Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Virology

  • 88 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →
Clinical, laboratory, and temporal predictors of neutralizing antibodies to SARS-CoV-2 among COVID-19 convalescent plasma donor candidates
Jim Boonyaratanakornkit, … , Anna Wald, David M. Koelle
Jim Boonyaratanakornkit, … , Anna Wald, David M. Koelle
Published December 15, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI144930.
View: Text | PDF

Clinical, laboratory, and temporal predictors of neutralizing antibodies to SARS-CoV-2 among COVID-19 convalescent plasma donor candidates

  • Text
  • PDF
Abstract

Background: SARS-CoV-2-specific antibodies may protect from reinfection and disease, providing rationale for administration of plasma containing SARS-CoV-2 neutralizing antibodies (nAb) as a treatment for COVID-19. Clinical factors and laboratory assays to streamline plasma donor selection, and the durability of nAb responses, are incompletely understood. Methods: Potential convalescent plasma donors with virologically-documented SARS-CoV-2 infection were tested for serum IgG to SARS-CoV-2 spike protein S1 domain, nucleoprotein (NP), and for nAb. Results: Amongst 250 consecutive persons, including 27 (11%) requiring hospitalization, studied a median of 67 days since symptom onset, 97% were seropositive on one or more assays. Sixty percent of donors had nAb titers ≥1:80. Correlates of higher nAb titer included older age (adjusted odds ratio [AOR] 1.03/year of age, 95% CI 1.00-1.06), male sex (AOR 2.08, 95% CI 1.13-3.82), fever during acute illness (AOR 2.73, 95% CI 1.25-5.97), and disease severity represented by hospitalization (AOR 6.59, 95% CI 1.32-32.96). Receiver operating characteristic (ROC) analyses of anti-S1 and anti-NP antibody results yielded cutoffs that corresponded well with nAb titers, with the anti-S1 assay being slightly more predictive. NAb titers declined in 37 of 41 paired specimens collected a median of 98 days (range, 77-120) apart (P<0.001). Seven individuals (2.8%) were persistently seronegative and lacked T cell responses. Conclusions: Nab titers correlated with COVID-19 severity, age, and sex. Standard commercially available SARS-CoV-2 IgG results can serve as useful surrogates for nAb testing. Functional nAb levels were found to decline and a small proportion of persons recovered from COVID-19 lack adaptive immune responses.

Authors

Jim Boonyaratanakornkit, Chihiro Morishima, Stacy Selke, Danniel Zamora, Sarah A. McGuffin, Adrienne E. Shapiro, Victoria L. Campbell, Christopher L. McClurkan, Lichen Jing, Robin Gross, Janie Liang, Elena Postnikova, Steven Mazur, Vladimir V. Lukin, Anu Chaudhary, Marie K. Das, Susan L. Fink, Andrew Bryan, Alexander L. Greninger, Keith R. Jerome, Michael R. Holbrook, Terry B. Gernsheimer, Mark H. Wener, Anna Wald, David M. Koelle

×

HTLV-1 targets human placental trophoblasts in seropositive pregnant women
Kenta Tezuka, … , Kiyonori Miura, Isao Hamaguchi
Kenta Tezuka, … , Kiyonori Miura, Isao Hamaguchi
Published October 19, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135525.
View: Text | PDF

HTLV-1 targets human placental trophoblasts in seropositive pregnant women

  • Text
  • PDF
Abstract

Human T cell leukemia virus type 1 (HTLV-1) is mainly transmitted vertically through breast milk. The rate of mother-to-child transmission (MTCT) through formula feeding, although significantly lower than through breastfeeding, is approximately 2.4%–3.6%, suggesting the possibility of alternative transmission routes. MTCT of HTLV-1 might occur through the uterus, birth canal, or placental tissues; the latter is known as transplacental transmission. Here, we found that HTLV-1 proviral DNA was present in the placental villous tissues of the fetuses of nearly half of pregnant carriers and in a small number of cord blood samples. An RNA ISH assay showed that HTLV-1–expressing cells were present in nearly all subjects with HTLV-1–positive placental villous tissues, and their frequency was significantly higher in subjects with HTLV-1–positive cord blood samples. Furthermore, placental villous trophoblasts expressed HTLV-1 receptors and showed increased susceptibility to HTLV-1 infection. In addition, HTLV-1–infected trophoblasts expressed high levels of viral antigens and promoted the de novo infection of target T cells in a humanized mouse model. In summary, during pregnancy of HTLV-1 carriers, HTLV-1 was highly expressed in placental villous tissues, and villous trophoblasts showed high HTLV-1 sensitivity, suggesting that MTCT of HTLV-1 occurs through the placenta.

Authors

Kenta Tezuka, Naoki Fuchi, Kazu Okuma, Takashi Tsukiyama, Shoko Miura, Yuri Hasegawa, Ai Nagata, Nahoko Komatsu, Hiroo Hasegawa, Daisuke Sasaki, Eita Sasaki, Takuo Mizukami, Madoka Kuramitsu, Sahoko Matsuoka, Katsunori Yanagihara, Kiyonori Miura, Isao Hamaguchi

×

HIV-1 viremia not suppressible by antiretroviral therapy can originate from large T cell clones producing infectious virus
Elias K. Halvas, … , Stephen H. Hughes, John W. Mellors
Elias K. Halvas, … , Stephen H. Hughes, John W. Mellors
Published October 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138099.
View: Text | PDF

HIV-1 viremia not suppressible by antiretroviral therapy can originate from large T cell clones producing infectious virus

  • Text
  • PDF
Abstract

BACKGROUND HIV-1 viremia that is not suppressed by combination antiretroviral therapy (ART) is generally attributed to incomplete medication adherence and/or drug resistance. We evaluated individuals referred by clinicians for nonsuppressible viremia (plasma HIV-1 RNA above 40 copies/mL) despite reported adherence to ART and the absence of drug resistance to the current ART regimen.METHODS Samples were collected from at least 2 time points from 8 donors who had nonsuppressible viremia for more than 6 months. Single templates of HIV-1 RNA obtained from plasma and viral outgrowth of cultured cells and from proviral DNA were amplified by PCR and sequenced for evidence of clones of cells that produced infectious viruses. Clones were confirmed by host-proviral integration site analysis.RESULTS HIV-1 genomic RNA with identical sequences were identified in plasma samples from all 8 donors. The identical viral RNA sequences did not change over time and did not evolve resistance to the ART regimen. In 4 of the donors, viral RNA sequences obtained from plasma matched those sequences from viral outgrowth cultures, indicating that the viruses were replication competent. Integration sites for infectious proviruses from those 4 donors were mapped to the introns of the MATR3, ZNF268, ZNF721/ABCA11P, and ABCA11P genes. The sizes of the clones were estimated to be from 50 million to 350 million cells.CONCLUSION These findings show that clones of HIV-1–infected cells producing virus can cause failure of ART to suppress viremia. The mechanisms involved in clonal expansion and persistence need to be defined to effectively target viremia and the HIV-1 reservoir.FUNDING National Cancer Institute, NIH; Howard Hughes Medical Research Fellows Program, Howard Hughes Medical Institute; Bill and Melinda Gates Foundation; Office of AIDS Research; American Cancer Society; National Cancer Institute through a Leidos subcontract; National Institute for Allergy and Infectious Diseases, NIH, to the I4C Martin Delaney Collaboratory; University of Rochester Center for AIDS Research and University of Rochester HIV/AIDS Clinical Trials Unit.

Authors

Elias K. Halvas, Kevin W. Joseph, Leah D. Brandt, Shuang Guo, Michele D. Sobolewski, Jana L. Jacobs, Camille Tumiotto, John K. Bui, Joshua C. Cyktor, Brandon F. Keele, Gene D. Morse, Michael J. Bale, Wei Shao, Mary F. Kearney, John M. Coffin, Jason W. Rausch, Xiaolin Wu, Stephen H. Hughes, John W. Mellors

×

Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence
Caleb J. Studstill, … , Sang-Myeong Lee, Bumsuk Hahm
Caleb J. Studstill, … , Sang-Myeong Lee, Bumsuk Hahm
Published September 8, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI125297.
View: Text | PDF

Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence

  • Text
  • PDF
Abstract

Chronic viral infections are often established by the exploitation of immune regulatory mechanisms that result in non-functional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase (SphK) 2 generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes. However, little is known about SphK2’s role during the host immune responses to viral infection. Here, we demonstrate that SphK2 functions during lymphocytic choriomeningitis virus Cl 13 (LCMV Cl 13) infection to limit T cell immune pathology, which subsequently aids in the establishment of virus-induced immunosuppression and the resultant viral persistence. The infection of Sphk2-deficient (Sphk2-/-) mice with LCMV Cl 13 led to the development of nephropathy and mortality via T cell-mediated immunopathology. Following LCMV infection, Sphk2-/- CD4+ T cells displayed increased activity and proliferation, and these cells promoted overactive LCMV Cl 13-specific CD8+ T cell responses. Notably, oral instillation of an SphK2-selective inhibitor promoted protective T cell responses and accelerated the termination of LCMV Cl 13 persistence in mice. Thus, SphK2 is indicated as an immunotherapeutic target for the control of persistent viral infections.

Authors

Caleb J. Studstill, Curtis J. Pritzl, Young-Jin Seo, Dae Young Kim, Chuan Xia, Jennifer J. Wolf, Ravi Nistala, Madhuvanthi Vijayan, Yong-Bin Cho, Kyung Won Kang, Sang-Myeong Lee, Bumsuk Hahm

×

SIV infection duration largely determines broadening of neutralizing antibody response in macaques
Fan Wu, … , David Montefiori, Vanessa M. Hirsch
Fan Wu, … , David Montefiori, Vanessa M. Hirsch
Published July 14, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI139123.
View: Text | PDF

SIV infection duration largely determines broadening of neutralizing antibody response in macaques

  • Text
  • PDF
Abstract

The development of broadly neutralizing antibodies (BNAbs) in HIV infection is a result of long-term co-evolutionary interaction between viruses and antibodies. Understanding how this interaction promotes the increase of neutralization breadth during infection will improve the way in which we design AIDS vaccine strategies. In this paper, we used SIV-infected rhesus macaques as a model to study the development of neutralization breadth by infecting rhesus macaques with longitudinal NAb escape variants and evaluating the kinetics of NAb response and viral evolution. We found that the infected macaques developed a stepwise NAb response against escape variants and increased neutralization breadth during the course of infection. Furthermore, the increase of neutralization breadth correlated with the duration of infection but was independent of properties of the inoculum, viral loads or viral diversity during infection. These results imply that the duration of infection was the main factor driving the development of BNabs. These data suggest the importance of novel immunization strategies to induce effective NAb response against HIV infection by mimicking long-term infection.

Authors

Fan Wu, Ilnour Ourmanov, Andrea Kirmaier, Sivan Leviyang, Celia LaBranche, Jinghe Huang, Sonya Whitted, Kenta Matsuda, David Montefiori, Vanessa M. Hirsch

×

Kinetics of viral load and antibody response in relation to COVID-19 severity
Yanqun Wang, … , Yimin Li, Jincun Zhao
Yanqun Wang, … , Yimin Li, Jincun Zhao
Published July 7, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138759.
View: Text | PDF

Kinetics of viral load and antibody response in relation to COVID-19 severity

  • Text
  • PDF
Abstract

The SARS-CoV-2 is the causative agent for COVID-19 pneumonia. Little is known about the kinetics, tissue distribution, cross-reactivity and neutralization antibody response in COVID-19 patients. Two groups of RT-PCR confirmed COVID-19 patients were enrolled in this study, including 12 severe patients in ICUs who needed mechanical ventilation and 11 mild patients in isolation wards. Serial clinical samples were collected for laboratory detection. Results showed that most of the severe patients had viral shedding in a variety of tissues for 20~40 days post onset of disease (8/12, 66.7%); while the majority of mild patients had viral shedding restricted to the respiratory tract and had no detectable virus RNA after 10 days post-onset (9/11, 81.8%). Mild patients showed significantly lower IgM response compared with that of the severe group. IgG responses were detected in most patients in both severe and mild groups at 9 days post onset and remained high level throughout the study. Antibodies cross-reactive to SARS-CoV and SARS-CoV-2 were detected in COVID-19 patients but not in MERS patients. High-levels of neutralizing antibodies were induced after about 10 days post onset in both severe and mild patients which were higher in the severe group. SARS-CoV-2 pseudotype neutralization test and focus reduction neutralization test with authentic virus showed consistent results. Sera from COVID-19 patients, but not convalescent SARS and MERS patients inhibited SARS-CoV-2 entry. Anti-SARS-CoV-2 S and N IgG level exhibited moderate correlation with neutralization titers in patients’ plasma. This study improves our understanding of immune response in human after SARS-CoV-2 infection.

Authors

Yanqun Wang, Lu Zhang, Ling Sang, Feng Ye, Shicong Ruan, Bei Zhong, Tie Song, Abeer N. Alshukairi, Rongchang Chen, Zhaoyong Zhang, Mian Gan, Airu Zhu, Yongbo Huang, Ling Luo, Chris KP Mok, Manal M. Al Gethamy, Haitao Tan, Zhengtu Li, Xiaofang Huang, Fang Li, Jing Sun, Yanjun Zhang, Liyan Wen, Yuming Li, Zhao Chen, Zhen Zhuang, Jianfen Zhuo, Chunke Chen, Lijun Kuang, Junxiang Wang, Huibin Lv, Yongliang Jiang, Min Li, Yimin Lin, Ying Deng, Lan Tang, Jieling Liang, Jicheng Huang, Stanley Perlman, Nanshan Zhong, Jingxian Zhao, J.S. Malik Peiris, Yimin Li, Jincun Zhao

×

Diminished hepatic IFN response following HCV clearance triggers HBV reactivation in coinfection
Xiaoming Cheng, … , Kazuaki Chayama, T. Jake Liang
Xiaoming Cheng, … , Kazuaki Chayama, T. Jake Liang
Published March 12, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135616.
View: Text | PDF

Diminished hepatic IFN response following HCV clearance triggers HBV reactivation in coinfection

  • Text
  • PDF
Abstract

In patients with HBV and HCV coinfection, HBV reactivation leading to severe hepatitis has been reported with the use of direct-acting antivirals (DAAs) to treat HCV infection. Here we study the molecular mechanisms behind this viral interaction. In coinfected cell culture and humanized mice, HBV replication was suppressed by HCV coinfection. In vitro, HBV suppression was attenuated when interferon signaling was blocked. In vivo, HBV viremia, after initial suppression by HCV super-infection, rebounded following HCV clearance by DAA treatment that was accompanied by a reduced hepatic interferon response. Using blood samples of coinfected patients, interferon-stimulated gene products including C-X-C motif chemokine 10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5), and alanine aminotransferase (ALT) were identified to have predictive value for HBV reactivation after HCV clearance. Taken together, our data suggest that HBV reactivation is a result of diminished hepatic interferon response following HCV clearance and identifies serologic markers that can predict HBV reactivation in DAA-treated HBV-HCV coinfected persons.

Authors

Xiaoming Cheng, Takuro Uchida, Yuchen Xia, Regina Umarova, Chun-Jen Liu, Pei-Jer Chen, Anuj Gaggar, Vithika Suri, Marcus Maximilian Mücke, Johannes Vermehren, Stefan Zeuzem, Yuji Teraoka, Mitsutaka Osawa, Hiroshi Aikata, Keiji Tsuji, Nami Mori, Shuhei Hige, Yoshiyasu Karino, Michio Imamura, Kazuaki Chayama, T. Jake Liang

×

Tissue-resident T cell derived cytokines eliminate herpes simplex virus-2 infected cells
Pavitra Roychoudhury, … , Martin Prlic, Joshua T. Schiffer
Pavitra Roychoudhury, … , Martin Prlic, Joshua T. Schiffer
Published March 3, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132583.
View: Text | PDF

Tissue-resident T cell derived cytokines eliminate herpes simplex virus-2 infected cells

  • Text
  • PDF
Abstract

The mechanisms underlying rapid elimination of herpes simplex virus-2 (HSV-2) in the human genital tract despite low tissue-resident CD8+ and CD4+ T-cell density (TRM) are unknown. We analyzed shedding episodes during chronic HSV-2 infection: viral clearance always predominated within 24 hours of detection even if viral load exceeded 107 HSV DNA copies; surges in granzyme B and interferon-γ occurred within the early hours after reactivation and correlated with local viral load. We next developed an agent-based mathematical model of an HSV-2 genital ulcer to integrate mechanistic observations of TRM in situ proliferation, trafficking, cytolytic effects and cytokine alarm signaling from murine studies with viral kinetics, histopathology and lesion size data from humans. A sufficiently high density of HSV-2 specific TRM predicted rapid elimination of infected cells, but our data suggest that such TRM densities are relatively uncommon in infected tissues. At lower, more commonly observed TRM densities, TRM must initiate a rapidly diffusing, polyfunctional cytokine response with activation of bystander T cells in order to eliminate a majority of infected cells and eradicate briskly spreading HSV-2 infection.

Authors

Pavitra Roychoudhury, David A. Swan, Elizabeth R. Duke, Lawrence Corey, Jia Zhu, Veronica A. Davé, Laura E. Richert-Spuhler, Jennifer M. Lund, Martin Prlic, Joshua T. Schiffer

×

Severe fever with thrombocytopenia syndrome virus targets B cells in lethal human infections
Tadaki Suzuki, … , Masayuki Saijo, Hideki Hasegawa
Tadaki Suzuki, … , Masayuki Saijo, Hideki Hasegawa
Published January 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI129171.
View: Text | PDF

Severe fever with thrombocytopenia syndrome virus targets B cells in lethal human infections

  • Text
  • PDF
Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by a tick-borne banyangvirus and is associated with high fatality. Despite increasing incidence of SFTS and serious public health concerns in East Asia, the pathogenesis of lethal SFTS virus (SFTSV) infection in humans is not fully understood. Numbers of postmortem examinations to determine target cells of the viral infection have so far been limited. Here we showed that B cells differentiating into plasmablasts and macrophages in secondary lymphoid organs were targets for SFTSV at the end stage of lethal infection, and the majority of SFTSV-infected cells were B cell–lineage lymphocytes. In affected individuals, B cell–lineage lymphocytes with SFTSV infection were widely distributed in both lymphoid and nonlymphoid organs, and infiltration of these cells into the capillaries of the organs could be observed occasionally. Moreover, a human plasmablastic lymphoma cell line, PBL-1, was susceptible to SFTSV propagation, and had a similar immunophenotype to that of target cells of SFTSV in fatal SFTS. PBL-1 can therefore provide a potential in vitro model for human SFTSV infection. These results extend our understanding of the pathogenesis of human lethal SFTSV infection, and can facilitate the development of SFTSV countermeasures.

Authors

Tadaki Suzuki, Yuko Sato, Kaori Sano, Takeshi Arashiro, Harutaka Katano, Noriko Nakajima, Masayuki Shimojima, Michiyo Kataoka, Kenta Takahashi, Yuji Wada, Shigeru Morikawa, Shuetsu Fukushi, Tomoki Yoshikawa, Masayuki Saijo, Hideki Hasegawa

×

Chikungunya virus replication in skeletal muscle cells is required for disease development
Anthony J. Lentscher, … , Thomas E. Morrison, Terence S. Dermody
Anthony J. Lentscher, … , Thomas E. Morrison, Terence S. Dermody
Published December 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129893.
View: Text | PDF

Chikungunya virus replication in skeletal muscle cells is required for disease development

  • Text
  • PDF
Abstract

Chikungunya virus (CHIKV) is an arbovirus capable of causing a severe and often debilitating rheumatic syndrome in humans. CHIKV replicates in a wide variety of cell types in mammals, which has made attributing pathologic outcomes to replication at specific sites difficult. To assess the contribution of CHIKV replication in skeletal muscle cells to pathogenesis, we engineered a CHIKV strain exhibiting restricted replication in these cells via incorporation of target sequences for skeletal muscle cell-specific miR-206. This virus, which we term SKE, displayed diminished replication in skeletal muscle cells in a mouse model of CHIKV disease. Mice infected with SKE developed less severe disease signs, including diminished swelling in the inoculated foot and less necrosis and inflammation in the interosseous muscles. SKE infection was associated with diminished infiltration of T cells into the interosseous muscle as well as decreased production of IL-1b, IL-6, IP-10, and TNFa. Importantly, blockade of the IL-6 receptor led to diminished swelling of a control CHIKV strain capable of replication in skeletal muscle, reducing swelling to levels observed in mice infected with SKE. These data implicate replication in skeletal muscle cells and release of IL-6 as important mediators of CHIKV disease.

Authors

Anthony J. Lentscher, Mary K. McCarthy, Nicholas A. May, Bennett J. Davenport, Stephanie A. Montgomery, Krishnan Raghunathan, Nicole McAllister, Laurie A. Silva, Thomas E. Morrison, Terence S. Dermody

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts