Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Reproductive biologies

  • 56 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Next →
Karyopherin α deficiency contributes to human preimplantation embryo arrest
Wenjing Wang, … , Lei Wang, Qing Sang
Wenjing Wang, … , Lei Wang, Qing Sang
Published January 17, 2023
Citation Information: J Clin Invest. 2023;133(2):e159951. https://doi.org/10.1172/JCI159951.
View: Text | PDF

Karyopherin α deficiency contributes to human preimplantation embryo arrest

  • Text
  • PDF
Abstract

Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene–based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2–/– female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2–/– mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2–/– mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.

Authors

Wenjing Wang, Yoichi Miyamoto, Biaobang Chen, Juanzi Shi, Feiyang Diao, Wei Zheng, Qun Li, Lan Yu, Lin Li, Yao Xu, Ling Wu, Xiaoyan Mao, Jing Fu, Bin Li, Zheng Yan, Rong Shi, Xia Xue, Jian Mu, Zhihua Zhang, Tianyu Wu, Lin Zhao, Weijie Wang, Zhou Zhou, Jie Dong, Qiaoli Li, Li Jin, Lin He, Xiaoxi Sun, Ge Lin, Yanping Kuang, Lei Wang, Qing Sang

×

Impaired renal reserve contributes to preeclampsia via the kynurenine and soluble fms-like tyrosine kinase 1 pathway
Vincent Dupont, … , Ravi Thadhani, S. Ananth Karumanchi
Vincent Dupont, … , Ravi Thadhani, S. Ananth Karumanchi
Published August 9, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI158346.
View: Text | PDF

Impaired renal reserve contributes to preeclampsia via the kynurenine and soluble fms-like tyrosine kinase 1 pathway

  • Text
  • PDF
Abstract

To understand how kidney donation leads to excess preeclampsia risk, we studied pregnant outbred mice with prior uninephrectomy and compared them to sham-treated littermates carrying both kidneys. During pregnancy, uninephrectomized mice failed to achieve physiological increase of glomerular filtration rate, and during late gestation developed hypertension, albuminuria, glomerular endothelial damage, and excess placental production of soluble fms-like tyrosine kinase 1 (sFLT1), an anti-angiogenic protein implicated in the pathogenesis of preeclampsia. Maternal hypertension in uninephrectomized mice was associated with low plasma volumes, increased rate of fetal resorption, impaired spiral artery remodeling and placental ischemia. To evaluate potential mechanisms, we studied plasma metabolite changes using mass spectrometry and noted that L-kynurenine, a metabolite of L-tryptophan, was upregulated ~3 fold during pregnancy when compared to pre-pregnant concentrations in the same animals, consistent with prior reports suggesting a protective role for L-kynurenine in placental health. However, uninephrectomized mice failed to upregulate L-kynurenine during pregnancy; furthermore, when uninephrectomized mice were fed L-kynurenine in drinking water throughout pregnancy, their preeclampsia-like state was rescued, including reversal of placental ischemia and normalization of sFLT1 levels. In aggregate, we provide a mechanistic basis for how impaired renal reserve and resulting failure to upregulate L-kynurenine during pregnancy can lead to impaired placentation, placental hypoperfusion, anti-angiogenic state and subsequent preeclampsia.

Authors

Vincent Dupont, Anders H. Berg, Michifumi Yamashita, Chengqun Huang, Ambart E. Covarrubias, Shafat Ali, Aleksandr Stotland, Jennifer E. Van Eyk, Belinda Jim, Ravi Thadhani, S. Ananth Karumanchi

×

Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex
Cyril Djari, … , Antoine Martinez, Anne-Marie Lefrançois-Martinez
Cyril Djari, … , Antoine Martinez, Anne-Marie Lefrançois-Martinez
Published December 1, 2021
Citation Information: J Clin Invest. 2021;131(23):e146910. https://doi.org/10.1172/JCI146910.
View: Text | PDF

Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex

  • Text
  • PDF
Abstract

Large-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions. We demonstrate that the Prkar1a mutation was required in both stromal and Sertoli cells for the occurrence of LCCSCTs. Integrative analyses comparing transcriptomic, immunohistological data and phenotype of mutant mouse combinations led to the understanding of human LCCSCT pathogenesis and demonstrated PKA-induced paracrine molecular circuits in which the aberrant WNT4 signal production is a limiting step in shaping intratubular lesions and tumor expansion both in a mouse model and in human CNC testes.

Authors

Cyril Djari, Isabelle Sahut-Barnola, Amandine Septier, Ingrid Plotton, Nathanaëlle Montanier, Damien Dufour, Adrien Levasseur, James Wilmouth Jr., Jean-Christophe Pointud, Fabio R. Faucz, Crystal Kamilaris, Antoine-Guy Lopez, Florian Guillou, Amanda Swain, Seppo J. Vainio, Igor Tauveron, Pierre Val, Hervé Lefebvre, Constantine A. Stratakis, Antoine Martinez, Anne-Marie Lefrançois-Martinez

×

DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos
Yidong Chen, … , Lu Wen, Jin Huang
Yidong Chen, … , Lu Wen, Jin Huang
Published June 15, 2021
Citation Information: J Clin Invest. 2021;131(12):e146051. https://doi.org/10.1172/JCI146051.
View: Text | PDF

DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos

  • Text
  • PDF
Abstract

The discovery of embryonic cell–free DNA (cfDNA) in spent embryo culture media (SECM) has brought hope for noninvasive preimplantation genetic testing. However, the cellular origins of SECM cfDNA are not sufficiently understood, and methods for determining maternal DNA contamination are limited. Here, we performed whole-genome DNA methylation sequencing for SECM cfDNA. Our results demonstrated that SECM cfDNA was derived from blastocysts, cumulus cells, and polar bodies. We identified the cumulus-specific differentially methylated regions (DMRs) and oocyte/polar body–specific DMRs, and established an algorithm for deducing the cumulus, polar body, and net maternal DNA contamination ratios in SECM. We showed that DNA methylation sequencing accurately detected chromosome aneuploidy in SECM and distinguished SECM samples with low and high false negative rates and gender discordance rates, after integrating the origin analysis. Our work provides insights into the characterization of embryonic DNA in SECM and provides a perspective for noninvasive preimplantation genetic testing in reproductive medicine.

Authors

Yidong Chen, Yuan Gao, Jialin Jia, Liang Chang, Ping Liu, Jie Qiao, Fuchou Tang, Lu Wen, Jin Huang

×

Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine
Ofer Beharier, … , Michal Neeman, Michal Kovo
Ofer Beharier, … , Michal Neeman, Michal Kovo
Published May 20, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI150319.
View: Text | PDF | Corrigendum

Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine

  • Text
  • PDF
Abstract

BACKGROUND. The significant risks posed to mothers and fetuses by COVID-19 in pregnancy have sparked a worldwide debate surrounding the pros and cons of antenatal SARS-CoV-2 inoculation, as we lack sufficient evidence regarding vaccine effectiveness in pregnant women and their offspring. We aimed to provide substantial evidence for the effect of BNT162b2 mRNA vaccine versus native infection on maternal humoral, as well as transplacentally acquired fetal immune response, potentially providing newborn protection. METHODS. A multicenter study where parturients presenting for delivery were recruited at 8 medical centers across Israel and assigned to three study groups: vaccinated (n=86); PCR confirmed SARS-CoV-2 infected during pregnancy (n=65), and unvaccinated non-infected controls (n=62). Maternal and fetal blood samples were collected from parturients prior to delivery and from the umbilical cord following delivery, respectively. Sera IgG and IgM titers were measured using Milliplex MAP SARS-CoV-2 Antigen Panel (for S1, S2, RBD and N). RESULTS. BNT162b2 mRNA vaccine elicits strong maternal humoral IgG response (Anti-S and RBD) that crosses the placenta barrier and approaches maternal titers in the fetus within 15 days following the first dose. Maternal to neonatal anti-COVID-19 antibodies ratio did not differ when comparing sensitization (vaccine vs. infection). IgG transfer rate was significantly lower for third-trimester as compared to second trimester infection. Lastly, fetal IgM response was detected in 5 neonates, all in the infected group. CONCLUSIONS. Antenatal BNT162b2 mRNA vaccination induces a robust maternal humoral response that effectively transfers to the fetus, supporting the role of vaccination during pregnancy. FUNDING. Israel Science Foundation KillCorona grant 3777/19 (to MN, MK, SY, AM). Research grant from the Weizmann Institute Fondazione Henry Krenter (to MN).

Authors

Ofer Beharier, Romina Plitman Mayo, Tal Raz, Kira Nahum Sacks, Letizia Schreiber, Yael Suissa-Cohen, Rony Chen, Rachel Gomez-Tolub, Eran Hadar, Rinat Gabbay-Benziv, Yuval Jaffe Moshkovich, Tal Biron-Shental, Gil Shechter-Maor, Sivan Farladansky-Gershnabel, Hen Yitzhak Sela, Hedi Benyamini-Raischer, Nitzan D. Sela, Debra Goldman-Wohl, Ziv Shulman, Ariel Many, Haim Barr, Simcha Yagel, Michal Neeman, Michal Kovo

×

Severe SARS-CoV-2 placenta infection can impact neonatal outcome in the absence of vertical transmission
Fulvia Milena Cribiù, … , Joan Seoane, Paolo Nuciforo
Fulvia Milena Cribiù, … , Joan Seoane, Paolo Nuciforo
Published January 26, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI145427.
View: Text | PDF

Severe SARS-CoV-2 placenta infection can impact neonatal outcome in the absence of vertical transmission

  • Text
  • PDF
Abstract

The effect of SARS-CoV-2 infection on the pathophysiology of the placenta and its impact on pregnancy outcome has not yet been fully elucidated. Here, we present a comprehensive clinical, morphological, and molecular analysis of placental tissues from pregnant women with and without SARS-CoV-2 infection. SARS-CoV-2 could be detected in half of placental tissues from SARS-CoV-2-positive women. The presence of the virus was not associated with any distinctive pathological, maternal or neonatal outcome features. SARS-CoV-2 tissue load was low in all but one patient which exhibited severe placental damage leading to neonatal neurological manifestations. The placental transcriptional response induced by high viral load of SARS-CoV-2 showed an immunopathology phenotype similar to autopsy lung tissues from patients with severe COVID-19. This finding contrasted with the lack of inflammatory response in placental tissues from SARS-CoV-2-positive women with low viral tissue load and from SARS-CoV-2-negative women. Importantly, no evidence of vertical transmission of SARS-CoV-2 was found in any newborns, suggesting that the placenta may be an effective maternal-neonatal barrier against the virus even in the presence of severe infection. Our observations suggest that severe placental damage induced by the virus may be detrimental for the neonate independently of vertical transmission.

Authors

Fulvia Milena Cribiù, Roberta Erra, Lorenza Pugni, Carlota Rubio-Perez, Lidia Alonso, Sara Simonetti, Giorgio A. Croci, Garazi Serna, Andrea Ronchi, Carlo Pietrasanta, Giovanna Lunghi, Anna Maria Fagnani, Maria Piñana, Matthias S. Matter, Alexandar Tzankov, Luigi Terracciano, Andres Anton, Enrico Ferrazzi, Stefano Ferrero, Enrico Iurlaro, Joan Seoane, Paolo Nuciforo

×

Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders
Ali Abbara, … , Aylin Hanyaloglu, Waljit S. Dhillo
Ali Abbara, … , Aylin Hanyaloglu, Waljit S. Dhillo
Published November 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI139681.
View: Text | PDF

Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders

  • Text
  • PDF
Abstract

BACKGROUND Kisspeptin is a key regulator of hypothalamic gonadotropin-releasing hormone (GnRH) neurons and is essential for reproductive health. A specific kisspeptin receptor (KISS1R) agonist could significantly expand the potential clinical utility of therapeutics targeting the kisspeptin pathway. Herein, we investigate the effects of a KISS1R agonist, MVT-602, in healthy women and in women with reproductive disorders.METHODS We conducted in vivo and in vitro studies to characterize the action of MVT-602 in comparison with native kisspeptin-54 (KP54). We determined the pharmacokinetic and pharmacodynamic properties of MVT-602 (doses 0.01 and 0.03 nmol/kg) versus KP54 (9.6 nmol/kg) in the follicular phase of healthy women (n = 9), and in women with polycystic ovary syndrome (PCOS; n = 6) or hypothalamic amenorrhea (HA; n = 6). Further, we investigated their effects on KISS1R-mediated inositol monophosphate (IP1) and Ca2+ signaling in cell lines and on action potential firing of GnRH neurons in brain slices.RESULTS In healthy women, the amplitude of luteinizing hormone (LH) rise was similar to that after KP54, but peaked later (21.4 vs. 4.7 hours; P = 0.0002), with correspondingly increased AUC of LH exposure (169.0 vs. 38.5 IU∙h/L; P = 0.0058). LH increases following MVT-602 were similar in PCOS and healthy women, but advanced in HA (P = 0.004). In keeping with the clinical data, MVT-602 induced more potent signaling of KISS1R-mediated IP1 accumulation and a longer duration of GnRH neuron firing than KP54 (115 vs. 55 minutes; P = 0.0012).CONCLUSION Taken together, these clinical and mechanistic data identify MVT-602 as having considerable therapeutic potential for the treatment of female reproductive disorders.TRIAL REGISTRATION International Standard Randomised Controlled Trial Number (ISRCTN) Registry, ISRCTN21681316.FUNDING National Institute for Health Research and NIH.

Authors

Ali Abbara, Pei Chia Eng, Maria Phylactou, Sophie A. Clarke, Rachel Richardson, Charlene M. Sykes, Chayarndorn Phumsatitpong, Edouard Mills, Manish Modi, Chioma Izzi-Engbeaya, Debbie Papadopoulou, Kate Purugganan, Channa N. Jayasena, Lisa Webber, Rehan Salim, Bryn Owen, Paul Bech, Alexander N. Comninos, Craig A. McArdle, Margaritis Voliotis, Krasimira Tsaneva-Atanasova, Suzanne Moenter, Aylin Hanyaloglu, Waljit S. Dhillo

×

SARS-CoV-2 infection of the placenta
Hillary Hosier, … , Uma M. Reddy, Heather S. Lipkind
Hillary Hosier, … , Uma M. Reddy, Heather S. Lipkind
Published June 23, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI139569.
View: Text | PDF

SARS-CoV-2 infection of the placenta

  • Text
  • PDF
Abstract

Background. The effects of Covid-19 in pregnancy remain relatively unknown. We present a case of second trimester pregnancy with symptomatic Covid-19 complicated by severe preeclampsia and placental abruption. Methods. We analyzed placenta for the presence of SARS-CoV-2 through molecular and immunohistochemical assays and by and electron microscopy, and we measured the maternal antibody response in blood to this infection. Results. SARS-CoV-2 localized predominantly to syncytiotrophoblast cells at the maternal-fetal interface of the placenta. Histological examination of the placenta revealed a dense macrophage infiltrate, but no evidence for vasculopathy typically associated with preeclampsia. Conclusion. This case demonstrates SARS-CoV-2 invasion of the placenta, highlighting the potential for severe morbidity among pregnant women with Covid-19.

Authors

Hillary Hosier, Shelli F. Farhadian, Raffaella A. Morotti, Uma Deshmukh, Alice Lu-Culligan, Katherine H. Campbell, Yuki Yasumoto, Chantal B.F. Vogels, Arnau Casanovas-Massana, Pavithra Vijayakumar, Bertie Geng, Camila D. Odio, John Fournier, Anderson F. Brito, Joseph R. Fauver, Feimei Liu, Tara Alpert, Reshef Tal, Klara Szigeti-Buck, Sudhir Perincheri, Christopher P. Larsen, Aileen M. Gariepy, Gabriela Aguilar, Kristen L. Fardelmann, Malini Harigopal, Hugh S. Taylor, Christian M. Pettker, Anne L. Wyllie, Charles S. Dela Cruz, Aaron M. Ring, Nathan D. Grubaugh, Albert I. Ko, Tamas L. Horvath, Akiko Iwasaki, Uma M. Reddy, Heather S. Lipkind

×

RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models
Nadine Haase, … , Babbette LaMarca, Ralf Dechend
Nadine Haase, … , Babbette LaMarca, Ralf Dechend
Published April 27, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI99417.
View: Text | PDF

RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models

  • Text
  • PDF
Abstract

Authors

Nadine Haase, Donald J. Foster, Mark W. Cunningham, Julia Bercher, Tuyen Nguyen, Svetlana Shulga-Morskaya, Stuart Milstein, Sarfraz Shaikh, Jeff Rollins, Michaela Golic, Florian Herse, Kristin Kräker, Ivo Bendix, Meray Serdar, Hanna Napieczynska, Arnd Heuser, Alexandra Gellhaus, Kristin Thiele, Gerd Wallukat, Dominik N. Müller, Babbette LaMarca, Ralf Dechend

×

Effects of maternal iron status on placental and fetal iron homeostasis
Veena Sangkhae, … , Tomas Ganz, Elizabeta Nemeth
Veena Sangkhae, … , Tomas Ganz, Elizabeta Nemeth
Published October 29, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127341.
View: Text | PDF

Effects of maternal iron status on placental and fetal iron homeostasis

  • Text
  • PDF
Abstract

Iron deficiency is common worldwide and is associated with adverse pregnancy outcomes. The increasing prevalence of indiscriminate iron supplementation during pregnancy also raises concerns about the potential adverse effects of iron excess. We examined how maternal iron status affects the delivery of iron to the placenta and fetus. Using mouse models, we documented maternal homeostatic mechanisms which protect the placenta and fetus from maternal iron excess. We determined that under physiological conditions or in iron deficiency, fetal and placental hepcidin does not regulate fetal iron endowment. With maternal iron deficiency, critical transporters mediating placental iron uptake (transferrin receptor 1, TFR1) and export (ferroportin, FPN) were strongly regulated. In mice, not only was TFR1 increased but FPN was surprisingly decreased to preserve placental iron, in the face of fetal iron deficiency. In human placentas from pregnancies with mild iron deficiency, TFR1 was increased but without a change in FPN. However, induction of more severe iron deficiency in human trophoblast in vitro resulted in the regulation of both TFR1 and FPN, similarly to the mouse model. This placental adaptation prioritizing placental iron is mediated by the iron-regulatory protein 1 and is important for the maintenance of mitochondrial respiration, thus ultimately protecting the fetus from the potentially dire consequences of generalized placental dysfunction.

Authors

Veena Sangkhae, Allison L. Fisher, Shirley Wong, Mary Dawn Koenig, Lisa Tussing-Humphreys, Alison Chu, Melisa Lelić, Tomas Ganz, Elizabeta Nemeth

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Next →
Protection against preterm labor
Yucel Akgul and colleagues reveal that the glycosaminoglycan hyaluronan is necessary for barrier function in the lower reproductive tract and protects against pathogen-induced preterm birth...
Published November 10, 2014
Scientific Show StopperReproductive biology
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts