Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Top read articles in the last 30 days

This list is updated daily and reflects the last month of access data. Articles older than two years will not be shown.

  • Research
  • Review
SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63
Bezawit A. Woldemeskel, … , Caroline C. Garliss, Joel N. Blankson
Bezawit A. Woldemeskel, … , Caroline C. Garliss, Joel N. Blankson
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI149335.
View: Text | PDF
Concise Communication In-Press Preview COVID-19

SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63

  • Text
  • PDF
Abstract

Recent studies have shown T cell cross-recognition of SARS-CoV-2 and common cold coronavirus spike proteins. However, the effect of SARS-CoV-2 vaccines on T cell responses to common cold coronaviruses remain unknown. In this study, we analyzed CD4+ T cell responses to spike peptides from SARS-CoV-2 and 3 common cold coronaviruses (HCoV-229E, HCoV-NL63, and HCoV-OC43) before and after study participants received Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) mRNA-based COVID-19 vaccines. Vaccine recipients made broad T cell responses to the SARS-CoV-2 spike protein and we identified 23 distinct targeted peptides in 9 participants including one peptide that was targeted by 6 individuals. Only 4 out of these 23 targeted peptides would potentially be affected by mutations in the UK (B.1.1.7) and South African (B.1.351) variants and CD4+ T cells from vaccine recipients recognized the 2 variant spike proteins as effectively as the spike protein from the ancestral virus. Interestingly, we saw a 3-fold increase in the CD4+ T cell responses to HCoV-NL63 spike peptides post-vaccination. Our results suggest that T cell responses elicited or enhanced by SARS-CoV-2 mRNA vaccines may be able to control SARS-CoV-2 variants and lead to cross-protection from some endemic coronaviruses.

Authors

Bezawit A. Woldemeskel, Caroline C. Garliss, Joel N. Blankson

×

Total views: 5409


BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers
Magali Noval Rivas, … , Susan Cheng, Moshe Arditi
Magali Noval Rivas, … , Susan Cheng, Moshe Arditi
Published November 19, 2020
Citation Information: J Clin Invest. 2021;131(2):e145157. https://doi.org/10.1172/JCI145157.
View: Text | PDF
Clinical Medicine COVID-19 Vaccines

BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers

  • Text
  • PDF
Abstract

BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 1 million deaths worldwide; thus, there is an urgent need to develop preventive and therapeutic strategies. The antituberculosis vaccine bacillus Calmette-Guérin (BCG) demonstrates nonspecific, protective innate immune–boosting effects. Here, we determined whether a history of BCG vaccination was associated with decreased SARS-CoV-2 infection and seroconversion in a longitudinal, retrospective observational study of a diverse cohort of health care workers (HCWs).METHODS We assessed SARS-CoV-2 seroprevalence and collected medical questionnaires, which included information on BCG vaccination status and preexisting demographic and clinical characteristics, from an observational cohort of HCWs in a multisite Los Angeles health care organization. We used multivariate analysis to determine whether a history of BCG vaccination was associated with decreased rates of SARS-CoV-2 infection and seroconversion.RESULTS Of the 6201 HCWs, 29.6% reported a history of BCG vaccination, whereas 68.9% had not received BCG vaccination. Seroprevalence of anti–SARS-CoV-2 IgG as well as the incidence of self-reported clinical symptoms associated with coronavirus disease 2019 (COVID-19) were markedly decreased among HCWs with a history of BCG vaccination compared with those without BCG vaccination. After adjusting for age and sex, we found that a history of BCG vaccination, but not meningococcal, pneumococcal, or influenza vaccination, was associated with decreased SARS-CoV-2 IgG seroconversion.CONCLUSIONS A history of BCG vaccination was associated with a decrease in the seroprevalence of anti–SARS-CoV-2 IgG and a lower number of participants who self-reported experiencing COVID-19–related clinical symptoms in this cohort of HCWs. Therefore, large randomized, prospective clinical trials of BCG vaccination are urgently needed to confirm whether BCG vaccination can confer a protective effect against SARS-CoV-2 infection.

Authors

Magali Noval Rivas, Joseph E. Ebinger, Min Wu, Nancy Sun, Jonathan Braun, Kimia Sobhani, Jennifer E. Van Eyk, Susan Cheng, Moshe Arditi

×

Total views: 2917


Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells
Ilkka Liikanen, … , Deborah A. Witherden, Ananda W. Goldrath
Ilkka Liikanen, … , Deborah A. Witherden, Ananda W. Goldrath
Published April 1, 2021
Citation Information: J Clin Invest. 2021;131(7):e143729. https://doi.org/10.1172/JCI143729.
View: Text | PDF
Research Article Immunology Therapeutics

Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells

  • Text
  • PDF
Abstract

Adoptive T cell therapies (ACTs) hold great promise in cancer treatment, but low overall response rates in patients with solid tumors underscore remaining challenges in realizing the potential of this cellular immunotherapy approach. Promoting CD8+ T cell adaptation to tissue residency represents an underutilized but promising strategy to improve tumor-infiltrating lymphocyte (TIL) function. Here, we report that deletion of the HIF negative regulator von Hippel-Lindau (VHL) in CD8+ T cells induced HIF-1α/HIF-2α–dependent differentiation of tissue-resident memory–like (Trm-like) TILs in mouse models of malignancy. VHL-deficient TILs accumulated in tumors and exhibited a core Trm signature despite an exhaustion-associated phenotype, which led to retained polyfunctionality and response to αPD-1 immunotherapy, resulting in tumor eradication and protective tissue-resident memory. VHL deficiency similarly facilitated enhanced accumulation of chimeric antigen receptor (CAR) T cells with a Trm-like phenotype in tumors. Thus, HIF activity in CD8+ TILs promotes accumulation and antitumor activity, providing a new strategy to enhance the efficacy of ACTs.

Authors

Ilkka Liikanen, Colette Lauhan, Sara Quon, Kyla Omilusik, Anthony T. Phan, Laura Barceló Bartrolí, Amir Ferry, John Goulding, Joyce Chen, James P. Scott-Browne, Jason T. Yustein, Nicole E. Scharping, Deborah A. Witherden, Ananda W. Goldrath

×

Total views: 2653


Recent endemic coronavirus infection is associated with less-severe COVID-19
Manish Sagar, … , Laura F. White, Joseph P. Mizgerd
Manish Sagar, … , Laura F. White, Joseph P. Mizgerd
Published September 30, 2020
Citation Information: J Clin Invest. 2021;131(1):e143380. https://doi.org/10.1172/JCI143380.
View: Text | PDF
Concise Communication COVID-19

Recent endemic coronavirus infection is associated with less-severe COVID-19

  • Text
  • PDF
Abstract

Four different endemic coronaviruses (eCoVs) are etiologic agents for the seasonal common cold, and these eCoVs share extensive sequence homology with human SARS coronavirus 2 (SARS-CoV-2). Here, we show that individuals with, as compared with those without, a recent documented infection with eCoV were tested at greater frequency for respiratory infections but had a similar rate of SARS-CoV-2 acquisition. Importantly, the patients with a previously detected eCoV had less-severe coronavirus disease 2019 (COVID-19) illness. Our observations suggest that preexisting immune responses against endemic human coronaviruses can mitigate disease manifestations from SARS-CoV-2 infection.

Authors

Manish Sagar, Katherine Reifler, Michael Rossi, Nancy S. Miller, Pranay Sinha, Laura F. White, Joseph P. Mizgerd

×

Total views: 2288


Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus
Gautam Sule, … , Mary X. O’Riordan, Jason S. Knight
Gautam Sule, … , Mary X. O’Riordan, Jason S. Knight
Published February 9, 2021
Citation Information: J Clin Invest. 2021;131(7):e137866. https://doi.org/10.1172/JCI137866.
View: Text | PDF
Research Article Autoimmunity Immunology

Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus

  • Text
  • PDF
Abstract

Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex–stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex–mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.

Authors

Gautam Sule, Basel H. Abuaita, Paul A. Steffes, Andrew T. Fernandes, Shanea K. Estes, Craig Dobry, Deepika Pandian, Johann E. Gudjonsson, J. Michelle Kahlenberg, Mary X. O’Riordan, Jason S. Knight

×

Total views: 2156


Functional characterization of CD4+ T-cell receptors cross-reactive for SARS-CoV-2 and endemic coronaviruses
Arbor G. Dykema, … , Joel N. Blankson, Kellie N. Smith
Arbor G. Dykema, … , Joel N. Blankson, Kellie N. Smith
Published April 8, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146922.
View: Text | PDF
Clinical Medicine In-Press Preview COVID-19 Immunology

Functional characterization of CD4+ T-cell receptors cross-reactive for SARS-CoV-2 and endemic coronaviruses

  • Text
  • PDF
Abstract

Background. Recent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to cross-recognition by T-cells specific for common cold coronaviruses (CCCs). True T-cell cross-reactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2. Methods. We used the ViraFEST platform to identify T cell responses cross-reactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC cross-reactivity and assessments of functional avidity were performed using a TCR cloning and transfection system. Results. Memory CD4+ T-cell clonotypes that cross-recognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Cross-reactive T-cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to mono-specific CD4+ T-cells, which was consistent with lower functional avidity of their TCRs for SARS CoV-2 relative to CCC. Conclusions. For the first time, our data confirm the existence of unique memory CD4+ T cell clonotypes cross-recognizing SARS-CoV-2 and CCCs. The lower avidity of cross-reactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that pre-existing CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these cross-reactive T-cell responses impact clinical outcomes in COVID-19 patients.

Authors

Arbor G. Dykema, Boyang Zhang, Bezawit A. Woldemeskel, Caroline C. Garliss, Laurene S. Cheung, Dilshad Choudhury, Jiajia Zhang, Luis Aparicio, Sadhana Bom, Rufiaat Rashid, Justina X. Caushi, Emily Han-Chung Hsiue, Katherine Cascino, Elizabeth A. Thompson, Abena K. Kwaa, Dipika Singh, Sampriti Thapa, Alvaro A. Ordonez, Andrew Pekosz, Franco R. D'Alessio, Jonathan D. Powell, Srinivasan Yegnasubramanian, Shibin Zhou, Drew M. Pardoll, Hongkai Ji, Andrea L. Cox, Joel N. Blankson, Kellie N. Smith

×

Total views: 2006


Clinical and immunological features of severe and moderate coronavirus disease 2019
Guang Chen, … , Jianping Zhao, Qin Ning
Guang Chen, … , Jianping Zhao, Qin Ning
Published March 27, 2020
Citation Information: J Clin Invest. 2020;130(5):2620-2629. https://doi.org/10.1172/JCI137244.
View: Text | PDF
Clinical Medicine COVID-19 Immunology Infectious disease

Clinical and immunological features of severe and moderate coronavirus disease 2019

  • Text
  • PDF
Abstract

BACKGROUND Since December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, and is now becoming a global threat. We aimed to delineate and compare the immunological features of severe and moderate COVID-19.METHODS In this retrospective study, the clinical and immunological characteristics of 21 patients (17 male and 4 female) with COVID-19 were analyzed. These patients were classified as severe (11 cases) and moderate (10 cases) according to the guidelines released by the National Health Commission of China.RESULTS The median age of severe and moderate cases was 61.0 and 52.0 years, respectively. Common clinical manifestations included fever, cough, and fatigue. Compared with moderate cases, severe cases more frequently had dyspnea, lymphopenia, and hypoalbuminemia, with higher levels of alanine aminotransferase, lactate dehydrogenase, C-reactive protein, ferritin, and D-dimer as well as markedly higher levels of IL-2R, IL-6, IL-10, and TNF-α. Absolute numbers of T lymphocytes, CD4+ T cells, and CD8+ T cells decreased in nearly all the patients, and were markedly lower in severe cases (294.0, 177.5, and 89.0 × 106/L, respectively) than moderate cases (640.5, 381.5, and 254.0 × 106/L, respectively). The expression of IFN-γ by CD4+ T cells tended to be lower in severe cases (14.1%) than in moderate cases (22.8%).CONCLUSION The SARS-CoV-2 infection may affect primarily T lymphocytes, particularly CD4+ and CD8+ T cells, resulting in a decrease in numbers as well as IFN-γ production by CD4+ T cells. These potential immunological markers may be of importance because of their correlation with disease severity in COVID-19.TRIAL REGISTRATION This is a retrospective observational study without a trial registration number.FUNDING This work is funded by grants from Tongji Hospital for the Pilot Scheme Project, and partly supported by the Chinese National Thirteenth Five Years Project in Science and Technology for Infectious Disease (2017ZX10202201).

Authors

Guang Chen, Di Wu, Wei Guo, Yong Cao, Da Huang, Hongwu Wang, Tao Wang, Xiaoyun Zhang, Huilong Chen, Haijing Yu, Xiaoping Zhang, Minxia Zhang, Shiji Wu, Jianxin Song, Tao Chen, Meifang Han, Shusheng Li, Xiaoping Luo, Jianping Zhao, Qin Ning

×

Total views: 1909


Endoplasmic reticulum–associated degradation is required for nephrin maturation and kidney glomerular filtration function
Sei Yoshida, … , Markus Bitzer, Ling Qi
Sei Yoshida, … , Markus Bitzer, Ling Qi
Published February 16, 2021
Citation Information: J Clin Invest. 2021;131(7):e143988. https://doi.org/10.1172/JCI143988.
View: Text | PDF
Research Article Cell biology Nephrology

Endoplasmic reticulum–associated degradation is required for nephrin maturation and kidney glomerular filtration function

  • Text
  • PDF
Abstract

Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.

Authors

Sei Yoshida, Xiaoqiong Wei, Gensheng Zhang, Christopher L. O’Connor, Mauricio Torres, Zhangsen Zhou, Liangguang Lin, Rajasree Menon, Xiaoxi Xu, Wenyue Zheng, Yi Xiong, Edgar Otto, Chih-Hang Anthony Tang, Rui Hua, Rakesh Verma, Hiroyuki Mori, Yang Zhang, Chih-Chi Andrew Hu, Ming Liu, Puneet Garg, Jeffrey B. Hodgin, Shengyi Sun, Markus Bitzer, Ling Qi

×

Total views: 1781


Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality
William R. Morgenlander, … , Aaron A.R. Tobian, H. Benjamin Larman
William R. Morgenlander, … , Aaron A.R. Tobian, H. Benjamin Larman
Published February 11, 2021
Citation Information: J Clin Invest. 2021;131(7):e146927. https://doi.org/10.1172/JCI146927.
View: Text | PDF
Research Article Immunology Infectious disease

Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality

  • Text
  • PDF
Abstract

SARS-CoV-2 (CoV2) antibody therapies, including COVID-19 convalescent plasma (CCP), monoclonal antibodies, and hyperimmune globulin, are among the leading treatments for individuals with early COVID-19 infection. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the 4 endemic human coronavirus (HCoV) genomes in 126 CCP donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies against CoV2. We also found that plasma preferentially reactive to the CoV2 spike receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a 2-peptide serosignature that identifies plasma donations with high anti-spike titer, but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting desired therapeutics and understanding the complex immune responses elicited by CoV2 infection.

Authors

William R. Morgenlander, Stephanie N. Henson, Daniel R. Monaco, Athena Chen, Kirsten Littlefield, Evan M. Bloch, Eric Fujimura, Ingo Ruczinski, Andrew R. Crowley, Harini Natarajan, Savannah E. Butler, Joshua A. Weiner, Mamie Z. Li, Tania S. Bonny, Sarah E. Benner, Ashwin Balagopal, David Sullivan, Shmuel Shoham, Thomas C. Quinn, Susan H. Eshleman, Arturo Casadevall, Andrew D. Redd, Oliver Laeyendecker, Margaret E. Ackerman, Andrew Pekosz, Stephen J. Elledge, Matthew Robinson, Aaron A.R. Tobian, H. Benjamin Larman

×

Total views: 1567


UDP-glucose and P2Y14 receptor amplify allergen-induced airway eosinophilia
Tadeusz P. Karcz, … , Kenneth A. Jacobson, Donald N. Cook
Tadeusz P. Karcz, … , Kenneth A. Jacobson, Donald N. Cook
Published April 1, 2021
Citation Information: J Clin Invest. 2021;131(7):e140709. https://doi.org/10.1172/JCI140709.
View: Text | PDF
Research Article Inflammation

UDP-glucose and P2Y14 receptor amplify allergen-induced airway eosinophilia

  • Text
  • PDF
Abstract

Airway eosinophilia is a hallmark of allergic asthma and is associated with mucus production, airway hyperresponsiveness, and shortness of breath. Although glucocorticoids are widely used to treat asthma, their prolonged use is associated with several side effects. Furthermore, many individuals with eosinophilic asthma are resistant to glucocorticoid treatment, and they have an unmet need for novel therapies. Here, we show that UDP-glucose (UDP-G), a nucleotide sugar, is selectively released into the airways of allergen-sensitized mice upon their subsequent challenge with that same allergen. Mice lacking P2Y14R, the receptor for UDP-G, had decreased airway eosinophilia and airway hyperresponsiveness compared with wild-type mice in a protease-mediated model of asthma. P2Y14R was dispensable for allergic sensitization and for the production of type 2 cytokines in the lung after challenge. However, UDP-G increased chemokinesis in eosinophils and enhanced their response to the eosinophil chemoattractant, CCL24. In turn, eosinophils triggered the release of UDP-G into the airway, thereby amplifying eosinophilic recruitment. This positive feedback loop was sensitive to therapeutic intervention, as a small molecule antagonist of P2Y14R inhibited airway eosinophilia. These findings thus reveal a pathway that can be therapeutically targeted to treat asthma exacerbations and glucocorticoid-resistant forms of this disease.

Authors

Tadeusz P. Karcz, Gregory S. Whitehead, Keiko Nakano, Hideki Nakano, Sara A. Grimm, Jason G. Williams, Leesa J. Deterding, Kenneth A. Jacobson, Donald N. Cook

×

Total views: 1553

Show more results

Type 1 diabetes mellitus: much progress, many opportunities
Alvin C. Powers
Alvin C. Powers
Published March 24, 2021
Citation Information: J Clin Invest. 2021;131(8):e142242. https://doi.org/10.1172/JCI142242.
View: Text | PDF
Review Series

Type 1 diabetes mellitus: much progress, many opportunities

  • Text
  • PDF
Abstract

As part of the centennial celebration of insulin’s discovery, this review summarizes the current understanding of the genetics, pathogenesis, treatment, and outcomes in type 1 diabetes (T1D). T1D results from an autoimmune response that leads to destruction of the β cells in the pancreatic islet and requires lifelong insulin therapy. While much has been learned about T1D, it is now clear that there is considerable heterogeneity in T1D with regard to genetics, pathology, response to immune-based therapies, clinical course, and susceptibility to diabetes-related complications. This Review highlights knowledge gaps and opportunities to improve the understanding of T1D pathogenesis and outlines emerging therapies to treat or prevent T1D and reduce the burden of T1D.

Authors

Alvin C. Powers

×

Total views: 2198


Changes in the National Cancer Institute’s R01 workforce: growth, aging, retention, and policy implications
Melissa D. Antman, … , James G. Corrigan, L. Michelle Bennett
Melissa D. Antman, … , James G. Corrigan, L. Michelle Bennett
Published April 1, 2021
Citation Information: J Clin Invest. 2021;131(7):e146925. https://doi.org/10.1172/JCI146925.
View: Text | PDF
Review

Changes in the National Cancer Institute’s R01 workforce: growth, aging, retention, and policy implications

  • Text
  • PDF
Abstract

Scientific progress and discovery of preventions and cures for life-threatening diseases depend on the vitality of the biomedical research workforce. We analyzed the workforce of cancer researchers applying for and receiving R01 awards from the National Cancer Institute (NCI) from fiscal years 1990 to 2016, the last year prior to implementation of the Next Generation Researchers Initiative. Here we report that the NCI R01 Principal Investigator (PI) workforce expanded 1.4-fold and aged over this time frame. We tracked 9 age groups and found that the number of PIs in the 3 oldest groups increased dramatically, in contrast with the younger groups. Sustained increases in the number of funded older PIs stemmed from increases in the number of older PIs submitting applications, rather than higher funding rates for older PIs. The decline in the number of funded younger PIs was driven in part by (a) a marked increase in time from PhD degree to first R01 application and award, as well as (b) a decrease in retention of PIs in the funded R01 workforce beyond their first R01 award. The NCI is using these and other analyses to inform strategies and policies for attracting, supporting, and retaining meritorious early-career researchers.

Authors

Melissa D. Antman, Roman Gorelik, Amy Kennedy, Grace F. Liou, Eddie N. Billingslea, James G. Corrigan, L. Michelle Bennett

×

Total views: 1578


Neutrophil dynamics in the tumor microenvironment
Amanda J. McFarlane, … , Seth B. Coffelt, Leo M. Carlin
Amanda J. McFarlane, … , Seth B. Coffelt, Leo M. Carlin
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143759. https://doi.org/10.1172/JCI143759.
View: Text | PDF
Review Series

Neutrophil dynamics in the tumor microenvironment

  • Text
  • PDF
Abstract

The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.

Authors

Amanda J. McFarlane, Frédéric Fercoq, Seth B. Coffelt, Leo M. Carlin

×

Total views: 1328


Genetic therapies for the first molecular disease
Phillip A. Doerfler, … , John F. Tisdale, Mitchell J. Weiss
Phillip A. Doerfler, … , John F. Tisdale, Mitchell J. Weiss
Published April 15, 2021
Citation Information: J Clin Invest. 2021;131(8):e146394. https://doi.org/10.1172/JCI146394.
View: Text | PDF
Review

Genetic therapies for the first molecular disease

  • Text
  • PDF
Abstract

Sickle cell disease (SCD) is a monogenic disorder characterized by recurrent episodes of severe bone pain, multi-organ failure, and early mortality. Although medical progress over the past several decades has improved clinical outcomes and offered cures for many affected individuals living in high-income countries, most SCD patients still experience substantial morbidity and premature death. Emerging technologies to manipulate somatic cell genomes and insights into the mechanisms of developmental globin gene regulation are generating potentially transformative approaches to cure SCD by autologous hematopoietic stem cell (HSC) transplantation. Key components of current approaches include ethical informed consent, isolation of patient HSCs, in vitro genetic modification of HSCs to correct the SCD mutation or circumvent its damaging effects, and reinfusion of the modified HSCs following myelotoxic bone marrow conditioning. Successful integration of these components into effective therapies requires interdisciplinary collaborations between laboratory researchers, clinical caregivers, and patients. Here we summarize current knowledge and research challenges for each key component, emphasizing that the best approaches have yet to be developed.

Authors

Phillip A. Doerfler, Akshay Sharma, Jerlym S. Porter, Yan Zheng, John F. Tisdale, Mitchell J. Weiss

×

Total views: 1178


Leveraging microenvironmental synthetic lethalities to treat cancer
Kevin J. Metcalf, … , Zena Werb, Valerie M. Weaver
Kevin J. Metcalf, … , Zena Werb, Valerie M. Weaver
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143765. https://doi.org/10.1172/JCI143765.
View: Text | PDF
Review Series

Leveraging microenvironmental synthetic lethalities to treat cancer

  • Text
  • PDF
Abstract

Treatment resistance leads to cancer patient mortality. Therapeutic approaches that employ synthetic lethality to target mutational vulnerabilities in key tumor cell signaling pathways have proven effective in overcoming therapeutic resistance in some cancers. Yet, tumors are organs composed of malignant cells residing within a cellular and noncellular stroma. Tumor evolution and resistance to anticancer treatment are mediated through a dynamic and reciprocal dialogue with the tumor microenvironment (TME). Accordingly, expanding tumor cell synthetic lethality to encompass contextual synthetic lethality has the potential to eradicate tumors by targeting critical TME circuits that promote tumor progression and therapeutic resistance. In this Review, we summarize current knowledge about the TME and discuss its role in treatment. We outline the concept of tumor cell–specific synthetic lethality and describe therapeutic approaches to expand this paradigm to leverage TME synthetic lethality to improve cancer therapy.

Authors

Kevin J. Metcalf, Alaa Alazzeh, Zena Werb, Valerie M. Weaver

×

Total views: 1025


Pharmacological treatment of hyperglycemia in type 2 diabetes
Simeon I. Taylor, … , Zhinous Shahidzadeh Yazdi, Amber L. Beitelshees
Simeon I. Taylor, … , Zhinous Shahidzadeh Yazdi, Amber L. Beitelshees
Published January 19, 2021
Citation Information: J Clin Invest. 2021;131(2):e142243. https://doi.org/10.1172/JCI142243.
View: Text | PDF
Review Series

Pharmacological treatment of hyperglycemia in type 2 diabetes

  • Text
  • PDF
Abstract

Diabetes mellitus is a major public health problem, affecting about 10% of the population. Pharmacotherapy aims to protect against microvascular complications, including blindness, end-stage kidney disease, and amputations. Landmark clinical trials have demonstrated that intensive glycemic control slows progression of microvascular complications (retinopathy, nephropathy, and neuropathy). Long-term follow-up has demonstrated that intensive glycemic control also decreases risk of macrovascular disease, albeit rigorous evidence of macrovascular benefit did not emerge for over a decade. The US FDA’s recent requirement for dedicated cardiovascular outcome trials ushered in a golden age for understanding the clinical profiles of new type 2 diabetes drugs. Some clinical trials with sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP1) receptor agonists reported data demonstrating cardiovascular benefit (decreased risk of major adverse cardiovascular events and hospitalization for heart failure) and slower progression of diabetic kidney disease. This Review discusses current guidelines for use of the 12 classes of drugs approved to promote glycemic control in patients with type 2 diabetes. The Review also anticipates future developments with potential to improve the standard of care: availability of generic dipeptidylpeptidase-4 (DPP4) inhibitors and SGLT2 inhibitors; precision medicine to identify the best drugs for individual patients; and new therapies to protect against chronic complications of diabetes.

Authors

Simeon I. Taylor, Zhinous Shahidzadeh Yazdi, Amber L. Beitelshees

×

Total views: 1003


Deployment of convalescent plasma for the prevention and treatment of COVID-19
Evan M. Bloch, … , Jeffrey A. Bailey, Aaron A.R. Tobian
Evan M. Bloch, … , Jeffrey A. Bailey, Aaron A.R. Tobian
Published April 7, 2020
Citation Information: J Clin Invest. 2020;130(6):2757-2765. https://doi.org/10.1172/JCI138745.
View: Text | PDF
Review

Deployment of convalescent plasma for the prevention and treatment of COVID-19

  • Text
  • PDF
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS–CoV-2), the cause of coronavirus disease 2019 (COVID-19), has spurred a global health crisis. To date, there are no proven options for prophylaxis for those who have been exposed to SARS–CoV-2, nor therapy for those who develop COVID-19. Immune (i.e., “convalescent”) plasma refers to plasma that is collected from individuals following resolution of infection and development of antibodies. Passive antibody administration through transfusion of convalescent plasma may offer the only short-term strategy for conferring immediate immunity to susceptible individuals. There are numerous examples in which convalescent plasma has been used successfully as postexposure prophylaxis and/or treatment of infectious diseases, including other outbreaks of coronaviruses (e.g., SARS-1, Middle East respiratory syndrome [MERS]). Convalescent plasma has also been used in the COVID-19 pandemic; limited data from China suggest clinical benefit, including radiological resolution, reduction in viral loads, and improved survival. Globally, blood centers have robust infrastructure for undertaking collections and constructing inventories of convalescent plasma to meet the growing demand. Nonetheless, there are nuanced challenges, both regulatory and logistical, spanning donor eligibility, donor recruitment, collections, and transfusion itself. Data from rigorously controlled clinical trials of convalescent plasma are also few, underscoring the need to evaluate its use objectively for a range of indications (e.g., prevention vs. treatment) and patient populations (e.g., age, comorbid disease). We provide an overview of convalescent plasma, including evidence of benefit, regulatory considerations, logistical work flow, and proposed clinical trials, as scale-up is brought underway to mobilize this critical resource.

Authors

Evan M. Bloch, Shmuel Shoham, Arturo Casadevall, Bruce S. Sachais, Beth Shaz, Jeffrey L. Winters, Camille van Buskirk, Brenda J. Grossman, Michael Joyner, Jeffrey P. Henderson, Andrew Pekosz, Bryan Lau, Amy Wesolowski, Louis Katz, Hua Shan, Paul G. Auwaerter, David Thomas, David J. Sullivan, Nigel Paneth, Eric Gehrie, Steven Spitalnik, Eldad A. Hod, Lewis Pollack, Wayne T. Nicholson, Liise-anne Pirofski, Jeffrey A. Bailey, Aaron A.R. Tobian

×

Total views: 947


Exploiting bone niches: progression of disseminated tumor cells to metastasis
Aaron M. Muscarella, … , Sarah M. Waldvogel, Xiang H.-F. Zhang
Aaron M. Muscarella, … , Sarah M. Waldvogel, Xiang H.-F. Zhang
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143764. https://doi.org/10.1172/JCI143764.
View: Text | PDF
Review Series

Exploiting bone niches: progression of disseminated tumor cells to metastasis

  • Text
  • PDF
Abstract

Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.

Authors

Aaron M. Muscarella, Sergio Aguirre, Xiaoxin Hao, Sarah M. Waldvogel, Xiang H.-F. Zhang

×

Total views: 855


The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression
Asurayya Worrede, … , Stephen M. Douglass, Ashani T. Weeraratna
Asurayya Worrede, … , Stephen M. Douglass, Ashani T. Weeraratna
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143763. https://doi.org/10.1172/JCI143763.
View: Text | PDF
Review Series

The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression

  • Text
  • PDF
Abstract

Continued thinning of the atmospheric ozone, which protects the earth from damaging ultraviolet radiation (UVR), will result in elevated levels of UVR reaching the earth’s surface, leading to a drastic increase in the incidence of skin cancer. In addition to promoting carcinogenesis in skin cells, UVR is a potent extrinsic driver of age-related changes in the skin known as “photoaging.” We are in the preliminary stages of understanding of the role of intrinsic aging in melanoma, and the tumor-permissive effects of photoaging on the skin microenvironment remain largely unexplored. In this Review, we provide an overview of the impact of UVR on the skin microenvironment, addressing changes that converge or diverge with those observed in intrinsic aging. Intrinsic and extrinsic aging promote phenotypic changes to skin cell populations that alter fundamental processes such as melanogenesis, extracellular matrix deposition, inflammation, and immune response. Given the relevance of these processes in cancer, we discuss how photoaging might render the skin microenvironment permissive to melanoma progression.

Authors

Asurayya Worrede, Stephen M. Douglass, Ashani T. Weeraratna

×

Total views: 791


Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms
Javid Moslehi, … , Lorenzo Galluzzi, Richard N. Kitsis
Javid Moslehi, … , Lorenzo Galluzzi, Richard N. Kitsis
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e145186. https://doi.org/10.1172/JCI145186.
View: Text | PDF
Review

Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms

  • Text
  • PDF
Abstract

Immune checkpoint inhibitors (ICIs) have transformed the treatment of various cancers, including malignancies once considered untreatable. These agents, however, are associated with inflammation and tissue damage in multiple organs. Myocarditis has emerged as a serious ICI-associated toxicity, because, while seemingly infrequent, it is often fulminant and lethal. The underlying basis of ICI-associated myocarditis is not completely understood. While the importance of T cells is clear, the inciting antigens, why they are recognized, and the mechanisms leading to cardiac cell injury remain poorly characterized. These issues underscore the need for basic and clinical studies to define pathogenesis, identify predictive biomarkers, improve diagnostic strategies, and develop effective treatments. An improved understanding of ICI-associated myocarditis will provide insights into the equilibrium between the immune and cardiovascular systems.

Authors

Javid Moslehi, Andrew H. Lichtman, Arlene H. Sharpe, Lorenzo Galluzzi, Richard N. Kitsis

×

Total views: 776

Show more results

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts