Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Excessive collagen type VII mediates pleural fibrosis via increasing extracellular matrix stiffness
Qian Li, Xin-Liang He, Shuai-Jun Chen, Qian Niu, Tan-Ze Cao, Xiao-Ling Cui, Zi-Heng Jia, He-De Zhang, Xiao Feng, Ye-Han Jiang, Li-Mei Liang, Pei-Pei Cheng, Shi-He Hu, Liang Xiong, Meng Wang, Hong Ye, Wan-Li Ma
Qian Li, Xin-Liang He, Shuai-Jun Chen, Qian Niu, Tan-Ze Cao, Xiao-Ling Cui, Zi-Heng Jia, He-De Zhang, Xiao Feng, Ye-Han Jiang, Li-Mei Liang, Pei-Pei Cheng, Shi-He Hu, Liang Xiong, Meng Wang, Hong Ye, Wan-Li Ma
View: Text | PDF
Research In-Press Preview Cell biology Inflammation Pulmonology

Excessive collagen type VII mediates pleural fibrosis via increasing extracellular matrix stiffness

  • Text
  • PDF
Abstract

The interaction between cells and extracellular matrix (ECM) has been recognized in mechanism of fibrotic diseases. Collagen type VII (collagen VII) is an ECM component which plays an important role in cell-ECM interaction, particularly in cell anchoring and maintaining ECM integrity. Pleural mesothelial cells (PMCs) drive inflammatory reactions and ECM production in pleura. However, the role of collagen VII and PMCs in pleural fibrosis was poorly understood. In this study, collagen VII protein was found increase in pleura of patients with tuberculous pleural fibrosis. Investigation of cellular and animal models revealed that collagen VII began to increase at early stage in pleural fibrotic process. Increase of collagen VII occurred ahead of collagen I and α-SMA in PMCs and pleura of animal models. Inhibition of collagen VII by mesothelial cell-specific deletion of collagen VII gene (WT1-Cre+-COL7A1flox/flox) attenuated mouse experimental pleural fibrosis. At last, it was found that excessive collagen VII changed collagen conformation which resulted in elevation of ECM stiffness. Elevation of ECM stiffness activated integrin/PI3K-AKT/JUN signaling and promoted more ECM deposition, as well as mediated pleural fibrosis. In conclusion, excessive collagen VII mediated pleural fibrosis via increasing extracellular matrix stiffness.

Authors

Qian Li, Xin-Liang He, Shuai-Jun Chen, Qian Niu, Tan-Ze Cao, Xiao-Ling Cui, Zi-Heng Jia, He-De Zhang, Xiao Feng, Ye-Han Jiang, Li-Mei Liang, Pei-Pei Cheng, Shi-He Hu, Liang Xiong, Meng Wang, Hong Ye, Wan-Li Ma

×

Full Text PDF

Download PDF (6.07 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts