Although a disease-modifying therapy for CLN2 disease now exists, a poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients, but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities including spontaneous seizures, providing a robust and quantifiable disease-relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord, and differs markedly from the staging seen in mouse models of other forms of NCL. Neonatal administration of adeno-associated virus 9 (AAV9)-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the lifespan of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging pre-clinical efficacy of therapeutic interventions for CLN2 disease.
Keigo Takahashi, Elizabeth M. Eultgen, Sophie H. Wang, Nicholas R. Rensing, Hemanth R. Nelvagal, Joshua T. Dearborn, Olivier Danos, Nicholas Buss, Mark S. Sands, Michael Wong, Jonathan D. Cooper
Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.
Bruna M.S. Silva, Giovanni F. Gomes, Flavio P. Veras, Seppe Cambier, Gabriel V.L. Silva, Andreza U. Quadros, Diego B. Caetité, Daniele C. Nascimento, Camila M.S. Silva, Juliana C. Costa Silva, Samara Damasceno, Ayda H. Schneider, Fabio Beretta, Sabrina S. Batah, Icaro M.S. Castro, Isadora M. Paiva, Tamara Rodrigues, Ana Salina, Ronaldo Martins, Guilherme C. Martelossi Cebinelli, Naira L. Bibo, Daniel Macedo de Melo Jorge, Helder I. Nakaya, Dario S. Zamboni, Luiz O. Leiria, Alexandre T. Fabro, José C. Alves-Filho, Eurico Arruda, Paulo Louzada-Junior, Renê D.R. Oliveira, Larissa D. Cunha, Pierre Van Mol, Lore Vanderbeke, Simon Feys, Els Wauters, Laura Brandolini, Andrea Aramini, Fernando Q. Cunha, Jörg Köhl, Marcello Allegretti, Diether Lambrechts, Joost Wauters, Paul Proost, Thiago M. Cunha
BACKGROUND. Despite guidelines promoting the prevention and aggressive treatment of ventilator-associated pneumonia (VAP), the importance of VAP as a driver of outcomes in mechanically ventilated patients, including patients with severe COVID-19, remains unclear. We aimed to determine the contribution of unsuccessful treatment of VAP to mortality in patients with severe pneumonia. METHODS. We performed a single-center prospective cohort study of 585 mechanically ventilated patients with severe pneumonia and respiratory failure, 190 of whom had COVID-19, who underwent at least one bronchoalveolar lavage. A panel of ICU physicians adjudicated pneumonia episodes and endpoints based on clinical and microbiologic data. Given the relatively long ICU length of stay among patients with COVID-19, we developed a machine learning approach called CarpeDiem, which groups similar ICU patient-days into clinical states based on electronic health record data. RESULTS.CarpeDiem revealed that the long ICU length of stay among patients with COVID-19 is attributable to long stays in clinical states characterized primarily by respiratory failure. While VAP was not associated with mortality overall, mortality was higher in patients with one episode of unsuccessfully treated VAP compared with successfully treated VAP (76.4% versus 17.6%, P < 0.001). In all patients, including those with COVID-19, CarpeDiem demonstrated that unresolving VAP was associated with transitions to clinical states associated with higher mortality. CONCLUSIONS. Unsuccessful treatment of VAP is associated with greater mortality. The relatively long length of stay among patients with COVID-19 is primarily due to prolonged respiratory failure, placing them at higher risk of VAP. FUNDING. U19AI135964
Catherine A. Gao, Nikolay S. Markov, Thomas Stoeger, Anna E. Pawlowski, Mengjia Kang, Prasanth Nannapaneni, Rogan A. Grant, Chiagozie Pickens, James M. Walter, Jacqueline M. Kruser, Luke V. Rasmussen, Daniel Schneider, Justin Starren, Helen K. Donnelly, Alvaro Donayre, Yuan Luo, G.R. Scott Budinger, Richard G. Wunderink, Alexander V. Misharin, Benjamin D. Singer
Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH wild-type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contribute to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures are often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, D-2-hydroxyglutarate, rapidly synchronizes neuronal spike firing in a seizure-like manner, but only when nonneoplastic glial cells are present. In vitro and in vivo models can recapitulate IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibit seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.
Michael Drumm, Wenxia Wang, Thomas K. Sears, Kirsten Bell-Burdett, Rodrigo Javier, Kristen Y. Cotton, Brynna T. Webb, Kayla T. Byrne, Dusten Unruh, Vineeth Thirunavu, Jordain Walshon, Alicia Steffens, Kathleen McCortney, Rimas V. Lukas, Joanna J. Phillips, Esraa Mohamed, John D. Finan, Lucas Santana-Santos, Amy B. Heimberger, Colin K. Franz, Jonathan E. Kurz, Jessica W. Templer, Geoffrey T. Swanson, Craig Horbinski
BACKGOUND. Basic immune processes exhibit circadian rhythms, but it is unclear if rhythms exist in clinical endpoints like vaccine protection. Here, we examined associations between Coronavirus Infectious Disease 2019 (COVID-19) vaccination timing and effectiveness. METHODS. We retrospectively analyzed a large Israeli cohort with timestamped COVID-19 vaccinations (n=1,515,754 patients over 12 years-old, 99.2% receiving BNT162b2). Endpoints included COVID-19 breakthrough infection, COVID-19 associated emergency department (ED) visits, and hospitalizations. Our main comparison was between patients vaccinated during morning (8:00-11:59), afternoon (12:00-15:59), or evening hours (16:00-19:59). We employed Cox regression to adjust for differences in age, sex, and co-morbidities. RESULTS. Breakthrough infections differed based on vaccination time, with lowest rates associated with late morning to early afternoon, and highest rates with evening vaccination. Vaccination timing remained significant after adjustment for patient age, sex, and co-morbidities. Results were consistent in patients who received the basic two-dose series and who received booster doses. The relationship between COVID-19 immunization time and breakthrough infections was sinusoidal, consistent with a biological rhythm that modifies vaccine effectiveness by 8.6-25%. The benefits of daytime vaccination were concentrated in younger (<20 years old) and older patients (>50 years old). COVID-19 related hospitalizations varied significantly with the timing of the second booster dose, an intervention reserved for older and immunosuppressed patients (HR=0.64 morning vs. evening, 0.43-0.97 95% CI, p=0.038). CONCLUSION. We report a significant association between the time of COVID-19 vaccination and its effectiveness. This has implications for mass vaccination programs. FUNDING. National Institutes of Health.
Guy Hazan, Or A. Duek, Hillel Alapi, Huram Mok, Alexander T. Ganninger, Elaine M. Ostendorf, Carrie Gierasch, Gabriel Chodick, David Greenberg, Jeffrey A. Haspel
Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage, and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death. Serum samples from persons with high risk for cardiovascular disease contained high levels of DPP4-regulated complement and coagulation factors. Importantly, DPP4 inhibition reduced senescent cell burden and coagulation and improved plaque stability, while single-cell resolution of senescent VSMCs reflected the senomorphic and senolytic effects of DPP4 inhibition in murine atherosclerosis. We propose that DPP4-regulated factors could be exploited therapeutically to reduce senescent cell function, reverse senohemostasis, and improve vascular disease.
Allison B. Herman, Dimitrios Tsitsipatis, Carlos Anerillas, Krystyna Mazan-Mamczarz, Angelica E. Carr, Jordan M. Gregg, Mingyi Wang, Jing Zhang, Marc Michel, Charnae' Henry-Smith, Sophia C. Harris, Rachel Munk, Jennifer L Martindale, Yulan Piao, Jinshui Fan, Julie A. Mattison, Supriyo De, Kotb Abdelmohsen, Robert W. Maul, Toshiko Tanaka, Ann Z. Moore, Megan E. DeMouth, Simone Sidoli, Luigi Ferrucci, Yie Liu, Rafael de Cabo, Edward G. Lakatta, Myriam Gorospe
Neonatal herpes simplex virus (HSV) infection is a devastating disease with substantial morbidity and mortality. The genetic basis of susceptibility to HSV in neonates remains undefined. We investigated a male infant with neonatal skin/eye/mouth (SEM) HSV1 disease who had complete recovery after acyclovir but developed HSV1 encephalitis at 1 year of age. Immune work up showed an anergic peripheral blood monocyte cytokine (PBMC) response to TLR3 stimulation but no other TLRs. Exome sequencing identified rare missense variants in IRF7 and UNC93B1. PBMC single cell RNA sequencing done during childhood revealed decreased expression of several innate immune genes and a repressed TLR3 pathway signature at baseline in several immune cell populations, including CD14 monocytes. Functional studies in fibroblasts and THP-1 showed that both variants individually suppressed TLR3-driven IRF3 promoter activity and type I interferon response in vitro. Furthermore, fibroblasts expressing the IRF7 and UNC93B1 variants had higher intracellular viral titers with blunting of the type I interferon response upon HSV1 challenge. This study reports an infant with recurrent HSV1 disease complicated by encephalitis associated with deleterious variants in IRF7 and UNC93B1 genes. Our results suggest that TLR3 pathway mutations may predispose neonates to recurrent severe HSV.
Megan H. Tucker, Wei Yu, Heather L. Menden, Sheng Xia, Carl F. Schreck, Margaret I. Gibson, Daniel A. Louiselle, Tomi Pastinen, Nikita Raje, Venkatesh Sampath
HSV-2 coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well-defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2 infected and bystander 2D10 cells. Bulk and single-cell RNA sequencing studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms including upregulation of MALAT1 to release epigenetic silencing.
Carl A. Pierce, Lip Nam Loh, Holly R. Steach, Natalia Cheshenko, Paula Preston-Hurlburt, Fengrui Zhang, Stephanie Stransky, Leah Kravets, Simone Sidoli, William M. Philbrick, Michel N. Nassar, Smita Krishnaswamy, Kevan C. Herold, Betsy C. Herold
Renal osteodystrophy (ROD) is a disorder of bone metabolism that affects virtually all patients with chronic kidney disease (CKD), and is associated with adverse clinical outcomes including fractures, cardiovascular events and death. In the present study, we showed that hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor mostly expressed in the liver, is also expressed in bone, and that osseous HNF4α expression was dramatically reduced in patients and mice with ROD. Osteoblast-specific deletion of Hnf4α resulted in impaired osteogenesis in cells and mice. Using multi-omics analyses of bones and cells lacking or overexpressing Hnf4α1 and Hnf4α2, we showed that HNF4α2 is the main osseous Hnf4α isoform that regulates osteogenesis, cell metabolism, and cell death. As a result, osteoblast-specific overexpression of Hnf4α2 prevented bone loss in mice with CKD. Our results showed that HNF4α2 is a transcriptional regulator of osteogenesis, implicated in the development of ROD.
Marta Martinez-Calle, Guillaume Courbon, Bridget Hunt-Tobey, Connor Francis, Jadeah J. Spindler, Xueyan Wang, Luciene M. dos Reis, Carolina Steller Wagner Martins, Isidro B. Salusky, Hartmut H. Malluche, Thomas L. Nickolas, Rosa M.A. Moyses, Aline Martin, Valentin David
Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis (CH) of indeterminate potential (CHIP) is frequent in ageing, involves expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, risk factors that contribute to CHIP-associated CH are poorly understood. Obesity induces a pro-inflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data from 47,466 individuals with validated CHIP in UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1 and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and a pro-inflammatory state can potentiate progression of CHIP to more significant hematologic neoplasia. Calcium channel blocker, nifedipine or SKF-96365, either alone or in combination with metformin, MCC950 or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in obese individuals.
Santhosh Kumar Pasupuleti, Baskar Ramdas, Sarah S. Burns, Lakshmi Reddy Palam, Rahul Kanumuri, Ramesh Kumar, Taruni R. Pandhiri, Utpal Dave, Nanda Kumar Yellapu, Xinyu Zhou, Chi Zhang, George E. Sandusky, Zhi Yu, Michael C. Honigberg, Alexander G. Bick, Gabriel K. Griffin, Abhishek Niroula, Benjamin L. Ebert, Sophie Paczesny, Pradeep Natarajan, Reuben Kapur
BACKGROUND. There is increasing evidence, in transgenic mice and in vitro, that inhibitory killer cell immunoglobulin-like receptors (iKIRs) can modulate T cell responses. Furthermore, we have previously shown that iKIRs are an important determinant of T cell-mediated control of chronic virus infection and that these results are consistent with an increase in CD8+ T cell lifespan due to iKIR-ligand interactions. Here we test this prediction and investigate whether iKIRs affect T cell lifespan in humans in vivo. METHODS. We used stable isotope labelling with deuterated water to quantify memory CD8+ T cell survival in healthy individuals and patients with chronic viral infections. RESULTS. We showed that an individual’s iKIR-ligand genotype is a significant determinant of CD8+ T cell lifespan: in individuals with two iKIR-ligand gene pairs, memory CD8+ T cells survived on average for 125 days, in individuals with four iKIR-ligand gene pairs then memory CD8+ T cell lifespan was doubled to 250 days. Additionally, we showed that this survival advantage is independent of iKIR expression by the T cell of interest and further that iKIR-ligand genotype altered CD8+ and CD4+ T cell immune aging phenotype. CONCLUSIONS. Together these data reveal an unexpectedly large impact of iKIR genotype on T cell survival. FUNDING. Wellcome Trust, Medical Research Council, EU Horizon 2020, EU FP7, Leukemia and Lymphoma Research, National Institute of Health Research Imperial Biomedical Research Centre, Imperial College Research Fellowship, National Institute of Health, Jefferiss Trust.
Yan Zhang, Ada W.C. Yan, Lies Boelen, Linda Hadcocks, Arafa Salam, Daniel Padrosa Gispert, Loiza Spanos, Laura Mora Bitria, Neda Nemat-Gorgani, James A. Traherne, Chrissy H. Roberts, Danai A. Koftori, Graham P. Taylor, Daniel Forton, Paul J. Norman, Steven G.E. Marsh, Robert Busch, Derek Macallan, Becca Asquith
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) responding to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs of the brain (CVOs) focus on mechanosensitive membrane proteins. The present study demonstrated that an intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuronal-specific knockout (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1-cKO also blunted mannitol-indued AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
Xin Jin, Jian Xie, Chia-Wei Yeh, Jen-Chi Chen, Chih-Jen Cheng, Cheng-Chang Lien, Chou-Long Huang
Neuropathic pain remains poorly managed by current therapies highlighting the need to improve our knowledge of chronic pain mechanisms. In neuropathic pain models, dorsal root ganglia (DRG) nociceptive neurons transfer miR-21 packaged in extracellular vesicles to macrophages that promote pro-inflammatory phenotype and contribute to allodynia. Here we show that miR-21 conditional deletion in DRG neurons was coupled with lack of up-regulation of CCL2 chemokine after nerve injury and reduced accumulation of CCR2-expressing macrophages, which showed TGFB-related pathway activation and acquired M2-like anti-nociceptive phenotype. Indeed, neuropathic allodynia was attenuated in cKO and restored by a TGFB receptor inhibitor (SB431542) administration. Since TGFBR2 and TGFB1 are known miR-21 targets, we suggest that miR-21 transfer from injured neurons to macrophages maintains a pro-inflammatory phenotype via suppression of such an anti-inflammatory pathway. These data support miR-21 inhibition as a possible approach to maintain polarization of DRG macrophages at M2-like state and attenuate neuropathic pain.
Lynda Zeboudj, George Sideris-Lampretsas, Rita Silva, Sabeha Al-Mudaris, Francesca Picco, Sarah Fox, David Chambers, Marzia Malcangio
The deadliest anaplastic thyroid cancer (ATC) often transforms from indolent differentiated thyroid cancer (DTC); however, the complex intra-tumor transformation process is poorly understood. We investigated an anaplastic transformation model by dissecting both cell lineage and cell fate transitions using single cell transcriptomes and genetic alteration data from patients with different subtypes of thyroid cancer. The resulting spectrum of ATC transformation included stress-responsive DTC cells, inflammatory ATC cells (iATCs), mitotic-defective ATC cells and extended all the way to mesenchymal ATC cells (mATCs). Further, our analysis identified two important milestones: 1) a diploid stage, where iATC cells were diploids with inflammatory phenotypes, and 2) an aneuploid stage, where mATCs gained aneuploid genomes and mesenchymal phenotypes producing excessive collagens and collagen-interacting receptors. In parallel, cancer-associated-fibroblasts showed strong interactions among mesenchymal cell-types, macrophages shifted from M1 to M2 states, and T cells reprogrammed from cytotoxic to exhausted states, highlighting new therapeutic opportunities for ATC.
Lina Lu, Jennifer Rui Wang, Ying C. Henderson, Shanshan Bai, Jie Yang, Min Hu, Cheng-Kai Shiau, Timothy Y. Pan, Yuanqing Yan, Tuan M. Tran, Jianzhuo Li, Rachel Kieser, Xiao Zhao, Jiping Wang, Roza Nurieva, Michelle D. Williams, Maria E. Cabanillas, Ramona Dadu, Naifa Busaidy, Mark Zafereo, Nicholas Navin, Stephen Y. Lai, Ruli Gao
Germline or somatic loss-of-function mutations of fumarate hydratase (FH) predispose patients to an aggressive form of renal cell carcinoma (RCC). Since other than tumor resection, there is no effective therapy for metastatic FH-deficient RCC, an accurate method for early diagnosis is needed. Although MRI or CT scans are offered, they cannot differentiate FH-deficient tumors from other RCCs. Therefore, finding noninvasive plasma biomarkers suitable for rapid diagnosis, screening and surveillance would improve clinical outcomes. Taking advantage of the robust metabolic rewiring that occurs in FH-deficient cells, we performed plasma metabolomics analysis and identified two tumor-derived metabolites, succinyl-adenosine and succinic-cysteine, as outstanding plasma biomarkers for early diagnosis (receiver operating characteristic area under curve (ROCAUC) = 0.98). These two molecules reliably reflected the FH mutation status and tumor mass. We further identified the enzymatic cooperativity by which these biomarkers are produced within the tumor microenvironment. Longitudinal monitoring of patients demonstrated that these circulating biomarkers can be used for reporting on treatment efficacy and identifying recurrent or metastatic tumors.
Liang Zheng, Zi-Ran Zhu, Tal Sneh, Weituo Zhang, Zao-Yu Wang, Guang-Yu Wu, Wei He, Hong-Gang Qi, Hang Wang, Xiao-Yu Wu, Jonatan Fernández-García, Ifat Abramovich, Yun-Ze Xu, Jin Zhang, Eyal Gottlieb
Many hepatocellular carcinoma (HCC) patients do not respond to the first-line immune checkpoint inhibitor treatment. Immunization with effective cancer vaccines is an attractive alternative approach to immunotherapy. However, its efficacy remains insufficiently evaluated in preclinical studies. Here, we investigated HCC-associated self/tumor antigen, α-fetoprotein (AFP) based vaccine immunization for treating AFP (+) HCC mouse models. We found that AFP immunization effectively induced AFP-specific CD8+ T cells in vivo. However, these CD8+ T cells expressed exhaustion markers, including PD1, LAG3, and Tim3. Furthermore, the AFP vaccine effectively prevented c-MYC/Mcl1 HCC initiation when administrated before tumor formation, while it was ineffective against full-blown c-MYC/Mcl1 tumors. Similarly, anti-PD1 and anti-PD-L1 monotherapy showed no efficacy in this murine HCC model. In striking contrast, AFP immunization combined with anti-PD-L1 treatment triggered significant inhibition of HCC progression in most liver tumor nodules, while combining with anti-PD1 induced slower tumor progression. Mechanistically, we demonstrated that HCC intrinsic PD-L1 expression was the primary target of anti-PD-L1 in this combination therapy. Notably, the combination therapy had a similar therapeutic effect in the cMet/β-Catenin mouse HCC model. These findings suggest that combining the AFP vaccine and immune checkpoint inhibitors may be effective for AFP (+) HCC treatment.
Xinjun Lu, Shanshan Deng, Jiejie Xu, Benjamin L. Green, Honghua Zhang, Guofei Cui, Yi Zhou, Yi Zhang, Hongwei Xu, Fapeng Zhang, Rui Mao, Sheng Zhong, Thorsten Cramer, Matthias Evert, Diego F. Calvisi, Yukai He, Chao Liu, Xin Chen
BACKGROUND. The stomach-derived hormone ghrelin stimulates appetite, but the ghrelin receptor is also expressed in brain circuits involved in motivation and reward. We examined ghrelin effects on decision making beyond food or drug rewards, using monetary outcomes. METHODS. Thirty participants (50% females) underwent two fMRI scans, in randomized counterbalanced order, while receiving intravenous ghrelin or saline. RESULTS. Striatal representations of reward anticipation were unaffected by ghrelin, while activity during anticipation of losses was attenuated. Temporal discounting rates of monetary rewards were lower overall in the ghrelin condition, an effect driven by women. Discounting rates were inversely correlated with neural activity in a large cluster within the left parietal lobule that included the angular gyrus. Activity in an overlapping cluster was related to behavioral choices, and was suppressed by ghrelin. CONCLUSION. This is to our knowledge the first human study to extend the understanding of ghrelin’s significance beyond the canonical feeding domain or in relation to addictive substances. Contrary to our hypothesis, we find that ghrelin does not affect sensitivity to monetary reward anticipation, but rather results in attenuated loss aversion and lower discounting rates for these rewards. Ghrelin may cause a motivational shift toward caloric rewards rather than globally promoting the value of rewards. TRIAL REGISTRATION. EudraCT 2018-004829-82 FUNDING. Swedish Research Council (MH: 2013-07434) and Marcus and Marianne Wallenberg foundation (GT: 2014.0187). Author LL is supported by NIDA/NIAAA IRP
Michal Pietrzak, Adam Yngve, J. Paul Hamilton, Robin Kämpe, Rebecca Boehme, Anna Asratian, Emelie Gauffin, Andreas Löfberg, Sarah Gustavson, Emil Persson, Andrea J. Capusan, Lorenzo Leggio, Irene Perini, Gustav Tinghög, Markus Heilig
Kara N. Thomas, Nimisha Srikanth, Sanat S. Bhadsavle, Kelly R. Thomas, Katherine N. Zimmel, Alison Basel, Alexis N. Roach, Nicole A. Mehta, Yudhishtar S. Bedi, Michael C. Golding
Excessive Erythrocytosis (EE) is a major hallmark of patients suffering from chronic mountain sickness (CMS, Monge’s disease) and is responsible for major morbidity and even mortality in early adulthood. We took advantage of unique populations, one living at high altitude (Peru) showing EE, while another population, at the same altitude and region, shows no evidence of EE (non-CMS). Through RNA-seq, we identified and validated the function of a group of long non-coding RNA (lncRNAs) that regulate erythropoiesis in Monge’s disease but not in the non-CMS population. Among these lncRNAs is HIKER (Hypoxia Induced Kinase-mediated Erythropoietic Regulator)/LINC02228 which we showed plays a critical role in erythropoiesis in CMS cells. Under hypoxia, HIKER modulated CSNK2B (the regulatory subunit of Casein kinase 2). A down-regulation of HIKER down-regulated CSNK2B, remarkably reducing erythropoiesis (<70% reduction of BFUs); furthermore, an up-regulation of CSNK2B on the background of HIKER down-regulation rescued erythropoiesis defects. Pharmacologic inhibition of CSNK2B drastically reduced erythroid colonies (50-75% reduction in BFU colonies) and knock-down of CSNK2B in zebrafish lead to a defect in hemoglobinization (<97% morphants show reduction in hemoglobin levels). We conclude that HIKER regulates erythropoiesis in Monge’s disease and acts through at least one specific target, CSNK2B, a casein kinase.
Priti Azad, Dan Zhou, Hung-Chi Tu, Francisco C. Villafuerte, David Traver, Tariq M. Rana, Gabriel G. Haddad
Current therapies for Fabry disease are based on reversing intra-cellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosome dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease remains unclear. First, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/CAS9-mediated α-Galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified alpha-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.
Fabian Braun, Ahmed Abed, Dominik Sellung, Manuel Rogg, Mathias Woidy, Oysten Eikrem, Nicola Wanner, Jessica Gambardella, Sandra D. Laufer, Fabian Haas, Milagros N. Wong, Bernhard Dumoulin, Paula Rischke, Anne K. Mühlig, Wiebke Sachs, Katharina von Cossel, Kristina Schulz, Nicole Muschol, Sören W. Gersting, Ania C. Muntau, Oliver Kretz, Oliver Hahn, Markus M. Rinschen, Michael Mauer, Tillmann Bork, Florian Grahammer, Wei Liang, Thorsten Eierhoff, Winfried Römer, Arne Hansen, Catherine Meyer-Schwesinger, Guido Iaccarino, Camilla Tøndel, Hans-Peter Marti, Behzad Najafian, Victor G. Puelles, Christoph Schell, Tobias B. Huber