Issue published June 3, 2024 Previous issue

On the cover: Human organoid models of retinal development

Mullin et al. utilize single-cell sequencing of patient-derived retinal organoids carrying genetic variants within NR2E3 (nuclear receptor subfamily 2 group E member 3) to uncover the roles of this transcription factor in normal development and disease. The cover image shows a scanning electron micrograph of a mature human retinal organoid derived from a patient with NR2E3-associated enhanced S-cone syndrome. Image credit: Arwin Shrestha.

100th Anniversary Viewpoints
Review Series
Abstract

Lifetime and temporal co-occurrence of substance use disorders (SUDs) is common and compared with individual SUDs is characterized by greater severity, additional psychiatric comorbidities, and worse outcomes. Here, we review evidence for the role of generalized genetic liability to various SUDs. Coaggregation of SUDs has familial contributions, with twin studies suggesting a strong contribution of additive genetic influences undergirding use disorders for a variety of substances (including alcohol, nicotine, cannabis, and others). GWAS have documented similarly large genetic correlations between alcohol, cannabis, and opioid use disorders. Extending these findings, recent studies have identified multiple genomic loci that contribute to common risk for these SUDs and problematic tobacco use, implicating dopaminergic regulatory and neuronal development mechanisms in the pathophysiology of generalized SUD genetic liability, with certain signals demonstrating cross-species and translational validity. Overlap with genetic signals for other externalizing behaviors, while substantial, does not explain the entirety of the generalized genetic signal for SUD. Polygenic scores (PGS) derived from the generalized genetic liability to SUDs outperform PGS for individual SUDs in prediction of serious mental health and medical comorbidities. Going forward, it will be important to further elucidate the etiology of generalized SUD genetic liability by incorporating additional SUDs, evaluating clinical presentation across the lifespan, and increasing the granularity of investigation (e.g., specific transdiagnostic criteria) to ultimately improve the nosology, prevention, and treatment of SUDs.

Authors

Alex P. Miller, Ryan Bogdan, Arpana Agrawal, Alexander S. Hatoum

×

Abstract

Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.

Authors

Xinyi Li, Astrid P. Ramos-Rolón, Gabriel Kass, Lais S. Pereira-Rufino, Naomi Shifman, Zhenhao Shi, Nora D. Volkow, Corinde E. Wiers

×

Abstract

Alcohol-related harm, a major cause of disease burden globally, affects people along a spectrum of use. When a harmful pattern of drinking is present in the absence of significant behavioral pathology, low-intensity brief interventions that provide information about health consequences of continued use provide large health benefits. At the other end of the spectrum, profound behavioral pathology, including continued use despite knowledge of potentially fatal consequences, warrants a medical diagnosis, and treatment is strongly indicated. Available behavioral and pharmacological treatments are supported by scientific evidence but are vastly underutilized. Discovery of additional medications, with a favorable balance of efficacy versus safety and tolerability can improve clinical uptake of treatment, allow personalized treatment, and improve outcomes. Here, we delineate the clinical conditions when pharmacotherapy should be considered in relation to the main diagnostic systems in use and discuss clinical endpoints that represent meaningful clinical benefits. We then review specific developments in three categories of targets that show promise for expanding the treatment toolkit. GPCRs remain the largest category of successful drug targets across contemporary medicine, and several GPCR targets are currently pursued for alcohol-related indications. Endocrine systems are another established category, and several promising targets have emerged for alcohol indications. Finally, immune modulators have revolutionized treatment of multiple medical conditions, and they may also hold potential to produce benefits in patients with alcohol problems.

Authors

Markus Heilig, Katie Witkiewitz, Lara A. Ray, Lorenzo Leggio

×
Commentaries
Abstract

The occurrence of clonal hematopoiesis of indeterminate potential (CHIP), in which advantageous somatic mutations result in the clonal expansion of blood cells, increases with age, as do an increased risk of mortality and detrimental outcomes associated with CHIP. However, the role of CHIP in susceptibility to pulmonary infections, which also increase with age, is unclear. In this issue of the JCI, Quin and colleagues explored the role of CHIP in bacterial pneumonia. Using characterization of immune cells from human donors and mice lacking tet methylcytosine dioxygenase 2 (Tet2), the authors mechanistically link myeloid immune cell dysfunction to CHIP-mediated risk of bacterial pneumonia. The findings suggest that CHIP drives inflammaging and immune senescence, and provide Tet2 status in older adults as a potential prognostic tool for informing treatment options related to immune modulation.

Authors

Elsa N. Bou Ghanem

×

Abstract

Although antibody-mediated lung damage is a major factor in transfusion-related acute lung injury (ALI), autoimmune lung disease (for example, coatomer subunit α [COPA] syndrome), and primary graft dysfunction following lung transplantation, the mechanism by which antigen-antibody complexes activate complement to induce lung damage remains unclear. In this issue of the JCI, Cleary and colleagues utilized several approaches to demonstrate that IgG forms hexamers with MHC class I alloantibodies. This hexamerization served as a key pathophysiological mechanism in alloimmune lung injury models and was mediated through the classical pathway of complement activation. Additionally, the authors provided avenues for exploring therapeutics for this currently hard-to-treat clinical entity that has several etiologies but a potentially focused mechanism.

Authors

Hrishikesh S. Kulkarni

×

Abstract

The macula densa (MD) is a distinct cluster of approximately 20 specialized kidney epithelial cells that constitute a key component of the juxtaglomerular apparatus. Unlike other renal tubular epithelial cell populations with functions relating to reclamation or secretion of electrolytes and solutes, the MD acts as a cell sensor, exerting homeostatic actions in response to sodium and chloride changes within the tubular fluid. Electrolyte flux through apical sodium transporters in MD cells triggers release of paracrine mediators, affecting blood pressure and glomerular hemodynamics. In this issue of the JCI, Gyarmati and authors explored a program of MD that resulted in activation of regeneration pathways. Notably, regeneration was triggered by feeding mice a low-salt diet. Furthermore, the MD cells showed neuron-like properties that may contribute to their regulation of glomerular structure and function. These findings suggest that dietary sodium restriction and/or targeting MD signaling might attenuate glomerular injury.

Authors

Yun Xia, Thomas M. Coffman

×
Research Articles
Abstract

The adoptive transfer of T cell receptor–engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2–restricted cancer-testis epitope NY-ESO-1157–165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L–T cells. In order to harness macrophages in tumors, we further coengineered A97L–T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc–coengineered A97L–T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer–coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L–T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR–T cells with targeted antibodies to direct phagocytosis against tumor cells.

Authors

Evangelos Stefanidis, Aikaterini Semilietof, Julien Pujol, Bili Seijo, Kirsten Scholten, Vincent Zoete, Olivier Michielin, Raphael Sandaltzopoulos, George Coukos, Melita Irving

×

Abstract

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that nucleotide-binding oligomerization domain–like receptor (NLR) family CARD domain–containing 4 (NLRC4) is downregulated in epithelial tumor cells of patients with colorectal cancer (CRC) by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4, but not stromal NLRC4, was associated with poor immune infiltration (mainly DCs and CD4+ and CD8+ T cells) and accurately predicted progression to metastatic stage IV and decrease in overall survival. By combining multiomics approaches, we show that restoring NLRC4 expression in human CRC cells triggered a broad inflammasome-independent immune reprogramming consisting of type I interferon (IFN) signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of DCs and T cells. Consistently, such reprogramming in cancer cells was sufficient to directly induce maturation of human DCs toward a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors was strongly associated with type I IFN genes, immune infiltrates, and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.

Authors

Charlotte Domblides, Steven Crampton, Hong Liu, Juliet M. Bartleson, Annie Nguyen, Claudia Champagne, Emily E. Landy, Lindsey Spiker, Christopher Proffitt, Sunil Bhattarai, Anissa P. Grawe, Matias Fuentealba Valenzuela, Lydia Lartigue, Isabelle Mahouche, Jeremy Dupaul-Chicoine, Kazuho Nishimura, Félix Lefort, Marie Decraecker, Valérie Velasco, Sonia Netzer, Vincent Pitard, Christian Roy, Isabelle Soubeyran, Victor Racine, Patrick Blanco, Julie Déchanet-Merville, Maya Saleh, Scott W. Canna, David Furman, Benjamin Faustin

×

Abstract

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.

Authors

Piyarat Siripoksup, Guoshen Cao, Ahmad A. Cluntun, J. Alan Maschek, Quentinn Pearce, Marisa J. Brothwell, Mi-Young Jeong, Hiroaki Eshima, Patrick J. Ferrara, Precious C. Opurum, Ziad S. Mahmassani, Alek D. Peterlin, Shinya Watanabe, Maureen A. Walsh, Eric B. Taylor, James E. Cox, Micah J. Drummond, Jared Rutter, Katsuhiko Funai

×

Abstract

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10–8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10–8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10–27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10–5) and ZNF467 (P = 2.9 × 10–4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.

Authors

David M. McKean, Qi Zhang, Priyanka Narayan, Sarah U. Morton, Viktoria Strohmenger, Vi T. Tang, Sophie McAllister, Ananya Sharma, Daniel Quiat, Daniel Reichart, Daniel M. DeLaughter, Hiroko Wakimoto, Joshua M. Gorham, Kemar Brown, Barbara McDonough, Jon A. Willcox, Min Young Jang, Steven R. DePalma, Tarsha Ward, Pediatric Cardiac Genomics Consortium Investigators, Richard Kim, John D. Cleveland, J.G. Seidman, Christine E. Seidman

×

Abstract

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.

Authors

Ashley M. Fuller, Hawley C. Pruitt, Ying Liu, Valerie M. Irizarry-Negron, Hehai Pan, Hoogeun Song, Ann DeVine, Rohan S. Katti, Samir Devalaraja, Gabrielle E. Ciotti, Michael V. Gonzalez, Erik F. Williams, Ileana Murazzi, Dimitris Ntekoumes, Nicolas Skuli, Hakon Hakonarson, Daniel J. Zabransky, Jose G. Trevino, Ashani Weeraratna, Kristy Weber, Malay Haldar, Joseph A. Fraietta, Sharon Gerecht, T.S. Karin Eisinger-Mathason

×

Abstract

One critical mechanism through which prostate cancer (PCa) adapts to treatments targeting androgen receptor (AR) signaling is the emergence of ligand-binding domain–truncated and constitutively active AR splice variants, particularly AR-V7. While AR-V7 has been intensively studied, its ability to activate distinct biological functions compared with the full-length AR (AR-FL), and its role in regulating the metastatic progression of castration-resistant PCa (CRPC), remain unclear. Our study found that, under castrated conditions, AR-V7 strongly induced osteoblastic bone lesions, a response not observed with AR-FL overexpression. Through combined ChIP-seq, ATAC-seq, and RNA-seq analyses, we demonstrated that AR-V7 uniquely accesses the androgen-responsive elements in compact chromatin regions, activating a distinct transcription program. This program was highly enriched for genes involved in epithelial-mesenchymal transition and metastasis. Notably, we discovered that SOX9, a critical metastasis driver gene, was a direct target and downstream effector of AR-V7. Its protein expression was dramatically upregulated in AR-V7–induced bone lesions. Moreover, we found that Ser81 phosphorylation enhanced AR-V7’s pro-metastasis function by selectively altering its specific transcription program. Blocking this phosphorylation with CDK9 inhibitors impaired the AR-V7–mediated metastasis program. Overall, our study has provided molecular insights into the role of AR splice variants in driving the metastatic progression of CRPC.

Authors

Dong Han, Maryam Labaf, Yawei Zhao, Jude Owiredu, Songqi Zhang, Krishna Patel, Kavita Venkataramani, Jocelyn S. Steinfeld, Wanting Han, Muqing Li, Mingyu Liu, Zifeng Wang, Anna Besschetnova, Susan Patalano, Michaela J. Mulhearn, Jill A. Macoska, Xin Yuan, Steven P. Balk, Peter S. Nelson, Stephen R. Plymate, Shuai Gao, Kellee R. Siegfried, Ruihua Liu, Mary M. Stangis, Gabrielle Foxa, Piotr J. Czernik, Bart O. Williams, Kourosh Zarringhalam, Xiaohong Li, Changmeng Cai

×

Abstract

Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A–secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.

Authors

Yewei Wang, Md Ashik Ullah, Olivia G. Waltner, Shruti S. Bhise, Kathleen S. Ensbey, Christine R. Schmidt, Samuel R.W. Legg, Tomoko Sekiguchi, Ethan L. Nelson, Rachel D. Kuns, Nicole S. Nemychenkov, Erden Atilla, Albert C. Yeh, Shuichiro Takahashi, Julie R. Boiko, Antiopi Varelias, Bruce R. Blazar, Motoko Koyama, Simone A. Minnie, Andrew D. Clouston, Scott N. Furlan, Ping Zhang, Geoffrey R. Hill

×

Abstract

Just like the androgen receptor (AR), the estrogen receptor α (ERα) is expressed in the prostate and is thought to influence prostate cancer (PCa) biology. Yet the incomplete understanding of ERα functions in PCa hinders our ability to fully comprehend its clinical relevance and restricts the repurposing of estrogen-targeted therapies for the treatment of this disease. Using 2 human PCa tissue microarray cohorts, we first demonstrate that nuclear ERα expression was heterogeneous among patients, being detected in only half of the tumors. Positive nuclear ERα levels were correlated with disease recurrence, progression to metastatic PCa, and patient survival. Using in vitro and in vivo models of the normal prostate and PCa, bulk and single-cell RNA-Seq analyses revealed that estrogens partially mimicked the androgen transcriptional response and activated specific biological pathways linked to proliferation and metabolism. Bioenergetic flux assays and metabolomics confirmed the regulation of cancer metabolism by estrogens, supporting proliferation. Using cancer cell lines and patient-derived organoids, selective estrogen receptor modulators, a pure anti-estrogen, and genetic approaches impaired cancer cell proliferation and growth in an ERα-dependent manner. Overall, our study revealed that, when expressed, ERα functionally reprogrammed PCa metabolism, was associated with disease progression, and could be targeted for therapeutic purposes.

Authors

Camille Lafront, Lucas Germain, Gabriel H. Campolina-Silva, Cindy Weidmann, Line Berthiaume, Hélène Hovington, Hervé Brisson, Cynthia Jobin, Lilianne Frégeau-Proulx, Raul Cotau, Kevin Gonthier, Aurélie Lacouture, Patrick Caron, Claire Ménard, Chantal Atallah, Julie Riopel, Éva Latulippe, Alain Bergeron, Paul Toren, Chantal Guillemette, Martin Pelletier, Yves Fradet, Clémence Belleannée, Frédéric Pouliot, Louis Lacombe, Éric Lévesque, Étienne Audet-Walsh

×

Abstract

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2–knockout (Tet2–/–) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2–/– mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2–/– mice. We delineated the transcriptional landscape of Tet2–/– neutrophils and found that, while inflammation-related pathways were upregulated in Tet2–/– neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2–/– neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.

Authors

Candice Quin, Erica N. DeJong, Elina K. Cook, Yi Zhen Luo, Caitlyn Vlasschaert, Sanathan Sadh, Amy J.M. McNaughton, Marco M. Buttigieg, Jessica A. Breznik, Allison E. Kennedy, Kevin Zhao, Jeffrey Mewburn, Kimberly J. Dunham-Snary, Charles C.T. Hindmarch, Alexander G. Bick, Stephen L. Archer, Michael J. Rauh, Dawn M.E. Bowdish

×

Abstract

Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.

Authors

Xiao Song, Deanna Tiek, Shunichiro Miki, Tianzhi Huang, Minghui Lu, Anshika Goenka, Rebeca Iglesia, Xiaozhou Yu, Runxin Wu, Maya Walker, Chang Zeng, Hardik Shah, Shao Huan Samuel Weng, Allen Huff, Wei Zhang, Tomoyuki Koga, Christopher Hubert, Craig M. Horbinski, Frank B. Furnari, Bo Hu, Shi-Yuan Cheng

×

Abstract

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease–causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.

Authors

Nathaniel K. Mullin, Laura R. Bohrer, Andrew P. Voigt, Lola P. Lozano, Allison T. Wright, Vera L. Bonilha, Robert F. Mullins, Edwin M. Stone, Budd A. Tucker

×

Abstract

Tissue regeneration is limited in several organs, including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest an existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here, we identified neuronal differentiation features of MD cells that sense the local and systemic environment and secrete angiogenic, growth, and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models, and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors, including CCN1, as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue-regenerative therapeutic strategies.

Authors

Georgina Gyarmati, Urvi Nikhil Shroff, Anne Riquier-Brison, Dorinne Desposito, Wenjun Ju, Sean D. Stocker, Audrey Izuhara, Sachin Deepak, Alejandra Becerra Calderon, James L. Burford, Hiroyuki Kadoya, Ju-Young Moon, Yibu Chen, Markus M. Rinschen, Nariman Ahmadi, Lester Lau, Daniel Biemesderfer, Aaron W. James, Liliana Minichiello, Berislav V. Zlokovic, Inderbir S. Gill, Matthias Kretzler, János Peti-Peterdi

×

Abstract

Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype that potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and have implications for the attenuation of neurotoxicity after GVHD and potentially other T cell–based immunotherapeutic approaches.

Authors

Alison Moe, Aditya Rayasam, Garrett Sauber, Ravi K. Shah, Ashley Doherty, Cheng-Yin Yuan, Aniko Szabo, Bob M. Moore II, Marco Colonna, Weiguo Cui, Julian Romero, Anthony E. Zamora, Cecilia J. Hillard, William R. Drobyski

×

Abstract

BACKGROUND Features of consumptive coagulopathy and thromboinflammation are prominent in cerebral malaria (CM). We hypothesized that thrombogenic autoantibodies contribute to a procoagulant state in CM.METHODS Plasma from children with uncomplicated malaria (UM) (n = 124) and CM (n = 136) was analyzed by ELISA for a panel of 8 autoantibodies including anti–platelet factor 4/polyanion (anti-PF4/P), anti-phospholipid, anti-phosphatidylserine, anti-myeloperoxidase, anti–proteinase 3, anti-dsDNA, anti–β-2-glycoprotein I, and anti-cardiolipin. Plasma samples from individuals with nonmalarial coma (NMC) (n = 49) and healthy controls (HCs) (n = 56) were assayed for comparison. Associations with clinical and immune biomarkers were determined using univariate and logistic regression analyses.RESULTS Median anti-PF4/P and anti–PS IgG levels were elevated in individuals with malaria infection relative to levels in HCs (P < 0.001) and patients with NMC (PF4/P: P < 0.001). Anti–PF4/P IgG levels were elevated in children with CM (median = 0.27, IQR: 0.19-0.41) compared with those with UM (median = 0.19, IQR: 0.14–0.22, P < 0.0001). Anti–PS IgG levels did not differ between patients with UM and those with CM (P = 0.39). When patients with CM were stratified by malaria retinopathy (Ret) status, the levels of anti–PF4/P IgG correlated negatively with the peripheral platelet count in patients with Ret+ CM (Spearman’s rho [Rs] = 0.201, P = 0.04) and associated positively with mortality (OR = 15.2, 95% CI: 1.02–275, P = 0.048). Plasma from patients with CM induced greater platelet activation in an ex vivo assay relative to plasma from patients with UM (P = 0.02), and the observed platelet activation was associated with anti–PF4/P IgG levels (Rs= 0.293, P = 0.035).CONCLUSIONS Thrombosis mediated by elevated anti-PF4/P autoantibodies may be one mechanism contributing to the clinical complications of CM.

Authors

Iset M. Vera, Anne Kessler, Visopo Harawa, Ajisa Ahmadu, Thomas E. Keller, Stephen T.J. Ray, Terrie E. Taylor, Stephen J. Rogerson, Wilson L. Mandala, Morayma Reyes Gil, Karl B. Seydel, Kami Kim

×

Abstract

BACKGROUND Early antiretroviral therapy initiation (ARTi) in HIV-1 restricts reservoir size and diversity while preserving immune function, potentially improving opportunities for immunotherapeutic cure strategies. For antibody-based cure approaches, the development of autologous neutralizing antibodies (anAbs) after acute/early ARTi is relevant but is poorly understood.METHODS We characterized antibody responses in a cohort of 23 participants following ARTi in acute HIV (<60 days after acquisition) and early HIV (60–128 days after acquisition).RESULTS Plasma virus sequences at the time of ARTi revealed evidence of escape from anAbs after early, but not acute, ARTi. HIV-1 envelopes representing the transmitted/founder virus(es) (acute ARTi) or escape variants (early ARTi) were tested for sensitivity to longitudinal plasma IgG. After acute ARTi, no anAb responses developed over months to years of suppressive ART. In 2 of the 3 acute ARTi participants who experienced viremia after ARTi, however, anAbs arose shortly thereafter. After early ARTi, anAbs targeting those early variants developed between 12 and 42 weeks of ART and continued to increase in breadth and potency thereafter.CONCLUSION Results indicate a threshold of virus replication (~60 days) required to induce anAbs, after which they continue to expand on suppressive ART to better target the range of reservoir variants.TRIAL REGISTRATION ClinicalTrials.gov NCT02656511.FUNDING NIH grants U01AI169767, R01AI162646, UM1AI164570, UM1AI164560, U19AI096109, K23GM112526, T32AI118684, P30AI045008, P30AI027763, R24AI067039; Gilead Sciences grant INUS2361354; Viiv Healthcare grant A126326.

Authors

Gregory D. Whitehill, Jaimy Joy, Francesco E. Marino, Ryan Krause, Suvadip Mallick, Hunter Courtney, Kyewon Park, John Carey, Rebecca Hoh, Heather Hartig, Vivian Pae, Sannidhi Sarvadhavabhatla, Sophia Donaire, Steven G. Deeks, Rebecca M. Lynch, Sulggi A. Lee, Katharine J. Bar

×

Abstract

Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator–activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.

Authors

Ashok D. Prabakaran, Kevin McFarland, Karen Miz, Hima Bindu Durumutla, Kevin Piczer, Fadoua El Abdellaoui Soussi, Hannah Latimer, Cole Werbrich, Hyun-Jy Chung, N. Scott Blair, Douglas P. Millay, Andrew J. Morris, Brendan Prideaux, Brian N. Finck, Mattia Quattrocelli

×

Abstract

Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, in reactions to transfusions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. Harmful antibodies often activate the complement cascade. A model for how IgG antibodies trigger complement activation involves interactions between IgG Fc domains driving the assembly of IgG hexamer structures that activate C1 complexes. The importance of IgG hexamers in initiating injury responses was not clear, so we tested their relevance in a mouse model of alloantibody- and complement-mediated acute lung injury. We used 3 approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer “decoy” therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate an in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.

Authors

Simon J. Cleary, Yurim Seo, Jennifer J. Tian, Nicholas Kwaan, David P. Bulkley, Arthur E.H. Bentlage, Gestur Vidarsson, Éric Boilard, Rolf Spirig, James C. Zimring, Mark R. Looney

×

Abstract

Molecular profiling of clear cell renal cell carcinoma (ccRCC) tumors of patients in a clinical trial has identified distinct transcriptomic signatures with predictive value, yet data in non–clear cell variants (nccRCC) are lacking. We examined the transcriptional profiles of RCC tumors representing key molecular pathways, from a multi-institutional, real-world patient cohort, including ccRCC and centrally reviewed nccRCC samples. ccRCC had increased angiogenesis signature scores compared with the heterogeneous group of nccRCC tumors, while cell cycle, fatty acid oxidation/AMPK signaling, and fatty acid synthesis/pentose phosphate signature scores were increased in one or more nccRCC subtypes. Among both ccRCC and nccRCC tumors, T effector scores statistically correlated with increased immune cell infiltration and were more commonly associated with immunotherapy-related markers (PD-L1+/TMBhi/MSIhi). In conclusion, this study provides evidence of differential gene transcriptional profiles among ccRCC versus nccRCC tumors, providing insights for optimizing personalized and histology-specific therapeutic strategies for patients with advanced RCC.

Authors

Pedro Barata, Shuchi Gulati, Andrew Elliott, Hans J. Hammers, Earle Burgess, Benjamin A. Gartrell, Sourat Darabi, Mehmet A. Bilen, Arnab Basu, Daniel M. Geynisman, Nancy A. Dawson, Matthew R. Zibelman, Tian Zhang, Shuanzeng Wei, Charles J. Ryan, Elisabeth I. Heath, Kelsey A. Poorman, Chadi Nabhan, Rana R. McKay

×

In-Press Preview - More

Abstract

It is unknown which post-transcriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate post-transcriptional RNA metabolism within ribonucleoprotein networks, are essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to Lin28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 is a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 were able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/b deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.

Authors

Meng-hsiung Hsieh, Yonglong Wei, Lin Li, Liem H. Nguyen, Yu-Hsuan Lin, Jung M. Yoon, Xuxu Sun, Xun Wang, Xin Luo, Sarah K. Knutson, Christina Bracken, George Q. Daley, John T. Powers, Hao Zhu

×

Abstract

GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G-protein Gαo. Of >80 pathogenic mutations, most are single amino acid substitutions spreading across Gαo sequence. We perform extensive characterization of Gαo mutants showing abnormal GTP uptake and hydrolysis, and deficiencies to bind Gβγ and RGS19. Plasma membrane localization of Gαo is decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerge for the more severe mutants. Pathogenic mutants massively gain interaction with Ric8A and, surprisingly, Ric8B proteins, delocalizing them from cytoplasm to Golgi. Of these two mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/o, Gαq, and Gα12/13 subfamilies, and Ric8B solely for Gαs/olf. Ric8A/B mediate the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through disbalancing the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work discovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights to other maladies caused by G protein misfunctioning and further genetic diseases.

Authors

Gonzalo P. Solis, Alexey Koval, Jana Valnohova, Arghavan Kazemzadeh, Mikhail Savitsky, Vladimir L. Katanaev

×

Abstract

Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogens sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Administration of metronidazole or a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.

Authors

Eiki Kanemaru, Kakeru Shimoda, Eizo Marutani, Masanobu Morita, Maria Miranda, Yusuke Miyazaki, Claire Sinow, Rohit Sharma, Fangcong Dong, Donald B. Bloch, Takaaki Akaike, Fumito Ichinose

×

Abstract

The identification of genes that confer either extension of lifespan or accelerate age-related decline was a step forward in understanding the mechanisms of ageing and revealed that it is partially controlled by genetics and transcriptional programs. Here we discovered that the human DNA sequence C16ORF70 encoded for a protein, named MYTHO (Macroautophagy and YouTH Optimizer), which controls life- and health-span. MYTHO protein is conserved from C. elegans to humans and its mRNA was upregulated in aged mice and elderly people. Deletion of the ortholog myt-1 gene in C. elegans dramatically shortened lifespan and decreased animal survival upon exposure to oxidative stress. Mechanistically, MYTHO is required for autophagy likely because it acts as a scaffold that binds WIPI2 and BCAS3 to recruit and assemble the conjugation system at the phagophore, the nascent autophagosome. We conclude that MYTHO is a transcriptionally regulated initiator of autophagy that is central in promoting stress resistance and healthy ageing.

Authors

Anais Franco-Romero, Valeria Morbidoni, Giulia Milan, Roberta Sartori, Jesper Wulff, Vanina Romanello, Andrea Armani, Leonardo Salviati, Maria Conte, Stefano Salvioli, Claudio Franceschi, Viviana Buonomo, Casey O. Swoboda, Paolo Grumati, Luca Pannone, Simone Martinelli, Harold B.J. Jefferies, Ivan Dikic, Jennifer van der Laan, Filipe Cabreiro, Douglas P. Millay, Sharon A. Tooze, Eva Trevisson, Marco Sandri

×

Abstract

Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that APS patient neutrophils used glycolysis more avidly than healthy control neutrophils, especially when the neutrophils were from APS patients with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.

Authors

Ajay Tambralli, Alyssa Harbaugh, Somanathapura K. NaveenKumar, Megan D. Radyk, Christine E. Rysenga, Kaitlyn Sabb, Julia M. Hurley, Gautam J. Sule, Srilakshmi Yalavarthi, Shanea K. Estes, Claire Hoy, Tristin Smith, Cyrus Sarosh, Jacqueline A. Madison, Jordan K. Schaefer, Suman L. Sood, Yu Zuo, Amr H. Sawalha, Costas A. Lyssiotis, Jason S. Knight

×

Advertisement

JCI's 100th anniversary

JCI celebrates a century of publishing scientific discoveries with a special collection highlighting major innovations in medicine and key contributing mechanistic studies.

Review Series - More

Substance Use Disorders

Series edited by Henry R. Kranzler

Substance use disorders are characterized by heavy, regular use of one or more psychoactive substances, such as alcohol, nicotine, opioids, cannabis, and stimulants, as well as the development of tolerance and loss of control over use, risk-taking behavior, and physiological dependence. Misuse of psychoactive substances constitutes a growing worldwide burden with broad-ranging health consequences. In this review series, curated by Dr. Henry R. Kranzler, reviews will provide detailed updates on studies of the genetics, biology, and evolving treatment of substance use disorders.

×