30 days

This list is updated daily and reflects the last month of access data. Articles older than two years will not be shown.

  • Research
  • Review
Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation
Kristofor E. Glinton, … , Guillermo Oliver, Edward B. Thorp
Kristofor E. Glinton, … , Guillermo Oliver, Edward B. Thorp
Published March 10, 2022
Citation Information: J Clin Invest. 2022;132(9):e140685. https://doi.org/10.1172/JCI140685.
View: Text | PDF
Research Article Inflammation Vascular biology

Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation

  • Text
  • PDF
Abstract

Clearance of dying cells by efferocytosis is necessary for cardiac repair after myocardial infarction (MI). Recent reports have suggested a protective role for vascular endothelial growth factor C (VEGFC) during acute cardiac lymphangiogenesis after MI. Here, we report that defective efferocytosis by macrophages after experimental MI led to a reduction in cardiac lymphangiogenesis and Vegfc expression. Cell-intrinsic evidence for efferocytic induction of Vegfc was revealed after adding apoptotic cells to cultured primary macrophages, which subsequently triggered Vegfc transcription and VEGFC secretion. Similarly, cardiac macrophages elevated Vegfc expression levels after MI, and mice deficient for myeloid Vegfc exhibited impaired ventricular contractility, adverse tissue remodeling, and reduced lymphangiogenesis. These results were observed in mouse models of permanent coronary occlusion and clinically relevant ischemia and reperfusion. Interestingly, myeloid Vegfc deficiency also led to increases in acute infarct size, prior to the amplitude of the acute cardiac lymphangiogenesis response. RNA-Seq and cardiac flow cytometry revealed that myeloid Vegfc deficiency was also characterized by a defective inflammatory response, and macrophage-produced VEGFC was directly effective at suppressing proinflammatory macrophage activation. Taken together, our findings indicate that cardiac macrophages promote healing through the promotion of myocardial lymphangiogenesis and the suppression of inflammatory cytokines.

Authors

Kristofor E. Glinton, Wanshu Ma, Connor Lantz, Lubov S. Grigoryeva, Matthew DeBerge, Xiaolei Liu, Maria Febbraio, Mark Kahn, Guillermo Oliver, Edward B. Thorp

×

Total views: 2913


Passive transfer of fibromyalgia symptoms from patients to mice
Andreas Goebel, … , Camilla I. Svensson, David A. Andersson
Andreas Goebel, … , Camilla I. Svensson, David A. Andersson
Published July 1, 2021
Citation Information: J Clin Invest. 2021;131(13):e144201. https://doi.org/10.1172/JCI144201.
View: Text | PDF
Research Article Neuroscience

Passive transfer of fibromyalgia symptoms from patients to mice

  • Text
  • PDF
Abstract

Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.

Authors

Andreas Goebel, Emerson Krock, Clive Gentry, Mathilde R. Israel, Alexandra Jurczak, Carlos Morado Urbina, Katalin Sandor, Nisha Vastani, Margot Maurer, Ulku Cuhadar, Serena Sensi, Yuki Nomura, Joana Menezes, Azar Baharpoor, Louisa Brieskorn, Angelica Sandström, Jeanette Tour, Diana Kadetoff, Lisbet Haglund, Eva Kosek, Stuart Bevan, Camilla I. Svensson, David A. Andersson

×

Total views: 2775


Loss of the collagen IV modifier prolyl 3-hydroxylase 2 causes thin basement membrane nephropathy
Hande Aypek, … , Tobias B. Huber, Florian Grahammer
Hande Aypek, … , Tobias B. Huber, Florian Grahammer
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e147253. https://doi.org/10.1172/JCI147253.
View: Text | PDF
Research Article Nephrology

Loss of the collagen IV modifier prolyl 3-hydroxylase 2 causes thin basement membrane nephropathy

  • Text
  • PDF
Abstract

The glomerular filtration barrier (GFB) produces primary urine and is composed of a fenestrated endothelium, a glomerular basement membrane (GBM), podocytes, and a slit diaphragm. Impairment of the GFB leads to albuminuria and microhematuria. The GBM is generated via secreted proteins from both endothelial cells and podocytes and is supposed to majorly contribute to filtration selectivity. While genetic mutations or variations of GBM components have been recently proposed to be a common cause of glomerular diseases, pathways modifying and stabilizing the GBM remain incompletely understood. Here, we identified prolyl 3-hydroxylase 2 (P3H2) as a regulator of the GBM in an a cohort of patients with albuminuria. P3H2 hydroxylates the 3′ of prolines in collagen IV subchains in the endoplasmic reticulum. Characterization of a P3h2ΔPod mouse line revealed that the absence of P3H2 protein in podocytes induced a thin basement membrane nephropathy (TBMN) phenotype with a thinner GBM than that in WT mice and the development of microhematuria and microalbuminuria over time. Mechanistically, differential quantitative proteomics of the GBM identified a significant decrease in the abundance of collagen IV subchains and their interaction partners in P3h2ΔPod mice. To our knowledge, P3H2 protein is the first identified GBM modifier, and loss or mutation of P3H2 causes TBMN and focal segmental glomerulosclerosis in mice and humans.

Authors

Hande Aypek, Christoph Krisp, Shun Lu, Shuya Liu, Dominik Kylies, Oliver Kretz, Guochao Wu, Manuela Moritz, Kerstin Amann, Kerstin Benz, Ping Tong, Zheng-mao Hu, Sulaiman M. Alsulaiman, Arif O. Khan, Maik Grohmann, Timo Wagner, Janina Müller-Deile, Hartmut Schlüter, Victor G. Puelles, Carsten Bergmann, Tobias B. Huber, Florian Grahammer

×

Total views: 2132


HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy
Shaima Salman, … , Michelle A. Rudek, Gregg L. Semenza
Shaima Salman, … , Michelle A. Rudek, Gregg L. Semenza
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e156774. https://doi.org/10.1172/JCI156774.
View: Text | PDF
Research Article Oncology Therapeutics

HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy

  • Text
  • PDF
Abstract

Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide and available therapies, including immunotherapies, are ineffective for many patients. HCC is characterized by intratumoral hypoxia, and increased expression of hypoxia-inducible factor 1α (HIF-1α) in diagnostic biopsies is associated with patient mortality. Here we report the development of 32-134D, a low-molecular-weight compound that effectively inhibits gene expression mediated by HIF-1 and HIF-2 in HCC cells, and blocks human and mouse HCC tumor growth. In immunocompetent mice bearing Hepa1-6 HCC tumors, addition of 32-134D to anti-PD1 therapy increased the rate of tumor eradication from 25% to 67%. Treated mice showed no changes in appearance, behavior, body weight, hemoglobin, or hematocrit. Compound 32-134D altered the expression of a large battery of genes encoding proteins that mediate angiogenesis, glycolytic metabolism, and responses to innate and adaptive immunity. This altered gene expression led to significant changes in the tumor immune microenvironment, including a decreased percentage of tumor-associated macrophages and myeloid-derived suppressor cells, which mediate immune evasion, and an increased percentage of CD8+ T cells and natural killer cells, which mediate antitumor immunity. Taken together, these preclinical findings suggest that combining 32-134D with immune checkpoint blockade may represent a breakthrough therapy for HCC.

Authors

Shaima Salman, David J. Meyers, Elizabeth E. Wicks, Sophia N. Lee, Emmanuel Datan, Aline M. Thomas, Nicole M. Anders, Yousang Hwang, Yajing Lyu, Yongkang Yang, Walter Jackson III, Dominic Dordai, Michelle A. Rudek, Gregg L. Semenza

×

Total views: 1953


Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance
Yanrui Huang, … , Carlos Fernandez-Hernando, Wang Min
Yanrui Huang, … , Carlos Fernandez-Hernando, Wang Min
Published February 24, 2022
Citation Information: J Clin Invest. 2022;132(9):e148852. https://doi.org/10.1172/JCI148852.
View: Text | PDF
Research Article Inflammation Metabolism

Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance

  • Text
  • PDF
Abstract

Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.

Authors

Yanrui Huang, Jenny H. Zhou, Haifeng Zhang, Alberto Canfran-Duque, Abhishek K. Singh, Rachel J. Perry, Gerald I. Shulman, Carlos Fernandez-Hernando, Wang Min

×

Total views: 1935


Iron-dependent epigenetic modulation promotes pathogenic T cell differentiation in lupus
Xiaofei Gao, … , Qianjin Lu, Ming Zhao
Xiaofei Gao, … , Qianjin Lu, Ming Zhao
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e152345. https://doi.org/10.1172/JCI152345.
View: Text | PDF
Research Article Autoimmunity

Iron-dependent epigenetic modulation promotes pathogenic T cell differentiation in lupus

  • Text
  • PDF
Abstract

The trace element iron affects immune responses and vaccination, but knowledge of its role in autoimmune diseases is limited. Expansion of pathogenic T cells, especially T follicular helper (Tfh) cells, has great significance to systemic lupus erythematosus (SLE) pathogenesis. Here, we show an important role of iron in regulation of pathogenic T cell differentiation in SLE. We found that iron overload promoted Tfh cell expansion, proinflammatory cytokine secretion, and autoantibody production in lupus-prone mice. Mice treated with a high-iron diet exhibited an increased proportion of Tfh cell and antigen-specific GC response. Iron supplementation contributed to Tfh cell differentiation. In contrast, iron chelation inhibited Tfh cell differentiation. We demonstrated that the miR-21/BDH2 axis drove iron accumulation during Tfh cell differentiation and further promoted Fe2+-dependent TET enzyme activity and BCL6 gene demethylation. Thus, maintaining iron homeostasis might be critical for eliminating pathogenic Th cells and might help improve the management of patients with SLE.

Authors

Xiaofei Gao, Yang Song, Jiali Wu, Shuang Lu, Xiaoli Min, Limin Liu, Longyuan Hu, Meiling Zheng, Pei Du, Yaqin Yu, Hai Long, Haijing Wu, Sujie Jia, Di Yu, Qianjin Lu, Ming Zhao

×

Total views: 1892


Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice
Yu Pan, … , Ming-Zhi Zhang, Raymond C. Harris
Yu Pan, … , Ming-Zhi Zhang, Raymond C. Harris
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e152391. https://doi.org/10.1172/JCI152391.
View: Text | PDF
Research Article Inflammation Metabolism

Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice

  • Text
  • PDF
Abstract

Obesity-associated complications are causing increasing morbidity and mortality worldwide. Expansion of adipose tissue in obesity leads to a state of low-grade chronic inflammation and dysregulated metabolism, resulting in insulin resistance and metabolic syndrome. Adipose tissue macrophages (ATMs) accumulate in obesity and are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. Macrophages are rich sources of cyclooxygenase (COX), the rate limiting enzyme for prostaglandin E2 (PGE2) production. When mice were fed a high-fat diet (HFD), ATMs increased expression of COX-2. Selective myeloid cell COX-2 deletion resulted in increased monocyte recruitment and proliferation of ATMs, leading to increased proinflammatory ATMs with decreased phagocytic ability. There were increased weight gain and adiposity, decreased peripheral insulin sensitivity and glucose utilization, increased adipose tissue inflammation and fibrosis, and abnormal adipose tissue angiogenesis. HFD pair-feeding led to similar increases in body weight, but mice with selective myeloid cell COX-2 still exhibited decreased peripheral insulin sensitivity and glucose utilization. Selective myeloid deletion of the macrophage PGE2 receptor subtype, EP4, produced a similar phenotype, and a selective EP4 agonist ameliorated the metabolic abnormalities seen with ATM COX-2 deletion. Therefore, these studies demonstrated that an ATM COX-2/PGE2/EP4 axis plays an important role in inhibiting adipose tissue dysfunction.

Authors

Yu Pan, Shirong Cao, Jiaqi Tang, Juan P. Arroyo, Andrew S. Terker, Yinqiu Wang, Aolei Niu, Xiaofeng Fan, Suwan Wang, Yahua Zhang, Ming Jiang, David H. Wasserman, Ming-Zhi Zhang, Raymond C. Harris

×

Total views: 1871


Targeting HIF-1α abrogates PD-L1–mediated immune evasion in tumor microenvironment but promotes tolerance in normal tissues
Christopher M. Bailey, … , Yang Liu, Yin Wang
Christopher M. Bailey, … , Yang Liu, Yin Wang
Published March 3, 2022
Citation Information: J Clin Invest. 2022;132(9):e150846. https://doi.org/10.1172/JCI150846.
View: Text | PDF
Research Article Therapeutics

Targeting HIF-1α abrogates PD-L1–mediated immune evasion in tumor microenvironment but promotes tolerance in normal tissues

  • Text
  • PDF
Abstract

A combination of anti–CTLA-4 plus anti–PD-1/PD-L1 is the most effective cancer immunotherapy but causes high incidence of immune-related adverse events (irAEs). Here we report that targeting of HIF-1α suppressed PD-L1 expression on tumor cells and tumor-infiltrating myeloid cells, but unexpectedly induced PD-L1 in normal tissues by an IFN-γ–dependent mechanism. Targeting the HIF-1α/PD-L1 axis in tumor cells reactivated tumor-infiltrating lymphocytes and caused tumor rejection. The HIF-1α inhibitor echinomycin potentiated the cancer immunotherapeutic effects of anti–CTLA-4 therapy, with efficacy comparable to that of anti–CTLA-4 plus anti–PD-1 antibodies. However, while anti–PD-1 exacerbated irAEs triggered by ipilimumab, echinomycin protected mice against irAEs by increasing PD-L1 levels in normal tissues. Our data suggest that targeting HIF-1α fortifies the immune tolerance function of the PD-1/PD-L1 checkpoint in normal tissues but abrogates its immune evasion function in the tumor microenvironment to achieve safer and more effective immunotherapy.

Authors

Christopher M. Bailey, Yan Liu, Mingyue Liu, Xuexiang Du, Martin Devenport, Pan Zheng, Yang Liu, Yin Wang

×

Total views: 1823


Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer
Uta M. Demel, … , Markus Schick, Ulrich Keller
Uta M. Demel, … , Markus Schick, Ulrich Keller
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e152383. https://doi.org/10.1172/JCI152383.
View: Text | PDF
Research Article Immunology Oncology

Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer

  • Text
  • PDF
Abstract

Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell–mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell–mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies.

Authors

Uta M. Demel, Marlitt Böger, Schayan Yousefian, Corinna Grunert, Le Zhang, Paul W. Hotz, Adrian Gottschlich, Hazal Köse, Konstandina Isaakidis, Dominik Vonficht, Florian Grünschläger, Elena Rohleder, Kristina Wagner, Judith Dönig, Veronika Igl, Bernadette Brzezicha, Francis Baumgartner, Stefan Habringer, Jens Löber, Björn Chapuy, Carl Weidinger, Sebastian Kobold, Simon Haas, Antonia B. Busse, Stefan Müller, Matthias Wirth, Markus Schick, Ulrich Keller

×

Total views: 1737


Tim-3 mediates T cell trogocytosis to limit antitumor immunity
Ornella Pagliano, … , Pavel Strop, Hassane M. Zarour
Ornella Pagliano, … , Pavel Strop, Hassane M. Zarour
Published March 22, 2022
Citation Information: J Clin Invest. 2022;132(9):e152864. https://doi.org/10.1172/JCI152864.
View: Text | PDF
Research Article Immunology Oncology

Tim-3 mediates T cell trogocytosis to limit antitumor immunity

  • Text
  • PDF
Abstract

T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) negatively regulates innate and adaptive immunity in cancer. To identify the mechanisms of Tim-3 in cancer immunity, we evaluated the effects of Tim-3 blockade in human and mouse melanoma. Here, we show that human programmed cell death 1–positive (PD-1+) Tim-3+CD8+ tumor-infiltrating lymphocytes (TILs) upregulate phosphatidylserine (PS), a receptor for Tim-3, and acquire cell surface myeloid markers from antigen-presenting cells (APCs) through transfer of membrane fragments called trogocytosis. Tim-3 blockade acted on Tim-3+ APCs in a PS-dependent fashion to disrupt the trogocytosis of activated tumor antigen–specific CD8+ T cells and PD-1+Tim-3+ CD8+ TILs isolated from patients with melanoma. Tim-3 and PD-1 blockades cooperated to disrupt trogocytosis of CD8+ TILs in 2 melanoma mouse models, decreasing tumor burden and prolonging survival. Deleting Tim-3 in dendritic cells but not in CD8+ T cells impeded the trogocytosis of CD8+ TILs in vivo. Trogocytosed CD8+ T cells presented tumor peptide–major histocompatibility complexes and became the target of fratricide T cell killing, which was reversed by Tim-3 blockade. Our findings have uncovered a mechanism Tim-3 uses to limit antitumor immunity.

Authors

Ornella Pagliano, Robert M. Morrison, Joe-Marc Chauvin, Hridesh Banerjee, Diwakar Davar, Quanquan Ding, Tokiyoshi Tanegashima, Wentao Gao, Saranya R. Chakka, Richelle DeBlasio, Ava Lowin, Kevin Kara, Mignane Ka, Bochra Zidi, Rada Amin, Itay Raphael, Shuowen Zhang, Simon C. Watkins, Cindy Sander, John M. Kirkwood, Marcus Bosenberg, Ana C. Anderson, Vijay K. Kuchroo, Lawrence P. Kane, Alan J. Korman, Arvind Rajpal, Sean M. West, Minhua Han, Christine Bee, Xiaodi Deng, Xiao Min Schebye, Pavel Strop, Hassane M. Zarour

×

Total views: 1706

Show more results

Through the layers: how macrophages drive atherosclerosis across the vessel wall
Leah I. Susser, Katey J. Rayner
Leah I. Susser, Katey J. Rayner
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e157011. https://doi.org/10.1172/JCI157011.
View: Text | PDF
Review

Through the layers: how macrophages drive atherosclerosis across the vessel wall

  • Text
  • PDF
Abstract

Cardiovascular disease (CVD) accounts for almost half of all deaths related to non-communicable disease worldwide, making it the single largest global cause of mortality. Although the risk factors for coronary artery disease — the most common cause of CVD — are well known and include hypertension, high cholesterol, age, and genetics, CVDs are now recognized as chronic inflammatory conditions. Arterial blockages, known as atherosclerosis, develop due to excess cholesterol accumulating within the arterial wall, creating a perpetually inflammatory state. The normally quiescent intimal layer of the vessel wall becomes laden with inflammatory cells, which alters the surrounding endothelial, smooth muscle, and extracellular matrix components to propagate disease. Macrophages, which can be either tissue resident or monocyte derived, are a key player in atherosclerotic disease progression and regression, and the understanding of their functions and origins continues to evolve with the use of deep phenotyping methodologies. This Review outlines how macrophages interact with each layer of the developing atherosclerotic plaque and discusses new concepts that are challenging our previous views on how macrophages function and our evolving understanding of the contribution of macrophages to disease.

Authors

Leah I. Susser, Katey J. Rayner

×

Total views: 2428


Mitochondria-derived peptides in aging and healthspan
Brendan Miller, … , Kelvin Yen, Pinchas Cohen
Brendan Miller, … , Kelvin Yen, Pinchas Cohen
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e158449. https://doi.org/10.1172/JCI158449.
View: Text | PDF
Review Series

Mitochondria-derived peptides in aging and healthspan

  • Text
  • PDF
Abstract

The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.

Authors

Brendan Miller, Su-Jeong Kim, Hiroshi Kumagai, Kelvin Yen, Pinchas Cohen

×

Total views: 2239


CRISPR/Cas therapeutic strategies for autosomal dominant disorders
Salvatore Marco Caruso, … , Bruna Lopes da Costa, Stephen H. Tsang
Salvatore Marco Caruso, … , Bruna Lopes da Costa, Stephen H. Tsang
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e158287. https://doi.org/10.1172/JCI158287.
View: Text | PDF
Review

CRISPR/Cas therapeutic strategies for autosomal dominant disorders

  • Text
  • PDF
Abstract

Autosomal dominant disorders present unique challenges, as therapeutics must often distinguish between healthy and diseased alleles while maintaining high efficiency, specificity, and safety. For this task, CRISPR/Cas remains particularly promising. Various CRISPR/Cas systems, like homology-directed repair, base editors, and prime editors, have been demonstrated to selectively edit mutant alleles either by incorporating these mutations into sgRNA sequences (near the protospacer-adjacent motif [“near the PAM”]) or by targeting a novel PAM generated by the mutation (“in the PAM”). However, these probability-based designs are not always assured, necessitating generalized, mutation-agnostic strategies like ablate-and-replace and single-nucleotide polymorphism editing. Here, we detail recent advancements in CRISPR therapeutics to treat a wide range of autosomal dominant disorders and discuss how they are altering the landscape for future therapies.

Authors

Salvatore Marco Caruso, Peter M.J. Quinn, Bruna Lopes da Costa, Stephen H. Tsang

×

Total views: 1882


Biological aging processes underlying cognitive decline and neurodegenerative disease
Mitzi M. Gonzales, … , Ellen Kraig, Miranda E. Orr
Mitzi M. Gonzales, … , Ellen Kraig, Miranda E. Orr
Published May 16, 2022
Citation Information: J Clin Invest. 2022;132(10):e158453. https://doi.org/10.1172/JCI158453.
View: Text | PDF
Review Series

Biological aging processes underlying cognitive decline and neurodegenerative disease

  • Text
  • PDF
Abstract

Alzheimer’s disease and related dementias (ADRD) are among the top contributors to disability and mortality in later life. As with many chronic conditions, aging is the single most influential factor in the development of ADRD. Even among older adults who remain free of dementia throughout their lives, cognitive decline and neurodegenerative changes are appreciable with advancing age, suggesting shared pathophysiological mechanisms. In this Review, we provide an overview of changes in cognition, brain morphology, and neuropathological protein accumulation across the lifespan in humans, with complementary and mechanistic evidence from animal models. Next, we highlight selected aging processes that are differentially regulated in neurodegenerative disease, including aberrant autophagy, mitochondrial dysfunction, cellular senescence, epigenetic changes, cerebrovascular dysfunction, inflammation, and lipid dysregulation. We summarize research across clinical and translational studies to link biological aging processes to underlying ADRD pathogenesis. Targeting fundamental processes underlying biological aging may represent a yet relatively unexplored avenue to attenuate both age-related cognitive decline and ADRD. Collaboration across the fields of geroscience and neuroscience, coupled with the development of new translational animal models that more closely align with human disease processes, is necessary to advance novel therapeutic discovery in this realm.

Authors

Mitzi M. Gonzales, Valentina R. Garbarino, Erin Pollet, Juan P. Palavicini, Dean L. Kellogg Jr., Ellen Kraig, Miranda E. Orr

×

Total views: 1376


Targeting mutations in cancer
Michael R. Waarts, … , Young C. Park, Ross L. Levine
Michael R. Waarts, … , Young C. Park, Ross L. Levine
Published April 15, 2022
Citation Information: J Clin Invest. 2022;132(8):e154943. https://doi.org/10.1172/JCI154943.
View: Text | PDF
Review Series

Targeting mutations in cancer

  • Text
  • PDF
Abstract

Targeted therapies have come to play an increasingly important role in cancer therapy over the past two decades. This success has been made possible in large part by technological advances in sequencing, which have greatly advanced our understanding of the mutational landscape of human cancer and the genetic drivers present in individual tumors. We are rapidly discovering a growing number of mutations that occur in targetable pathways, and thus tumor genetic testing has become an important component in the choice of appropriate therapies. Targeted therapy has dramatically transformed treatment outcomes and disease prognosis in some settings, whereas in other oncologic contexts, targeted approaches have yet to demonstrate considerable clinical efficacy. In this Review, we summarize the current knowledge of targetable mutations that occur in a range of cancers, including hematologic malignancies and solid tumors such as non–small cell lung cancer and breast cancer. We outline seminal examples of druggable mutations and targeting modalities and address the clinical and research challenges that must be overcome to maximize therapeutic benefit.

Authors

Michael R. Waarts, Aaron J. Stonestrom, Young C. Park, Ross L. Levine

×

Total views: 1152


The intersection of COVID-19 and autoimmunity
Jason S. Knight, … , Julia Y. Wang, William J. McCune
Jason S. Knight, … , Julia Y. Wang, William J. McCune
Published October 28, 2021
Citation Information: J Clin Invest. 2021;131(24):e154886. https://doi.org/10.1172/JCI154886.
View: Text | PDF
Review

The intersection of COVID-19 and autoimmunity

  • Text
  • PDF
Abstract

Acute COVID-19, caused by SARS-CoV-2, is characterized by diverse clinical presentations, ranging from asymptomatic infection to fatal respiratory failure, and often associated with varied longer-term sequelae. Over the past 18 months, it has become apparent that inappropriate immune responses contribute to the pathogenesis of severe COVID-19. Researchers working at the intersection of COVID-19 and autoimmunity recently gathered at an American Autoimmune Related Diseases Association Noel R. Rose Colloquium to address the current state of knowledge regarding two important questions: Does established autoimmunity predispose to severe COVID-19? And, at the same time, can SARS-CoV-2 infection trigger de novo autoimmunity? Indeed, work to date has demonstrated that 10% to 15% of patients with critical COVID-19 pneumonia exhibit autoantibodies against type I interferons, suggesting that preexisting autoimmunity underlies severe disease in some patients. Other studies have identified functional autoantibodies following infection with SARS-CoV-2, such as those that promote thrombosis or antagonize cytokine signaling. These autoantibodies may arise from a predominantly extrafollicular B cell response that is more prone to generating autoantibody-secreting B cells. This Review highlights the current understanding, evolving concepts, and unanswered questions provided by this unique opportunity to determine mechanisms by which a viral infection can be exacerbated by, and even trigger, autoimmunity. The potential role of autoimmunity in post-acute sequelae of COVID-19 is also discussed.

Authors

Jason S. Knight, Roberto Caricchio, Jean-Laurent Casanova, Alexis J. Combes, Betty Diamond, Sharon E. Fox, David A. Hanauer, Judith A. James, Yogendra Kanthi, Virginia Ladd, Puja Mehta, Aaron M. Ring, Ignacio Sanz, Carlo Selmi, Russell P. Tracy, Paul J. Utz, Catriona A. Wagner, Julia Y. Wang, William J. McCune

×

Total views: 842


Messenger RNA vaccines for cancer immunotherapy: progress promotes promise
Amanda L. Huff, … , Elizabeth M. Jaffee, Neeha Zaidi
Amanda L. Huff, … , Elizabeth M. Jaffee, Neeha Zaidi
Published March 15, 2022
Citation Information: J Clin Invest. 2022;132(6):e156211. https://doi.org/10.1172/JCI156211.
View: Text | PDF
Review

Messenger RNA vaccines for cancer immunotherapy: progress promotes promise

  • Text
  • PDF
Abstract

The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.

Authors

Amanda L. Huff, Elizabeth M. Jaffee, Neeha Zaidi

×

Total views: 802


Gastrointestinal motility disorders in neurologic disease
Michael Camilleri
Michael Camilleri
Published February 15, 2021
Citation Information: J Clin Invest. 2021;131(4):e143771. https://doi.org/10.1172/JCI143771.
View: Text | PDF
Review Series

Gastrointestinal motility disorders in neurologic disease

  • Text
  • PDF
Abstract

The extrinsic and autonomic nervous system intricately controls the major functions of the gastrointestinal tract through the enteric nervous system; these include motor, secretory, sensory, storage, and excretory functions. Disorders of the nervous system affecting gastrointestinal tract function manifest primarily as abnormalities in motor (rather than secretory) functions. Common gastrointestinal symptoms in neurologic disorders include sialorrhea, dysphagia, gastroparesis, intestinal pseudo-obstruction, constipation, diarrhea, and fecal incontinence. Diseases of the entire neural axis ranging from the cerebral hemispheres to the peripheral autonomic nerves can result in gastrointestinal motility disorders. The most common neurologic diseases affecting gastrointestinal function are stroke, parkinsonism, multiple sclerosis, and diabetic neuropathy. Diagnosis involves identification of the neurologic disease and its distribution, and documentation of segmental gut dysfunction, typically using noninvasive imaging, transit measurements, or intraluminal measurements of pressure activity and coordination of motility. Apart from treatment of the underlying neurologic disease, management focuses on restoration of normal hydration and nutrition and pharmacologic treatment of the gut neuromuscular disorder.

Authors

Michael Camilleri

×

Total views: 798


Insulin signaling in health and disease
Alan R. Saltiel
Alan R. Saltiel
Published January 4, 2021
Citation Information: J Clin Invest. 2021;131(1):e142241. https://doi.org/10.1172/JCI142241.
View: Text | PDF
Review Series

Insulin signaling in health and disease

  • Text
  • PDF
Abstract

The molecular mechanisms of cellular insulin action have been the focus of much investigation since the discovery of the hormone 100 years ago. Insulin action is impaired in metabolic syndrome, a condition known as insulin resistance. The actions of the hormone are initiated by binding to its receptor on the surface of target cells. The receptor is an α2β2 heterodimer that binds to insulin with high affinity, resulting in the activation of its tyrosine kinase activity. Once activated, the receptor can phosphorylate a number of intracellular substrates that initiate discrete signaling pathways. The tyrosine phosphorylation of some substrates activates phosphatidylinositol-3-kinase (PI3K), which produces polyphosphoinositides that interact with protein kinases, leading to activation of the kinase Akt. Phosphorylation of Shc leads to activation of the Ras/MAP kinase pathway. Phosphorylation of SH2B2 and of Cbl initiates activation of G proteins such as TC10. Activation of Akt and other protein kinases produces phosphorylation of a variety of substrates, including transcription factors, GTPase-activating proteins, and other kinases that control key metabolic events. Among the cellular processes controlled by insulin are vesicle trafficking, activities of metabolic enzymes, transcriptional factors, and degradation of insulin itself. Together these complex processes are coordinated to ensure glucose homeostasis.

Authors

Alan R. Saltiel

×

Total views: 754


Severe insulin resistance syndromes
Angeliki M. Angelidi, … , Andreas Filippaios, Christos S. Mantzoros
Angeliki M. Angelidi, … , Andreas Filippaios, Christos S. Mantzoros
Published February 15, 2021
Citation Information: J Clin Invest. 2021;131(4):e142245. https://doi.org/10.1172/JCI142245.
View: Text | PDF
Review Series

Severe insulin resistance syndromes

  • Text
  • PDF
Abstract

Severe insulin resistance syndromes are a heterogeneous group of rare disorders characterized by profound insulin resistance, substantial metabolic abnormalities, and a variety of clinical manifestations and complications. The etiology of these syndromes may be hereditary or acquired, due to defects in insulin potency and action, cellular responsiveness to insulin, and/or aberrations in adipose tissue function or development. Over the past decades, advances in medical technology, particularly in genomic technologies and genetic analyses, have provided insights into the underlying pathophysiological pathways and facilitated the more precise identification of several of these conditions. However, the exact cellular and molecular mechanisms of insulin resistance have not yet been fully elucidated for all syndromes. Moreover, in clinical practice, many of the syndromes are often misdiagnosed or underdiagnosed. The majority of these disorders associate with an increased risk of severe complications and mortality; thus, early identification and personalized clinical management are of the essence. This Review aims to categorize severe insulin resistance syndromes by disease process, including insulin receptor defects, signaling defects, and lipodystrophies. We also highlight several complex syndromes and emphasize the need to identify patients, investigate underlying disease mechanisms, and develop specific treatment regimens.

Authors

Angeliki M. Angelidi, Andreas Filippaios, Christos S. Mantzoros

×

Total views: 709

Show more results

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts