Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cerebrospinal fluid flow modulates brain health
Lauren M. Hablitz, Maiken Nedergaard
Lauren M. Hablitz, Maiken Nedergaard
View: Text | PDF
Commentary

Cerebrospinal fluid flow modulates brain health

  • Text
  • PDF
Abstract

Cerebrospinal fluid dynamics play an important role in maintaining brain health and clearing metabolic waste from the brain. In this issue of the JCI, Gursky et al. investigate how CSF distribution is affected when its primary efflux pathway — the deep cervical lymph nodes — is disrupted by cauterization. This timely study reveals compensatory fluid drainage routes from the skull, age-dependent adaptations in CSF homeostasis, and the emergence of neuroinflammation when an efflux pathway is occluded. The findings underscore the need to better understand the physiological mechanisms governing CSF clearance, how these pathways evolve with aging, and whether CSF influx and efflux exhibit region-specific dynamics shaped by neuroanatomy. Additionally, the study raises important questions about whether peripheral injury can influence central nervous system states. A more complete understanding of CSF flow regulation may offer new perspectives on the origins of neuropathology.

Authors

Lauren M. Hablitz, Maiken Nedergaard

×

Full Text PDF

Download PDF (659.76 KB) | Download high-resolution PDF (674.45 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts