Andrade et al. identify an antimicrobial gene signature regulated by Th1/Th17 cytokines and associated with reduced Mycobacterium leprae burden, highlighting potential antimicrobial effectors and therapeutic targets for improving mycobacterial infection outcomes. The cover image is a scanning electron micrograph of M. leprae bacilli exposed to CCL17. Image credit: Priscila R. Andrade. Colorized by Robert L. Modlin using ChatGPT Pro.
A single bout of exercise improves muscle insulin sensitivity for up to 48 hours via the AMP-activated protein kinase (AMPK). Limb ischemia activates AMPK in muscle, and subsequent reperfusion enhances insulin-stimulated vasodilation, potentially eliciting a more pronounced exercise effect with reduced workload. Here, we investigated the combined effect of upper leg intermittent ischemia-reperfusion (IIR) and continuous knee-extension exercise on muscle insulin sensitivity regulation. We found that IIR-exercise potentiated AMPK activation and muscle insulin sensitivity. The potentiating effect of IIR-exercise on muscle insulin sensitivity was associated with increased insulin-stimulated blood flow in parallel with enhanced phosphorylation of endothelial nitric oxide synthase. Metabolomics analyses demonstrated a suppression of muscle medium-chain acylcarnitines during IIR-exercise, which correlated with insulin sensitivity and was consistent with findings in isolated rat muscle treated with Decanoyl-L-carnitine. Collectively, combining IIR with low-to-moderate intensity exercise may represent a promising intervention to effectively enhance muscle insulin sensitivity. This approach could offer potential for mitigating muscle insulin resistance in clinical settings and among individuals with lower physical activity levels.
Kohei Kido, Janne R. Hingst, Johan Onslev, Kim A. Sjøberg, Jesper B. Birk, Nicolas O. Eskesen, Tongzhu Zhou, Kentaro Kawanaka, Jesper F. Havelund, Nils J. Færgeman, Ylva Hellsten, Jørgen F.P. Wojtaszewski, Rasmus Kjøbsted
The persistent challenge of sepsis-related mortality underscores the necessity for deeper insights, with our multi-center cross-age cohort study identifying insulin-like growth factor binding protein 6 (IGFBP6) as a critical regulator in sepsis diagnosis, prognosis, and mortality risk evaluation. Mechanistically, IGFBP6 engages in IGF-independent binding to prohibitin2 (PHB2) on epithelial cells, driving PHB2 tyrosine phosphorylation during sepsis. This process disrupts STAT1 phosphorylation, nuclear translocation, and its recruitment to the CCL2 promoter, ultimately impairing CCL2 transcription and macrophage chemotaxis. Crucially, PHB2 silencing via siPHB2 and STAT1 activation using 2-NP restored CCL2 expression in vitro and in vivo, improving bacterial clearance and survival in septic mice. Concurrently, IGFBP6 compromises macrophage bactericidal activity by inhibiting Akt phosphorylation, reducing ROS/IL-1β production and phagocytic capacity – defects reversible by Akt agonist SC79. Collectively, IGFBP6 emerges as an endogenous driver of sepsis pathogenesis, positioning it as a dual diagnostic biomarker and therapeutic target. Intervention strategies targeting IGFBP6-mediated signaling may offer transformative approaches for sepsis management.
Kai Chen, Ying Hu, Xiaoyan Yu, Hong Tang, Yanting Ruan, Yue Li, Xun Gao, Qing Zhao, Hong Wang, Xuemei Zhang, David Paul Molloy, Yibing Yin, Dapeng Chen, Zhixin Song
Sepsis is a life-threatening disease caused by a dysfunctional host response to infection. During sepsis, inflammation-related immunosuppression is the critical factor causing secondary infection and multiple organ dysfunction syndrome. The regulatory mechanisms underlying regulatory T-cell (Treg) differentiation and function, which significantly contribute to septic immunosuppression, require further clarification. In this study, we found that neutrophil extracellular traps (NETs) participated in the development of sepsis-induced immunosuppression by enhancing Treg differentiation and function via direct interaction with CD4+ T cells. Briefly, NETs anchored enolase 1 (ENO1) on the membrane of CD4+ T cells through its key protein myeloperoxidase (MPO) and subsequently recruited interferon-induced transmembrane protein 2 (IFITM2). IFITM2 acted as a DNA receptor that sensed NETs-DNA and activated intracellular RAS-associated protein 1B (RAP1B) and its downstream extracellular signal-regulated kinase (ERK) signaling pathway to promote Treg differentiation and function. ENO1 inhibition significantly attenuated NETs-induced Treg differentiation and alleviated sepsis in mice. Overall, we demonstrated the role of NETs in sepsis-induced immunosuppression by enhancing Treg differentiation, identified ENO1 as an anchor of NETs-MPO, and elucidated the downstream molecular mechanism by which IFITM2-RAP1B-ERK regulated Treg differentiation. These findings improve our understanding of the immunopathogenesis of sepsis and provide potential therapeutic targets for sepsis-induced immunosuppression.
Yi Jiang, Shenjia Gao, Xiya Li, Hao Sun, Xinyi Wu, Jiahui Gu, Zhaoyuan Chen, Han Wu, Xiaoqiang Zhao, Tongtong Zhang, Ronen Ben-Ami, Yuan Le, Timothy R. Billiar, Changhong Miao, Jie Zhang, Jun Wang, Wankun Chen
Peripheral artery disease (PAD) often advances to chronic limb-threatening ischemia (CLTI), resulting in severe complications such as limb amputation. Despite the potential of therapeutic angiogenesis, the mechanisms of cell-cell communication and transcriptional changes driving PAD are not fully understood. Profiling long non-coding RNAs (lncRNAs) from gastrocnemius muscles of human subjects with or without CLTI revealed that a vascular smooth muscle cell (SMC)-enriched lncRNA CARMN, was reduced with CLTI. This study explored how a SMC lncRNA-miRNA signaling axis regulates angiogenesis in limb ischemia. CARMN knockout (KO) mice exhibited reduced capillary density and impaired blood flow recovery and tissue necrosis following limb ischemia. We found that CARMN KO SMC supernatants inhibited endothelial cell (EC) proliferation, spheroid sprouting, and network formation. RNA-sequencing identified downregulation of the Hedgehog signaling pathway in CARMN KO models and revealed that CARMN regulates this pathway through its downstream miRNA, miR-143-3p, which targets Hedgehog-interacting protein (HHIP), an antagonist of Hedgehog signaling. Delivery of HHIP-specific siRNA or miR-143-3p mimics rescued EC angiogenic defects and improved blood flow recovery in both CARMN KO and WT mice. These findings underscore the critical role of CARMN in modulating angiogenesis through the miR-143-3p-HHIP-Hedgehog signaling axis, providing insights into SMC-EC interactions and potential therapeutic strategies for CLTI.
Ming Zhai, Anurag Jamaiyar, Jun Qian, Winona W. Wu, Emre Bektik, Vinay Randhawa, Camila De Oliveira Vaz, Arvind K. Pandey, Akm Khyrul Wara, Madhur Sachan, Yi Hu, Jéssica L. Garcia, Claire E. Alford, Terence E. Ryan, Wenhui Peng, Mark W. Feinberg
Steven Q. Le, Alexander Sorensen, Soila Sukupolvi, Gianna Jewhurst, Grant L. Austin, Balraj Doray, Jonathan D. Cooper, Patricia I. Dickson
Pancreatic ductal adenocarcinoma (PDAC) has among the poorest prognosis and highest refractory rates of all tumor types. The reviews in this series, by Dr. Ben Z. Stanger, bring together experts across multiple disciplines to explore what makes PDAC and other pancreatic cancers so distinctively challenging and provide an update on recent multipronged approaches aimed at improving early diagnosis and treatment.
×