BACKGROUND. Axonal degeneration is believed to be an early hallmark of Alzheimer’s disease (AD). This study investigated the temporal trajectory of axonal loss and its association with cognitive and functional decline using diffusion MRI-derived Axonal Density Index (dMRI-ADI). METHODS. Longitudinal dMRI, CSF and PET data from the ADNI were analyzed, including 117 cognitively normal (CN) and 88 impaired (CI) subjects, consisting of 74 mild cognitive impairment (MCI) and 14 AD individuals. Linear mixed-effects models examined group differences as well as associations between baseline and longitudinal changes in ADI, CSF or PET biomarkers and clinical outcomes. Results derived from larger CSF (n=527) and PET (tau-PET: n=870; amyloid-PET: n=1581) data were also presented. RESULTS. Compared to CN, the CI group exhibited significantly lower baseline ADI values and steeper longitudinal decline (p<10–⁶). Lower baseline ADI predicted faster cognitive and functional decline in the CI group (MMSE: p=0.03; CDR-SB: p<10–⁴), and longitudinal decreases in ADI were associated with worsening clinical outcomes (MMSE: p=0.001; CDR-SB: p<10–¹²). Compared to CSF and PET biomarkers, ADI demonstrated superior sensitivity in tracking disease progression and matched these biomarkers in predicting future cognitive and functional decline. Furthermore, decreases in ADI were significantly associated with declines in clinical outcomes; an association observed only with amyloid-PET, but not CSF biomarkers. CONCLUSION. Axonal degeneration is an early and clinically meaningful feature of AD. ADI is a promising noninvasive biomarker for early detection, prognosis, and disease monitoring. TRIAL REGISTRATION. ClinicalTrials.gov NCT00106899. FUNDING. This work was supported by the National Institute on Aging IRP.
Zhaoyuan Gong, John P. Laporte, Alexander Y. Guo, Murat Bilgel, Jonghyun Bae, Noam Y. Fox, Angelique de Rouen, Nathan Zhang, Aaliya Taranath, Rafael de Cabo, Josephine M. Egan, Luigi Ferrucci, Mustapha Bouhrara
William Ang, Travis D. Kerr, Ananya Kodiboyena, Cristina Valero, Joris L. Vos, Vladimir Makarov, Alex A. Adjei, Luc G.T. Morris, Stephanie L. Schmit, Natalie L. Silver, Sujata Patil, Daniel J. McGrail
Nociception involves complex signaling, yet intrinsic mechanisms bidirectionally regulating this process remain unexplored. Here, we show that the fibroblast growth factor 13 (FGF13)/Nav1.7 protein–protein interaction (PPI) complex bidirectionally modulates nociception, and that the FGF13/Nav1.7 ratio is upregulated in type 2 diabetic neuropathy (T2DN). PW164, an FGF13/Nav1.7 channel C-terminal tail domain (CTD) PPI interface inhibitor, which reduces complex assembly, selectively suppressed Na+ currents sensitized by capsaicin-induced activation of TRPV1 channels in human induced pluripotent stem cell–derived (hIPSC-derived) sensory neurons and inhibited mechanical and thermal hyperalgesia in mice. FGF13 silencing mimics PW164 activity in culture and in vivo. Conversely, ZL192, an FGF13 ligand that stabilizes FGF13/Nav1.7 CTD assembly, sensitized Na+ currents in hIPSC-derived sensory neurons and exerted pronociceptive behavioral responses in mice. ZL192’s effects were abrogated by FGF13 silencing in culture and in vivo and recapitulated by FGF13 overexpression. In a model of T2DN, PW164 injection reduced mechanical hyperalgesia locally and contralaterally without systemic side effects. In donor-derived dorsal root ganglia neurons, FGF13 and Nav1.7 proteins colocalized, and the FGF13/Nav1.7 protein ratio was upregulated in patients with T2DN. Lastly, we found that SCN9A variant V1831F, associated with painless diabetic neuropathy, abolished PW164-directed modulation of the FGF13/Nav1.7 PPI interface. Thus, FGF13 is a rheostat of nociception and promising therapeutic target for diabetic neuropathy pain.
Aditya K. Singh, Matteo Bernabucci, Nolan M. Dvorak, Zahra Haghighijoo, Jessica Di Re, Nana A. Goode, Feni K. Kadakia, Laura A. Maile, Olumarotimi O. Folorunso, Paul A. Wadsworth, Cynthia M. Tapia, Pingyuan Wang, Jigong Wang, Haiying Chen, Yu Xue, Jully Singh, Kali Hankerd, Isaac J. Gamez, Makenna Kager, Vincent Truong, Patrick Walsh, Stephanie I. Shiers, Nishka Kuttanna, Hanyue Liao, Margherita Marchi, Erika Salvi, Ilaria D’Amato, Daniela D’Amico, Parsa Arman, Catharina G. Faber, Rayaz A. Malik, Marina de Tommaso, Dan Ziegler, Krishna Rajarathnam, Thomas A. Green, Peter M. Grace, Matthew R. Sapio, Michael J. Iadarola, Gregory D. Cuny, Diana S. Chow, Giuseppe Lauria Pinter, Steve Davidson, Dustin P. Green, Jun-Ho La, Jin Mo Chung, Jia Zhou, Theodore J. Price, Elizabeth Salisbury, Subo Yuan, Fernanda Laezza
Air pollution is a serious environmental threat to public health; however, the molecular basis underlying its detrimental effects on respiratory fitness remains poorly understood. Here, we show that exposure to particulate matter ≤2.5 µm (PM2.5), a significant fraction of air pollutants, induces the generation of reactive aldehyde species in the airway. We identified aldehyde dehydrogenase 1A1 (ALDH1A1), which is selectively expressed in airway epithelium, as an enzyme responsible for detoxifying these reactive aldehyde species. Loss of ALDH1A1 function results in the accumulation of aldehyde adducts in the airway, which selectively impairs mucociliary clearance (MCC), a critical defense mechanism against respiratory pathogens. Thus, ALDH1A1-deficient mice pre-exposed to PM2.5 exhibited increased susceptibility to pneumonia. Conversely, pharmacological enhancement of ALDH1A1 activity promoted the restoration of MCC function. These findings elucidate the critical role of aldehyde metabolism in protecting against PM2.5 exposure, offering a potential target to mitigate the negative health consequences of air pollution.
Noriko Shinjyo, Haruna Kimura, Tomomi Yoshihara, Jun Suzuki, Masaya Yamaguchi, Shigetada Kawabata, Yasutaka Okabe
No posts were found with this tag.