This list is updated daily and reflects the last month of access data. Articles older than two years will not be shown.
Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutations of the NF1 tumor suppressor gene resulting in the loss of function of neurofibromin, a GTPase-activating protein (GAP) for Ras. While the malignant manifestations of NF1 are associated with loss of heterozygosity of the residual WT allele, the nonmalignant neurodevelopmental sequelae, including autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) are prevalent morbidities that occur in the setting of neurofibromin haploinsufficiency. We reasoned that augmenting endogenous levels of WT neurofibromin could serve as a potential therapeutic strategy to correct the neurodevelopmental manifestations of NF1. Here, we used a combination of genetic screening and genetically engineered murine models to identify a role for the F-box protein FBXW11 as a regulator of neurofibromin degradation. Disruption of Fbxw11, through germline mutation or targeted genetic manipulation in the nucleus accumbens, increased neurofibromin levels, suppressed Ras-dependent ERK phosphorylation, and corrected social learning deficits and impulsive behaviors in male Nf1+/– mice. Our results demonstrate that preventing the degradation of neurofibromin is a feasible and effective approach to ameliorate the neurodevelopmental phenotypes in a haploinsufficient disease model.
Su Jung Park, Jodi L. Lukkes, Ka-Kui Chan, Hayley P. Drozd, Callie B. Burgin, Shaomin Qian, Morgan McKenzie Sullivan, Cesar Gabriel Guevara, Nolen Cunningham, Stephanie Arenas, Makenna A. Collins, Jacob Zucker, JinHee Won, Abbi Smith, Li Jiang, Dana K. Mitchell, Steven D. Rhodes, Steven P. Angus, D. Wade Clapp
Total views: 3205
Metabolic dysfunction–associated steatohepatitis (MASH) is a globally prevalent but intractable disease lacking effective pharmacotherapies. Here, we performed an integrated multilayered screening for pathogenic genes and druggable targets for MASH. We identified the subclass of metabolite-sensing G protein–coupled receptors, specifically GPR31, a critical contributor to MASH occurrence, which, to our knowledge, was previously uncharacterized. Mechanistically, Gαi3 is the essential downstream effector for the pro-MASH efficiency of GPR31 via glycosylation-dependent interaction with GPR31 and extra activation of PKCδ-MAPK signaling. Hepatocyte-specific GPR31 deficiency robustly blocked hepatic lipotoxicity and fibrosis in a mouse model of diet-induced MASH, whereas expression of the GPR31 transgene aggravated MASH development. Of translational importance, we developed a small-molecule inhibitor, named G4451, that specifically inhibits the GPR31-Gαi3 interaction by targeting the GPR31 conformational transition. Encouragingly, oral administration of G4451 effectively blocked MASH progression in preclinical models in both rodents and nonhuman primates. Collectively, the present study provides proof of concept that interference with GPR31 constitutes an attractive therapeutic strategy for MASH.
Xiao-Jing Zhang, Jiajun Fu, Xu Cheng, Hong Shen, Hailong Yang, Kun Wang, Wei Li, Han Tian, Tian Tian, Junjie Zhou, Song Tian, Zhouxiang Wang, Juan Wan, Lan Bai, Hongfei Duan, Xin Zhang, Ruifeng Tian, Haibo Xu, Rufang Liao, Toujun Zou, Jing Shi, Weiyi Qu, Liang Fang, Jingjing Cai, Peng Zhang, Zhi-Gang She, Jingwei Jiang, Yufeng Hu, Yibin Wang, Hongliang Li
Total views: 3073
Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying noninvasive, blood-based immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation and identify correlates of renal parameters. Unbiased analysis identified 3 immunologically distinct groups of patients that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at 1 year. Patients with enriched circulating granzyme B+ T cells showed more active disease and increased numbers of activated CD8+ T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive but with chronic renal injuries. The major immunologic axes of variation could be distilled down to 5 simple cytometric parameters that recapitulate several clinical associations, highlighting the potential for blood immunoprofiling to translate to clinically useful noninvasive metrics to assess immune-mediated disease in LN.
Alice Horisberger, Alec Griffith, Joshua Keegan, Arnon Arazi, John Pulford, Ekaterina Murzin, Kaitlyn Howard, Brandon Hancock, Andrea Fava, Takanori Sasaki, Tusharkanti Ghosh, Jun Inamo, Rebecca Beuschel, Ye Cao, Katie Preisinger, Maria Gutierrez-Arcelus, Thomas M. Eisenhaure, Joel Guthridge, Paul J. Hoover, Maria Dall’Era, David Wofsy, Diane L. Kamen, Kenneth C. Kalunian, Richard Furie, Michael Belmont, Peter Izmirly, Robert Clancy, David Hildeman, E. Steve Woodle, William Apruzzese, Maureen A. McMahon, Jennifer Grossman, Jennifer L. Barnas, Fernanda Payan-Schober, Mariko Ishimori, Michael Weisman, Matthias Kretzler, Celine C. Berthier, Jeffrey B. Hodgin, Dawit S. Demeke, Chaim Putterman, Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network, Michael B. Brenner, Jennifer H. Anolik, Soumya Raychaudhuri, Nir Hacohen, Judith A. James, Anne Davidson, Michelle A. Petri, Jill P. Buyon, Betty Diamond, Fan Zhang, James A. Lederer, Deepak A. Rao
Total views: 2578
Facioscapulohumeral muscular dystrophy (FSHD) is a genetic muscle disease caused by ectopic expression of the toxic protein DUX4, resulting in muscle weakness. However, the mechanism by which DUX4 exerts its toxicity remains unclear. In this study, we observed abnormal iron accumulation in muscles of patients with FSHD and in mice with muscle-specific DUX4 expression (DUX4-Tg mice). Treatment with iron chelators, an iron-deficient diet, and genetic modifications inhibiting intracellular uptake of iron did not improve but rather exacerbated FSHD pathology in DUX4-Tg mice. Unexpectedly, however, iron supplementation, from either a high-iron diet or intravenous iron administration, resulted in remarkable improvement in grip strength and running performance in DUX4-Tg mice. Iron supplementation suppressed abnormal iron accumulation and the ferroptosis-related pathway involving increased lipid peroxidation in DUX4-Tg muscle. Muscle-specific DUX4 expression led to retinal vasculopathy, a part of FSHD pathology, which was prevented by iron administration. Furthermore, high-throughput compound screening of the ferroptosis pathway identified drug candidates including ferrostatin-1 (Fer-1), a potent inhibitor of lipid peroxidation. Treatment with Fer-1 dramatically improved physical function in DUX4-Tg mice. Our findings demonstrate that DUX4-provoked toxicity is involved in the activation of the ferroptosis-related pathway and that supplementary iron could be a promising and readily available therapeutic option for FSHD.
Kodai Nakamura, Huascar Pedro Ortuste Quiroga, Naoki Horii, Shin Fujimaki, Toshiro Moroishi, Keiichi I. Nakayama, Shinjiro Hino, Yoshihiko Saito, Ichizo Nishino, Yusuke Ono
Total views: 2578
SPNS1 is a lysosomal transporter that mediates the salvage of lysoglycerophospholipids, the degradative products of lysosomal phospholipid catabolism. However, an understanding of the role of lysolipid transport and salvage in regulating cellular lipid homeostasis and in disease is lacking. Here, we identified members of 2 families with biallelic SPNS1 loss-of-function variants, who presented primarily with progressive liver and striated muscle injury. Patients’ fibroblasts accumulated lysophospholipids including lysoplasmalogens and cholesterol in lysosomes with reduced cellular plasmalogens. Notably, SPNS1 deficiency resulted in reduced biogenesis of cytosolic lipid droplets containing triglycerides and cholesteryl esters. Mechanistically, we found that lysophospholipids transported by SPNS1 into the cytosol quantitatively contributed to triglyceride synthesis, whereas lysosomal buildup of lyso-ether-phospholipid inhibited lysosomal cholesterol egress, effects that were enhanced with inhibition of mTOR. These findings support a gene-disease association and reveal connectivity between lysosomal transport of lysophospholipids and storage of reserve cellular energy as triglycerides and the regulation of cholesterol homeostasis, processes that become important under nutrient limitation.
Menglan He, Mei Ding, Michaela Chocholouskova, Cheen Fei Chin, Martin Engvall, Helena Malmgren, Matias Wagner, Marlen C. Lauffer, Jacob Heisinger, May Christine V. Malicdan, Valerie Allamand, Madeleine Durbeej, Angelica Delgado Vega, Thomas Sejersen, Ann Nordgren, Federico Torta, David L. Silver
Total views: 2550
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase in the brain. Mutations in PPP2R1A, encoding the scaffolding subunit, are linked to intellectual disability, although the underlying mechanisms remain unclear. This study examined mice with heterozygous deletion of Ppp2r1a in forebrain excitatory neurons (NEX-het-conditional knockout [NEX-het-cKO]). These mice exhibited impaired spatial learning and memory, resembling Ppp2r1a-associated intellectual disability. Ppp2r1a haploinsufficiency also led to increased excitatory synaptic strength and reduced inhibitory synapse numbers on pyramidal neurons. The increased excitatory synaptic transmission was attributed to increased presynaptic release probability, likely due to reduced levels of 2-arachidonoyl glycerol (2-AG). This reduction in 2-AG was associated with increased transcription of monoacylglycerol lipase (MAGL), driven by destabilization of enhancer of zeste homolog 2 (EZH2) in NEX-het-cKO mice. Importantly, the MAGL inhibitor JZL184 effectively restored both synaptic and learning deficits. Our findings uncover an unexpected role of PPP2R1A in regulating endocannabinoid signaling, providing fresh molecular and synaptic insights into the mechanisms underlying intellectual disability.
Yirong Wang, Weicheng Duan, Hua Li, Zhiwei Tang, Ruyi Cai, Shangxuan Cai, Guanghao Deng, Liangpei Chen, Hongyan Luo, Liping Chen, Yulong Li, Jian-Zhi Wang, Bo Xiong, Man Jiang
Total views: 2405
The outflow of ‘dirty’ brain fluids from the glymphatic system drains via the meningeal lymphatic vessels to the lymph nodes in the neck, primarily the deep cervical lymph nodes (dcLN). However, it is unclear whether dcLN drainage is essential for normal cerebral homeostasis. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computational fluid dynamics, we studied the impact of long-term mechanical stress from compromised dcLN drainage on brain solute and fluid outflow in anesthetized rats. We found that in young, but not middle-aged, rats, impairment of dcLN drainage was linked to moderately increased intracranial pressure and the emergence of extracranial perivenous drainage, with no evidence of hydrocephalus at any age. Surprisingly, both age groups showed enhanced brain solute clearance despite reduced glymphatic influx. CSF proteomic analysis revealed cellular stress in the form of low-grade inflammation and upregulation of pathways associated with neurodegeneration and blood brain barrier leakage in the rats with impaired lymphatic drainage. Our findings highlight that dcLN drainage is indeed a prerequisite for normal cerebral homeostasis in the rat and reveal the brain’s age-dependent compensatory responses to chronic impairment of its lymphatic drainage pathways.
Zachary Gursky, Zohaib Nisar Khan, Sunil Koundal, Ankita Bhardwaj, Joaquin Caceres Melgarejo, Kaiming Xu, Xinan Chen, Hung-Mo Lin, Xianfeng Gu, Hedok Lee, Jonathan Kipnis, Yoav Dori, Allen Tannenbaum, Laura Santambrogio, Helene Benveniste
Total views: 2371
BACKGROUND Predicting individual vaccine responses is a substantial public health challenge. We developed Immunaut, an open-source, data-driven framework for systems vaccinologists to analyze and predict immunological outcomes across diverse vaccination settings, beyond traditional assessments.METHODS Using a comprehensive live attenuated influenza vaccine (LAIV) dataset from 244 Gambian children, Immunaut integrated prevaccination and postvaccination humoral, mucosal, cellular, and transcriptomic data. Through advanced modeling, our framework provided a holistic, systems-level view of LAIV-induced immunity.RESULTS The analysis identified 3 distinct immunophenotypic profiles driven by baseline immunity: (a) CD8+ T cell responders with strong preexisting immunity boosting memory T cell responses; (b) mucosal responders with prior influenza A virus immunity developing robust mucosal IgA and subsequent influenza B virus seroconversion; and (c) systemic, broad influenza A virus responders starting from immune naivety who mounted broad systemic antibody responses. Pathway analysis revealed how preexisting immune landscapes and baseline features, such as mucosal preparedness and cellular support, quantitatively dictate vaccine outcomes.CONCLUSION Our findings emphasize the power of integrative, predictive frameworks for advancing precision vaccinology. The Immunaut framework is a valuable resource for deciphering vaccine response heterogeneity and can be applied to optimize immunization strategies across diverse populations and vaccine platforms.FUNDING Wellcome Trust (110058/Z/15/Z); Bill & Melinda Gates Foundation (INV-004222); HIC-Vac Consortium; NIAID (R21 AI151917); NIAID CEIRR Network (75N93021C00045).
Stephanie Hao, Ivan Tomic, Benjamin B. Lindsey, Ya Jankey Jagne, Katja Hoschler, Adam Meijer, Juan Manuel Carreño Quiroz, Philip Meade, Kaori Sano, Chikondi Peno, André G. Costa-Martins, Debby Bogaert, Beate Kampmann, Helder Nakaya, Florian Krammer, Thushan I. de Silva, Adriana Tomic
Total views: 2331
Lymphatic vessels maintain tissue fluid homeostasis and modulate inflammation, yet their spatial organization and molecular identity in the healthy human kidney, and how these change during chronic transplant rejection, remain poorly defined. Here, we show that lymphatic capillaries initiate adjacent to cortical kidney tubules and lack smooth muscle coverage. These vessels exhibit an organ-specific molecular signature, enriched for CCL14, DNASE1L3, and MDK, with limited expression of canonical immune-trafficking markers found in other organ lymphatics, such as LYVE1 and CXCL8. In allografts with chronic mixed rejection, lymphatics become disorganized and infiltrate the medulla, with their endothelial junctions remodeling from a button-like to a continuous, zipper-like, architecture. Lymphatics in rejecting kidneys localize around and interconnect tertiary lymphoid structures at different maturation stages, with altered intralymphatic and perilymphatic CD4+ T cell distribution. The infiltrating T cells express IFN-γ, which upregulates coinhibitory ligands in lymphatic endothelial cells, including PVR and LGALS9. Simultaneously, lymphatics acquire HLA class II expression and exhibit C4d deposition, consistent with alloantibody binding and complement activation. Together, these findings define the spatial and molecular features of human kidney lymphatics, revealing tolerogenic reprogramming accompanied by structural perturbations during chronic transplant rejection.
Daniyal J. Jafree, Benjamin J. Stewart, Karen L. Price, Maria Kolatsi-Joannou, Camille Laroche, Barian Mohidin, Benjamin Davis, Hannah Mitchell, Lauren G Russell, Lucía Marinas del Rey, Chun Jing Wang, William J Mason, Byung Il Lee, Lauren Heptinstall, Ayshwarya Subramanian, Gideon Pomeranz, Dale Moulding, Laura Wilson, Tahmina Wickenden, Saif N. Malik, Natalie Holroyd, Claire L. Walsh, Jennifer C. Chandler, Kevin X. Cao, Paul J.D. Winyard, Adrian S. Woolf, Marc Aurel Busche, Simon Walker-Samuel, Lucy S.K. Walker, Tessa Crompton, Peter J. Scambler, Reza Motallebzadeh, Menna R. Clatworthy, David A. Long
Total views: 2308
BACKGROUND Reversal reactions (RRs) in leprosy are acute immune episodes marked by inflammation and bacterial clearance, offering a model to study the dynamics of host responses to Mycobacterium leprae. These episodes are often severe and difficult to treat, frequently progressing to permanent disabilities. We aimed to characterize the immune mechanisms and identify antimicrobial effectors during RRs.METHODS We performed RNA-Seq on paired skin biopsy specimens collected from 9 patients with leprosy before and at RR diagnosis, followed by differential gene expression and functional analysis. A machine-learning classifier was applied to predict membrane-permeabilizing proteins. Antimicrobial activity was assessed in M. leprae–infected macrophages and axenic cultures.RESULTS In the paired pre-RR and RR biopsy specimens, a 64-gene antimicrobial response signature was upregulated during RR and correlated with reduced M. leprae burden. Predicted upstream regulators included IL-1β, TNF, IFN-γ, and IL-17, indicating activation of both the Th1 and Th17 pathways. A machine-learning classifier identified 28 genes with predicted membrane-permeabilizing antimicrobial activity, including S100A8. Four proteins (S100A7, S100A8, CCL17, and CCL19) demonstrated antimicrobial activity against M. leprae in vitro. Scanning electron microscopy revealed membrane damage in bacteria exposed to these proteins.CONCLUSION RR is associated with a robust antimicrobial gene program regulated by Th1 and Th17 cytokines. We identified potentially novel host antimicrobial effectors that showed activity against M. leprae, suggesting potential strategies to bolster Th1 and Th17 responses for combating intracellular mycobacterial infections.FUNDING NIH grants R01 AI022553, R01 AR040312, R01 AR073252, R01 AI166313, R01 AI169526, P50 AR080594, and 4R37 AI052453-21 and National Science Foundation (NSF) grant DMR2325840.
Priscila R. Andrade, Feiyang Ma, Jing Lu, Jaime de Anda, Ernest Y. Lee, George W. Agak, Craig J. Dobry, Bruno J. de Andrade Silva, Rosane M.B. Teles, Lilah A. Mansky, Jonathan Perrie, Dennis J. Montoya, Bryan D. Bryson, Johann E. Gudjonsson, Gerard C.L. Wong, Euzenir N. Sarno, Matteo Pellegrini, Robert L. Modlin
Total views: 2248
Air pollution comprises a complex mixture of gaseous and particulate components. Particulate matter (PM) air pollution is associated with 4.7 million premature deaths per year. Among modifiable risk factors, air pollution exposure contributes to 8% of disability adjusted life years and ranks above factors such as high blood pressure, smoking, and high fasting plasma glucose. As the site of entry, exposure to PM air pollution causes respiratory symptoms and is a significant cause of respiratory morbidity and mortality. In this Review, we discuss the studies that link air pollution exposure with respiratory diseases. We review the epidemiological evidence linking PM exposure and lung diseases including asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pneumonia, acute respiratory distress syndrome, and lung cancer. We also provide an overview of current knowledge about the mechanisms by which PM exerts its biological effects leading to adverse health effects in the respiratory system.
Robert B. Hamanaka, Gökhan M. Mutlu
Total views: 3742
Stress has long been associated with substance misuse and substance use disorders (SUDs). The past two decades have seen a surge in research aimed at understanding the underlying mechanisms driving this association. This Review introduces a multilevel “adaptive stress response” framework, encompassing a stress baseline, acute reaction, and recovery with return-to-homeostasis phase that occurs at varying response times and across domains of analysis. It also discusses evidence showing the disruption of this adaptive stress response in the context of chronic and repeated stressors, trauma, adverse social and drug-related environments, as well as with acute and chronic drug misuse and with drug withdrawal and abstinence sequelae. Subjective, cognitive, peripheral, and neurobiological disruptions in the adaptive stress response phases and their link to inflexible, maladaptive coping; increased craving; relapse risk; and maintenance of drug intake are also presented. Finally, the prevention and treatment implications of targeting this “stress pathophysiology of addiction” are discussed, along with specific aspects that may be targeted in intervention development to rescue stress-related alterations in drug motivation and to improve SUD treatment outcomes.
Rajita Sinha
Total views: 2925
Cannabis has been legalized for medical and recreational purposes in multiple countries. A large number of people are using cannabis and some will develop cannabis use disorder (CUD). There is a growing recognition that CUD requires specific interventions. This Review will cover this topic from a variety of perspectives, with a particular emphasis on neurobiological findings and innovative treatment approaches that are being pursued. We will first describe the epidemiology and burden of disease of CUD, including risk factors associated with CUD (both in terms of general risk and genetic risk variants). Neurobiological alterations identified in brain imaging studies will be presented. Several psychosocial interventions that are useful for the management of CUD, including motivational enhancement therapy, behavioral and cognitive therapy, and contingency management, will be covered. Although no pharmacological interventions are yet approved for CUD, we present the most promising pharmacological interventions being tested.
Bernard Le Foll, Victor M. Tang, Sergio Rueda, Leanne V. Trick, Isabelle Boileau
Total views: 2829
The genetic landscape of pancreatic ductal adenocarcinoma (PDAC) is well-established and dominated by four key genetic driver mutations. Mutational activation of the KRAS oncogene is the initiating genetic event, followed by genetic loss of function of the CDKN2A, TP53, and SMAD4 tumor suppressor genes. Disappointingly, this information has not been leveraged to develop clinically effective targeted therapies for PDAC treatment, where current standards of care remain cocktails of conventional cytotoxic drugs. Nearly all (~95%) PDAC harbors KRAS mutations, and experimental studies have validated the essential role of KRAS mutation in PDAC tumorigenic and metastatic growth. Identified in 1982 as the first gene shown to be aberrantly activated in human cancer, KRAS has been the focus of intensive drug discovery efforts. Widely considered “undruggable,” KRAS has been the elephant in the room for PDAC treatment. This perception was shattered recently with the approval of two KRAS inhibitors for the treatment of KRASG12C-mutant lung and colorectal cancer, fueling hope that KRAS inhibitors will lead to a breakthrough in PDAC therapy. In this Review, we summarize the key role of aberrant KRAS signaling in the biology of pancreatic cancer; provide an overview of past, current, and emerging anti-KRAS treatment strategies; and discuss current challenges that limit the clinical efficacy of directly targeting KRAS for pancreatic cancer treatment.
Kristina Drizyte-Miller, Taiwo Talabi, Ashwin Somasundaram, Adrienne D. Cox, Channing J. Der
Total views: 2761
Trained immunity (TRIM) is a form of long-lasting functional reprogramming of innate immune cells and their progenitors that enhances responsiveness to subsequent stimuli. Although first characterized in myeloid cells, TRIM was recently extended to nonmyeloid cell types, including endothelial and glial cells, which also exhibit stimulus-driven, memory-like behavior. While initially recognized as a protective mechanism, particularly in the context of vaccines and acute infections, TRIM can also become maladaptive, promoting chronic inflammation, immune dysfunction, and disease. This Review focuses on virus-induced TRIM while also addressing microbial, metabolic, and endogenous inducers. We examine key ligands and receptors that initiate TRIM and dissect the associated signaling and epigenetic pathways. Importantly, we argue that maladaptive TRIM arises not from a specific ligand, receptor, or molecular event, but from contextual factors such as stimulus persistence, dose, tissue microenvironment, and preexisting inflammation. The nature of the secondary challenge also shapes whether a trained response is adaptive or maladaptive. We further discuss TRIM induction in the bone marrow, involvement of both myeloid and nonmyeloid cells, and the role of lipid rafts in sustaining TRIM. We review maladaptive TRIM’s potential contribution to systemic diseases, such as atherosclerosis, diabetes, sepsis, cancer, and autoimmunity, along with its influence on viral vaccine responses. Finally, we outline potential strategies to redirect maladaptive TRIM and propose key outstanding questions for future research.
Dmitri Sviridov, Mihai G. Netea, Michael I. Bukrinsky
Total views: 2754
Metabolic dysfunction–associated steatohepatitis (MASH) is a progressive form of liver disease characterized by hepatocyte injury, inflammation, and fibrosis. The transition from metabolic dysfunction–associated steatotic liver disease (MASLD) to MASH is driven by the accumulation of toxic lipid and metabolic intermediates resulting from increased hepatic uptake of fatty acids, elevated de novo lipogenesis, and impaired mitochondrial oxidation. These changes promote hepatocyte stress and cell death, activate macrophages, and induce a fibrogenic phenotype in hepatic stellate cells (HSCs). Key metabolites, including saturated fatty acids, free cholesterol, ceramides, lactate, and succinate, act as paracrine signals that reinforce inflammatory and fibrotic responses across multiple liver cell types. Crosstalk between hepatocytes, macrophages, and HSCs, along with spatial shifts in mitochondrial activity, creates a feed-forward cycle of immune activation and tissue remodeling. Systemic inputs, such as insulin-resistant adipose tissue and impaired clearance of dietary lipids and branched-chain amino acids, further contribute to liver injury. Together, these pathways establish a metabolically driven network linking nutrient excess to chronic liver inflammation and fibrosis. This Review outlines how coordinated disruptions in lipid metabolism and intercellular signaling drive MASH pathogenesis and provides a framework for understanding disease progression across tissue and cellular compartments.
Gregory R. Steinberg, Andre C. Carpentier, Dongdong Wang
Total views: 2639
Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.
Michael J. Ryan, John S. Clemmer, Roy O. Mathew, Jessica L. Faulkner, Erin B. Taylor, Justine M. Abais-Battad, Fiona Hollis, Jennifer C. Sullivan
Total views: 2439
Testosterone (T) and 17β-estradiol (E2) are produced in male and female humans and are potent metabolic regulators in both sexes. When E2 and T production stops or decreases during aging, metabolic dysfunction develops and promotes degenerative metabolic and vascular disease. Here, we discuss the shared benefits afforded by E2 and T for metabolic function human females and males. In females, E2 is central to bone and vascular health, subcutaneous adipose tissue distribution, skeletal muscle insulin sensitivity, antiinflammatory immune function, and mitochondrial health. However, T also plays a role in female skeletal, vascular, and metabolic health. In males, T’s conversion to E2 is fundamental to bone and vascular health, as well as prevention of excess visceral adiposity and the promotion of insulin sensitivity via activation of the estrogen receptors. However, T and its metabolite dihydrotestosterone also prevent excess visceral adiposity and promote skeletal muscle growth and insulin sensitivity via activation of the androgen receptor. In conclusion, T and E2 are produced in both sexes at sex-specific concentrations and provide similar and potent metabolic benefits. Optimizing levels of both hormones may be beneficial to protect patients from cardiometabolic disease and frailty during aging, which requires further study.
Franck Mauvais-Jarvis, Sarah H. Lindsey
Total views: 2317
Human skin acts as a physical barrier to prevent the entry of pathogenic microbes while simultaneously providing a home for commensal bacteria and fungi. Microbiome sequencing studies have demonstrated the unappreciated diversity and selectivity of these microbes. Functional studies have demonstrated the impact of specific strains to tune the immune system, sculpt the microbial community, provide colonization resistance, and promote epidermal barrier integrity. Recent studies have integrated the microbiome, immunity, and tissue integrity to understand their interplay in common disorders such as atopic dermatitis. In this Review, we explore microbiome shifts associated with cutaneous disorders with an eye toward how the microbiome can be mined to identify new therapeutic opportunities.
Tiffany C. Scharschmidt, Julia A. Segre
Total views: 2265
Bacteriophage (phage) therapy has emerged as a promising solution to combat the growing crisis of multidrug-resistant (MDR) infections. There are several international centers actively engaged in implementation of phage therapy, and recent case series have reported encouraging success rates in patients receiving personalized, compassionate phage therapy for difficult-to-treat infections. Nonetheless, substantial hurdles remain in the way of more widespread adoption and more consistent success. This Review offers a comprehensive overview of current phage therapy technologies and therapeutic approaches. We first delineate the common steps in phage therapy development, from phage bank establishment to clinical administration, and examine the spectrum of therapeutic approaches, from personalized to fixed phage cocktails. Using the framework of a conventional drug development pipeline, we then identify critical knowledge gaps in areas such as cocktail design, formulation, pharmacology, and clinical trial design. We conclude that, while phage therapy holds promise, a structured drug development pipeline and sustained government support are crucial for widespread adoption of phage therapy for MDR infections.
Minyoung Kevin Kim, Gina A. Suh, Grace D. Cullen, Saumel Perez Rodriguez, Tejas Dharmaraj, Tony Hong Wei Chang, Zhiwei Li, Qingquan Chen, Sabrina I. Green, Rob Lavigne, Jean-Paul Pirnay, Paul L. Bollyky, Jessica C. Sacher
Total views: 2220