Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Hematology

  • 399 Articles
  • 4 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 39
  • 40
  • Next →
Gene therapy via CRISPR/Cas9-mediated Cxcr4 disease allele inactivation reverses leukopenia in WHIM mice
Ji-Liang Gao, Zhanzhuo Li, Rafael Calderon-Perez, Antonia Pavek, Lina Kim, David H. McDermott, Philip M. Murphy
Ji-Liang Gao, Zhanzhuo Li, Rafael Calderon-Perez, Antonia Pavek, Lina Kim, David H. McDermott, Philip M. Murphy
View: Text | PDF

Gene therapy via CRISPR/Cas9-mediated Cxcr4 disease allele inactivation reverses leukopenia in WHIM mice

  • Text
  • PDF
Abstract

WHIM syndrome is an immunodeficiency caused by autosomal dominant hyperfunctional mutations in chemokine receptor CXCR4 that promote panleukopenia due to BM retention. We previously reported a preclinical gene therapy protocol involving allele-nonspecific Cxcr4 CRISPR/Cas9 inactivation, leveraging the known in vivo dominance of Cxcr4+/o (+, WT; o, inactivated) hematopoietic stem cells (HSCs) for autologous BM engraftment and leukocyte reconstitution over HSCs with other Cxcr4 genotypes. Here, we show that without BM conditioning, this approach is not able to correct leukopenia in WHIM mice. We therefore modified the protocol by adding conditioning with a non-genotoxic CD117-targeted immunotoxin, CD117-antibody-saporin-conjugate (CD117-ASC). With this change, donor-derived blood cells rapidly reached ~95% chimerism after transplantation, which was stable without adverse events for more than 400 days. Mice receiving edited HSCs showed rapid normalization of absolute myeloid cell counts, the key blood subset responsible for WHIM syndrome. In competitive transplants using equal numbers of edited and unedited donor HSCs, over 80% of blood cells originated from the edited population, predominantly with the Cxcr4+/o genotype. These results provide proof of principle that CRISPR/Cas9-mediated inactivation of the Cxcr4 disease allele, combined with non-genotoxic HSC-targeted conditioning, may offer a safe and effective gene therapy strategy generalizable to all WHIM mutations.

Authors

Ji-Liang Gao, Zhanzhuo Li, Rafael Calderon-Perez, Antonia Pavek, Lina Kim, David H. McDermott, Philip M. Murphy

×

Mutant p53 promotes clonal hematopoiesis through generating a chronic inflammatory microenvironment
Sisi Chen, et al.
Sisi Chen, et al.
View: Text | PDF

Mutant p53 promotes clonal hematopoiesis through generating a chronic inflammatory microenvironment

  • Text
  • PDF
Abstract

Aged individuals with somatic TP53 mutations manifest clonal hematopoiesis (CH) and are at high risk of developing myeloid neoplasms. However, the underlying mechanisms are not fully understood. Here we show that inflammatory stress confers a competitive advantage to p53 mutant hematopoietic stem and progenitor cells (HSPCs) by activating the NLRP1 inflammasome and increasing the secretion of pro-inflammatory cytokines such as IL-1β, inhibiting wild type (WT) HSPC fitness in a paracrine fashion. During aging, mutant p53 dysregulates pre-mRNA splicing in HSPCs, leading to enhanced NF-κB activation and increased secretion of IL-1β and IL-6, thereby generating a chronic inflammatory bone marrow microenvironment. Furthermore, blocking IL-1β with IL-1β neutralizing antibody or inhibiting IL-1β secretion using gasdermin D (GSDMD) inhibitor decreases the fitness of p53 mutant HSPCs. Thus, our findings uncover an important role for mutant p53 in regulating inflammatory signaling in CH and suggest that curbing inflammation may prevent the progression of TP53-mutant clonal hematopoiesis to myeloid neoplasms.

Authors

Sisi Chen, Sergio Barajas, Sasidhar Vemula, Yuxia Yang, Ed Simpson, Hongyu Gao, Rudong Li, Farzaneh Behzadnia, Sarah C. Nabinger, David A. Schmitz, Hongxia Chen, Wenjie Cai, Shiyu Xiao, Ruyue Luo, Mohammed Abdullahel Amin, Maegan L. Capitano, James P. Ropa, Aidan Fahey, Shuyi Zhou, Tiffany M. Mays, Magdalena Sotelo, Hao Pan, Sophie K. Hu, Sophia Veranga, Moiez Ali, Maria Shumilina, Reuben Kapur, Kehan Ren, Yuzhi Jia, Huiping Liu, Irum Khan, Yasmin Abaza, Jessica K. Altman, Elizabeth A. Eklund, Lucy A. Godley, Christine R. Zhang, Peng Ji, Seth L. Masters, Ben A. Croker, H. Scott Boswell, George E. Sandusky, Zhonghua Gao, Lindsey D. Mayo, Sharon A. Savage, Stephanie Halene, Yali Dou, Leonidas C. Platanias, Madina Sukhanova, Yunlong Liu, Omar Abdel-Wahab, Yan Liu

×

Mitochondrial Oxidants Promote Platelet Activation and Thrombotic Susceptibility in Prediabetes
Azaj Ahmed, Pooja Yadav, Melissa Jensen, Katharine Geasland, Jagadish S. Swamy, Douglas R. Spitz, E. Dale Abel, Diana Jalal, Sanjana Dayal
Azaj Ahmed, Pooja Yadav, Melissa Jensen, Katharine Geasland, Jagadish S. Swamy, Douglas R. Spitz, E. Dale Abel, Diana Jalal, Sanjana Dayal
View: Text | PDF

Mitochondrial Oxidants Promote Platelet Activation and Thrombotic Susceptibility in Prediabetes

  • Text
  • PDF
Abstract

Recent studies suggest that prediabetes is an independent risk factor for cardiovascular thrombotic events. However, the mechanisms that may promote platelet activation and thrombosis in prediabetes remain elusive. To determine mechanisms linking prediabetes and thrombosis as a function of age, we recruited prediabetic and normoglycemic Veterans in young and middle-age groups. Compared to normoglycemic subjects, platelets from those with prediabetes exhibited increased activation, mitochondrial-oxidant load, mitochondrial-membrane hyperpolarization, and greater thrombus formation ex vivo regardless of age. Preincubation of platelets with mitochondria targeted antioxidants such as superoxide dismutase (SOD) mimetic or Mito quinol (MitoQ), rescued this prothrombotic phenotype. These phenotypes were recapitulated in C57BL6/J mice exhibiting early onset of glucose intolerance when fed high fat (HF) diet for two weeks. Treatment of HF-fed mice with a SOD-mimetic or MitoQ, or genetic overexpression of catalase within mitochondria, not only lowered mitochondrial-oxidants, hyperpolarization, Ca2+ levels and platelet activation, but also protected against increased potential for carotid and pulmonary thrombosis. We also observed a bidirectional regulation of platelet activation by Ca2+ and mitochondrial oxidants. These findings support the idea that mitochondrial-oxidant dependent platelet activation induces a prothrombotic state in clinical prediabetes and preclinical models of short-term glucose intolerance and can be reversed by mitochondria-targeted antioxidants.

Authors

Azaj Ahmed, Pooja Yadav, Melissa Jensen, Katharine Geasland, Jagadish S. Swamy, Douglas R. Spitz, E. Dale Abel, Diana Jalal, Sanjana Dayal

×

Nonionotropic action of an acid-sensing ion channel inhibits leukemogenesis in the acidic bone marrow niche
Hao Gu, Lietao Weng, Chiqi Chen, Xiaoxin Hao, Rongkun Tao, Xin Qi, Xiaoyun Lai, Ligen Liu, Tinghua Zhang, Yiming Jiang, Jin Wang, Wei-Guang Li, Zhuo Yu, Li Xie, Yaping Zhang, Xiaoxiao He, Ye Yu, Yi Yang, Dehua Wu, Yuzheng Zhao, Tian-Le Xu, Guo-Qiang Chen, Junke Zheng
Hao Gu, Lietao Weng, Chiqi Chen, Xiaoxin Hao, Rongkun Tao, Xin Qi, Xiaoyun Lai, Ligen Liu, Tinghua Zhang, Yiming Jiang, Jin Wang, Wei-Guang Li, Zhuo Yu, Li Xie, Yaping Zhang, Xiaoxiao He, Ye Yu, Yi Yang, Dehua Wu, Yuzheng Zhao, Tian-Le Xu, Guo-Qiang Chen, Junke Zheng
View: Text | PDF

Nonionotropic action of an acid-sensing ion channel inhibits leukemogenesis in the acidic bone marrow niche

  • Text
  • PDF
Abstract

The metabolic microenvironment plays important roles in tumorigenesis, but how leukemia-initiating cells (LICs) response to the acidic BM niche remains largely unknown. Here, we show that acid-sensing ion channel 3 (ASIC3) dramatically delays leukemogenesis. Asic3 deletion results in a remarkably enhanced self-renewal, reduced differentiation, and 9-fold greater number of murine acute myeloid LICs. We developed an ultrasensitive, ratiometric, genetically encoded fluorescent pH sensor (pHluorin3) and demonstrated that LICs prefer localizing in the endosteal niche with a neutral pH range of 7.34–7.42, but not in the vascular niche with a lower pH range of 6.89–7.22. Unexpectedly, acid-ASIC3 signaling inhibits both murine and human LIC activities in a noncanonical manner by interacting with the N-terminal of STIM1 to reduce calcium-mediated CAMK1-CREB-MEIS1-LDHA levels, without inducing cation currents. This study reveals a pathway in suppression of leukemogenesis in the acidic BM niche and provides insight into targeting LICs or other cancer stem cells through pH-dependent ASICs.

Authors

Hao Gu, Lietao Weng, Chiqi Chen, Xiaoxin Hao, Rongkun Tao, Xin Qi, Xiaoyun Lai, Ligen Liu, Tinghua Zhang, Yiming Jiang, Jin Wang, Wei-Guang Li, Zhuo Yu, Li Xie, Yaping Zhang, Xiaoxiao He, Ye Yu, Yi Yang, Dehua Wu, Yuzheng Zhao, Tian-Le Xu, Guo-Qiang Chen, Junke Zheng

×

Mitochondrial complex II orchestrates divergent effects in CD4+ and CD8+ T cells
Keisuke Seike, Shih-Chun A. Chu, Yuichi Sumii, Takashi Ikeda, Meng-Chih Wu, Laure Maneix, Dongchang Zhao, Yaping Sun, Marcin Cieslik, Pavan Reddy
Keisuke Seike, Shih-Chun A. Chu, Yuichi Sumii, Takashi Ikeda, Meng-Chih Wu, Laure Maneix, Dongchang Zhao, Yaping Sun, Marcin Cieslik, Pavan Reddy
View: Text | PDF

Mitochondrial complex II orchestrates divergent effects in CD4+ and CD8+ T cells

  • Text
  • PDF
Abstract

Mitochondrial metabolism orchestrates T cell functions, yet the role of specific mitochondrial components in distinct T cell subsets remains poorly understood. Here, we explored the role of mitochondrial complex II (MC II), the only complex from the electron transport chain (ETC) that plays a role in both ETC and metabolism, in regulating T cell functions. Surprisingly, MC II exerts divergent effects on CD4+ and CD8+ T cell activation and function. Using T cell–specific MC II subunit, succinate dehydrogenase A–deficient (SDHA-deficient) mice, we integrated single-cell RNA-seq and metabolic profiling, with in vitro and in vivo T cell functional assays to illuminate these differences. SDHA deficiency induced metabolic changes and remodeled gene expression exclusively in activated T cells. In CD4+ T cells, SDHA loss dampened both oxidative phosphorylation (OXPHOS) and glycolysis, impaired cytokine production, proliferation, and reduced CD4+ T cell–mediated graft-versus-host disease after allogeneic stem cell transplantation (SCT). In contrast, SDHA deficiency in CD8+ T cells reduced OXPHOS but paradoxically upregulated glycolysis and demonstrated enhanced cytotoxic functions in vitro and in vivo. This metabolic reprogramming endowed SDHA-KO CD8+ T cells with superior in vivo antitumor efficacy after immune checkpoint inhibitor therapy and allogeneic SCT. These findings reveal MC II as a bifurcation point for metabolic and functional specialization in CD4+ and CD8+ T cells.

Authors

Keisuke Seike, Shih-Chun A. Chu, Yuichi Sumii, Takashi Ikeda, Meng-Chih Wu, Laure Maneix, Dongchang Zhao, Yaping Sun, Marcin Cieslik, Pavan Reddy

×

Leukemia-expanded splenic CD81+ erythroblasts potentiate disease progression in mice by reshaping leukemic cell metabolism
Yue Li, Jiaxuan Cao, Jingyuan Tong, Peixia Tang, Haoran Chen, Guohuan Sun, Zining Yang, Xiaoru Zhang, Fang Dong, Shangda Yang, Jie Gao, Xiangnan Zhao, Jinfa Ma, Di Wang, Lei Zhang, Lin Wang, Tao Cheng, Hui Cheng, Lihong Shi
Yue Li, Jiaxuan Cao, Jingyuan Tong, Peixia Tang, Haoran Chen, Guohuan Sun, Zining Yang, Xiaoru Zhang, Fang Dong, Shangda Yang, Jie Gao, Xiangnan Zhao, Jinfa Ma, Di Wang, Lei Zhang, Lin Wang, Tao Cheng, Hui Cheng, Lihong Shi
View: Text | PDF

Leukemia-expanded splenic CD81+ erythroblasts potentiate disease progression in mice by reshaping leukemic cell metabolism

  • Text
  • PDF
Abstract

During the progression of acute myeloid leukemia (AML), extramedullary hematopoiesis (EMH) compensates for impaired bone marrow hematopoiesis. However, the specific cellular dynamics of EMH and its influence on AML progression remain poorly understood. In this study, we identified a substantial expansion of the CD81+ erythroblast subpopulation (CD81+ Erys) in the spleens of AML mice, which promoted AML cell proliferation and reduced survival. Mechanistically, CD81+ Erys secrete elevated levels of macrophage migration-inhibitory factor (MIF), which interacted with the CD74 receptor on AML cells, activating the mTORC1 signaling pathway and upregulating Egln3. Consequently, AML cells cocultured with CD81+ Erys exhibited reprogrammed phospholipid metabolism, characterized by an increased phospholipid-to-lysophospholipid ratio. Modulating this metabolic shift, either by supplementing exogenous lysophospholipids or depleting Egln3 in AML cells, restored the phospholipid balance and mitigated the protumorigenic effects induced by CD81+ Erys. Overall, our findings elucidate the molecular crosstalk between erythroblasts and AML cells, extend our insights into the mechanisms driving AML progression, and suggest potential therapeutic strategies.

Authors

Yue Li, Jiaxuan Cao, Jingyuan Tong, Peixia Tang, Haoran Chen, Guohuan Sun, Zining Yang, Xiaoru Zhang, Fang Dong, Shangda Yang, Jie Gao, Xiangnan Zhao, Jinfa Ma, Di Wang, Lei Zhang, Lin Wang, Tao Cheng, Hui Cheng, Lihong Shi

×

Loss of FBXO11 establishes a stem cell program in acute myeloid leukemia by dysregulating LONP1
Hayle Kincross, Ya-Chi Angela Mo, Xuan Wang, Linda Chang, Gerben Duns, Franziska Mey, Jihong Jiang, Zurui Zhu, Naomi Isak, Harwood Kwan, Tammy T.Y. Lau, T. Roderick Docking, Pranav Garg, Jessica Tran, Shane Colborne, Se-Wing Grace Cheng, Shujun Huang, Nadia Gharaee, Elijah Willie, Jeremy D.K. Parker, Joshua Bridgers, Davis Wood, Ramon I. Klein Geltink, Gregg B. Morin, Aly Karsan
Hayle Kincross, Ya-Chi Angela Mo, Xuan Wang, Linda Chang, Gerben Duns, Franziska Mey, Jihong Jiang, Zurui Zhu, Naomi Isak, Harwood Kwan, Tammy T.Y. Lau, T. Roderick Docking, Pranav Garg, Jessica Tran, Shane Colborne, Se-Wing Grace Cheng, Shujun Huang, Nadia Gharaee, Elijah Willie, Jeremy D.K. Parker, Joshua Bridgers, Davis Wood, Ramon I. Klein Geltink, Gregg B. Morin, Aly Karsan
View: Text | PDF

Loss of FBXO11 establishes a stem cell program in acute myeloid leukemia by dysregulating LONP1

  • Text
  • PDF
Abstract

Acute myeloid leukemia (AML) is an aggressive cancer with very poor outcomes. To identify additional drivers of leukemogenesis, we analyzed sequencing data from 1,727 unique individual AML patients, which revealed mutations in ubiquitin ligase family genes in 11.2% of adult AML samples with mutual exclusivity. The SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase complex gene, FBXO11, was the most significantly downregulated gene of the SCF complex in AML. We found that FBXO11 interacts with and catalyzes K63-linked ubiquitination of LONP1 in the cytosol, to promote LONP1 entry into mitochondria. We show that depletion of FBXO11 or LONP1 reduces mitochondrial respiration through impaired LONP1 chaperone activity to assemble electron transport chain Complex IV. Reduced mitochondrial respiration secondary to FBXO11 or LONP1 depletion imparted myeloid-biased stem cell properties in primary CD34+ hematopoietic stem and progenitor cells (HSPC) in vitro. In a human xenograft model, depletion of FBXO11 cooperated with AML1-ETO and mutant KRASG12D to generate serially transplantable AML. Our findings suggest that reduced FBXO11 cooperates to initiate AML by priming HSPC for myeloid-biased self-renewal through attenuation of LONP1-mediated regulation of mitochondrial respiration.

Authors

Hayle Kincross, Ya-Chi Angela Mo, Xuan Wang, Linda Chang, Gerben Duns, Franziska Mey, Jihong Jiang, Zurui Zhu, Naomi Isak, Harwood Kwan, Tammy T.Y. Lau, T. Roderick Docking, Pranav Garg, Jessica Tran, Shane Colborne, Se-Wing Grace Cheng, Shujun Huang, Nadia Gharaee, Elijah Willie, Jeremy D.K. Parker, Joshua Bridgers, Davis Wood, Ramon I. Klein Geltink, Gregg B. Morin, Aly Karsan

×

Estrogen and obesity synergistically suppress protein S via HIF1α, enhancing thrombosis potential
Mohammad A. Mohammad, Narender Kumar, Sonali Ghosh, Ashley Paysse, Claudia Leonardi, Vijaya Pilli, Ma Lorena Duhaylungsod, Eric Lazartigues, Diana C. Polania-Villanueva, Sadaf Nouman, Logan A. Barrios, Rima Chattopadhyay, Rafika Yasmin, Alaina Guilbeau, Manoj Kumar, Tina Nguyen, Jovanny Zabaleta, Li Li, Luis Del Valle, Mallory T. Barbier, Samarpan Majumder, Laurent O. Mosnier, Rinku Majumder
Mohammad A. Mohammad, Narender Kumar, Sonali Ghosh, Ashley Paysse, Claudia Leonardi, Vijaya Pilli, Ma Lorena Duhaylungsod, Eric Lazartigues, Diana C. Polania-Villanueva, Sadaf Nouman, Logan A. Barrios, Rima Chattopadhyay, Rafika Yasmin, Alaina Guilbeau, Manoj Kumar, Tina Nguyen, Jovanny Zabaleta, Li Li, Luis Del Valle, Mallory T. Barbier, Samarpan Majumder, Laurent O. Mosnier, Rinku Majumder
View: Text | PDF

Estrogen and obesity synergistically suppress protein S via HIF1α, enhancing thrombosis potential

  • Text
  • PDF
Abstract

Venous thromboembolism (VTE) is a leading cause of morbidity and mortality, with risk heightened in premenopausal women with obesity or use estrogen-based oral contraceptives. When both risk factors are present, the thrombosis risk increases substantially. Protein S (PS), an essential anticoagulant cofactor, is downregulated by both estrogen and obesity, but the molecular basis for this suppression remains poorly defined. We investigated the effect of estrogen and obesity on PS expression using plasma samples from 157 women stratified by BMI and contraceptive use, alongside 40 mice categorized as lean or obese with or without estrogen pellet treatment. The levels of PS were reduced by either estrogen or obesity alone, and the combined effect increased thrombin generation. In HepG2 hepatocytes, hypoxic conditions (1%–10% O2) mimicking obesity, with or without 17 β-estradiol, suppressed PROS1 transcription and promoter activity. ChIP confirmed direct binding of hypoxia-inducible factor 1α (HIF1α) to the PROS1 promoter, repressing gene expression. These findings define a mechanistic pathway through which estrogen and obesity converge to suppress PS synthesis, providing insight into the elevated thrombosis risk observed in women with obesity using estrogen-based contraceptives.

Authors

Mohammad A. Mohammad, Narender Kumar, Sonali Ghosh, Ashley Paysse, Claudia Leonardi, Vijaya Pilli, Ma Lorena Duhaylungsod, Eric Lazartigues, Diana C. Polania-Villanueva, Sadaf Nouman, Logan A. Barrios, Rima Chattopadhyay, Rafika Yasmin, Alaina Guilbeau, Manoj Kumar, Tina Nguyen, Jovanny Zabaleta, Li Li, Luis Del Valle, Mallory T. Barbier, Samarpan Majumder, Laurent O. Mosnier, Rinku Majumder

×

IFNγ-driven skewing towards Th1 over Th17 differentiation underlies CRS and neutropenia in CAR-T therapy
Payal Goala, Yongliang Zhang, Nolan J. Beatty, Allan Pavy, Shannon L. McSain, Cooper J. Sailer, Muhammad Junaid Tariq, Showkat Hamid, Eduardo Cortes Gomez, Jianmin Wang, Duna Massillon, Maxwell Ilecki, Justin C. Boucher, Constanza Savid-Frontera, Sae Bom Lee, Hiroshi Kotani, Meredith L. Stone, Michael D. Jain, Marco L. Davila
Payal Goala, Yongliang Zhang, Nolan J. Beatty, Allan Pavy, Shannon L. McSain, Cooper J. Sailer, Muhammad Junaid Tariq, Showkat Hamid, Eduardo Cortes Gomez, Jianmin Wang, Duna Massillon, Maxwell Ilecki, Justin C. Boucher, Constanza Savid-Frontera, Sae Bom Lee, Hiroshi Kotani, Meredith L. Stone, Michael D. Jain, Marco L. Davila
View: Text | PDF

IFNγ-driven skewing towards Th1 over Th17 differentiation underlies CRS and neutropenia in CAR-T therapy

  • Text
  • PDF
Abstract

CAR-T therapy has led to significant improvements in patient survival. However, a subset of patients experience high-grade toxicities, including cytokine release syndrome (CRS) and immune cell-associated hematological toxicity (ICAHT). We utilized IL-2Rα knockout mice to model toxicities with elevated levels of IL6, IFNγ, and TNFα and increased M1-like macrophages. Onset of CRS was accompanied by a reduction in peripheral blood neutrophils due to disruption of bone marrow neutrophil homeostasis characterized by an increase in apoptotic neutrophils and a decrease in proliferative and mature neutrophils. Both non-tumor-bearing and Eμ-ALL tumor-bearing mice recapitulated the co-occurrence of CRS and neutropenia. IFNγ-blockade alleviated CRS and neutropenia without affecting CAR-T efficacy. Mechanistically, a Th1-Th17 imbalance was observed to drive co-occurrence of CRS and neutropenia in an IFNγ-dependent manner leading to decreased IL-17A and G-CSF, neutrophil production, and neutrophil survival. In patients, we observed an increase in the IFNγ-to-IL-17A ratio in the peripheral blood during high-grade CRS and neutropenia. We have uncovered a biological basis for ICAHT and provide support for the use of IFNγ-blockade to reduce both CRS and neutropenia.

Authors

Payal Goala, Yongliang Zhang, Nolan J. Beatty, Allan Pavy, Shannon L. McSain, Cooper J. Sailer, Muhammad Junaid Tariq, Showkat Hamid, Eduardo Cortes Gomez, Jianmin Wang, Duna Massillon, Maxwell Ilecki, Justin C. Boucher, Constanza Savid-Frontera, Sae Bom Lee, Hiroshi Kotani, Meredith L. Stone, Michael D. Jain, Marco L. Davila

×

Lnk Deficiency Enhances Translesion Synthesis to Alleviate Replication Stress and Promote Hematopoietic Stem Cell Fitness
Brijendra Singh, Md Akram Hossain, Xiao Hua Liang, Jeremie Fages, Carlo Salas Salinas, Roger A. Greenberg, Wei Tong
Brijendra Singh, Md Akram Hossain, Xiao Hua Liang, Jeremie Fages, Carlo Salas Salinas, Roger A. Greenberg, Wei Tong
View: Text | PDF

Lnk Deficiency Enhances Translesion Synthesis to Alleviate Replication Stress and Promote Hematopoietic Stem Cell Fitness

  • Text
  • PDF
Abstract

The adaptor protein LNK/SH2B3 negatively regulates hematopoietic stem cell (HSC) homeostasis. Lnk-deficient mice show marked expansion of HSCs without premature exhaustion. Lnk deficiency largely restores HSC function in Fanconi Anemia (FA) mouse models and primary FA patient cells, albeit protective mechanisms remain enigmatic. Here, we uncover a novel role for LNK in regulating translesion synthesis (TLS) during HSC replication. Lnk deficiency reduced replication stress-associated DNA damage, particularly in the FA background. Lnk deficiency suppressed single-strand DNA breaks, while enhancing replication fork restart in FA-deficient HSCs. Diminished replication-associated damage in Lnk-deficient HSCs occurred commensurate with reduced ATR-p53 checkpoint activation that is linked to HSC attrition. Notably, Lnk deficiency ameliorated HSC attrition in FA mice without exacerbating carcinogenesis during ageing. Moreover, we demonstrated that enhanced HSC fitness from Lnk deficiency was associated with increased TLS activity via REV1 and, to a lesser extent, TLS polymerase eta. TLS polymerases are specialized to execute DNA replication in the presence of lesions or natural replication fork barriers that stall replicative polymerases. Our findings implicate elevated use of these specialized DNA polymerases as critical to the enhanced HSC function imparted by Lnk deficiency, which has important ramifications for stem cell therapy and regenerative medicine in general.

Authors

Brijendra Singh, Md Akram Hossain, Xiao Hua Liang, Jeremie Fages, Carlo Salas Salinas, Roger A. Greenberg, Wei Tong

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 39
  • 40
  • Next →
Teasing apart active site contributions
Junsong Zhou, Yi Wu, and colleagues reveal that the C-terminal redox-active site of protein disulfide isomerase is essential for coagulation…
Published November 3, 2015
Scientific Show StopperHematology

PRMT5 keeps hematopoietic cells renewing
Fan Liu and colleagues demonstrate that the type II arginine methyltransferase PRMT5 is an important regulator of hematopoietic cell maintenance…
Published August 10, 2015
Scientific Show StopperHematology

Moving toward donor-independent platelets
Ji-Yoon Noh and colleagues use a fine-tuned approach to generate platelet-producing megakaryocyte-erythroid progenitors from murine embryonic stem cells…
Published May 11, 2015
Scientific Show StopperHematology

A family affair
Vijay Sankaran and colleagues demonstrate that a mutation in the X-chromosomal gene encoding aminolevulinic acid synthase underlies disease in a family with macrocytic anemia…
Published February 23, 2015
Scientific Show StopperHematology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts