Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Vaccines

  • 48 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • Next →
BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of healthcare workers
Magali Noval Rivas, … , Susan Cheng, Moshe Arditi
Magali Noval Rivas, … , Susan Cheng, Moshe Arditi
Published November 19, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI145157.
View: Text | PDF

BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of healthcare workers

  • Text
  • PDF
Abstract

BACKGROUND. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused over one million deaths worldwide, thus there is an urgent need to develop preventive and therapeutic strategies. The anti-tuberculosis vaccine Bacillus Calmette-Guérin (BCG) demonstrates non-specific protective innate immune-boosting effects. Here, we determined if history of BCG vaccination was associated with decreased SARS-CoV-2 infection and seroconversion in a retrospective observational study of a diverse cohort of health care workers (HCWs). METHODS. We assessed SARS-CoV-2 seroprevalence and collected medical questionnaires, including BCG vaccination status and pre-existing demographic and clinical characteristics, from an observational cohort of HCWs in a multi-site Los Angeles healthcare organization. We used multi-variate analysis to estimate if history of BCG vaccination was associated with decreased rates of SARS-CoV-2 infection and seroconversion. RESULTS. Of the 6,201 HCWs, 29.6% reported a history of BCG vaccination whereas 68.9% did not receive BCG vaccination. Seroprevalence of anti-SARS-CoV-2 IgG as well as incidence of self-reported clinical symptoms associated with COVID-19 were significantly decreased among HCWs with a history of BCG vaccination compared to those without BCG vaccination. After adjusting for age and sex, we found that history of BCG vaccination, but not meningococcal, pneumococcal or influenza vaccination, was associated with decreased SARS-CoV-2 IgG seroconversion. CONCLUSIONS. History of BCG vaccination was associated with decreased seroprevalence of anti-SARS-CoV-2 IgG and reduced reported COVID-19-related clinical symptoms in this cohort of HCWs. Therefore, large randomized prospective clinical trials of BCG vaccination are urgently needed to confirm if BCG vaccination can induced a protective effect against SARS-CoV2 infection. FUNDING. This work was supported by the National Institutes of Health, National Cancer Institute (U54 CA26059) and the Erika J. Glazer Family Foundation. Key words: SARS-CoV-2, COVID-19, Bacillus Calmette-Guérin, BCG, anti-SARS-CoV-2 IgG, healthcare workers, trained immunity.

Authors

Magali Noval Rivas, Joseph E. Ebinger, Min Wu, Nancy Sun, Jonathan Braun, Kimia Sobhani, Jennifer E. Van Eyk, Susan Cheng, Moshe Arditi

×

mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer
Gal Cafri, … , Paul F. Robbins, Steven A. Rosenberg
Gal Cafri, … , Paul F. Robbins, Steven A. Rosenberg
Published October 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134915.
View: Text | PDF

mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer

  • Text
  • PDF
Abstract

BACKGROUND Therapeutic vaccinations against cancer have mainly targeted differentiation antigens, cancer-testis antigens, and overexpressed antigens and have thus far resulted in little clinical benefit. Studies conducted by multiple groups have demonstrated that T cells recognizing neoantigens are present in most cancers and offer a specific and highly immunogenic target for personalized vaccination.METHODS We recently developed a process using tumor-infiltrating lymphocytes to identify the specific immunogenic mutations expressed in patients’ tumors. Here, validated, defined neoantigens, predicted neoepitopes, and mutations of driver genes were concatenated into a single mRNA construct to vaccinate patients with metastatic gastrointestinal cancer.RESULTS The vaccine was safe and elicited mutation-specific T cell responses against predicted neoepitopes not detected before vaccination. Furthermore, we were able to isolate and verify T cell receptors targeting KRASG12D mutation. We observed no objective clinical responses in the 4 patients treated in this trial.CONCLUSION This vaccine was safe, and potential future combination of such vaccines with checkpoint inhibitors or adoptive T cell therapy should be evaluated for possible clinical benefit in patients with common epithelial cancers.TRIAL REGISTRATION Phase I/II protocol (NCT03480152) was approved by the IRB committee of the NIH and the FDA.FUNDING Center for Clinical Research, NCI, NIH.

Authors

Gal Cafri, Jared J. Gartner, Tal Zaks, Kristen Hopson, Noam Levin, Biman C. Paria, Maria R. Parkhurst, Rami Yossef, Frank J. Lowery, Mohammad S. Jafferji, Todd D. Prickett, Stephanie L. Goff, Christine T. McGowan, Samantha Seitter, Mackenzie L. Shindorf, Anup Parikh, Praveen D. Chatani, Paul F. Robbins, Steven A. Rosenberg

×

Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection
Hongzhao Li, … , James B. Whitney, Ma Luo
Hongzhao Li, … , James B. Whitney, Ma Luo
Published August 27, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138728.
View: Text | PDF

Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection

  • Text
  • PDF
Abstract

After over three decades of research, an effective anti-HIV vaccine remains elusive. The recently halted HVTN702 clinical trial not only further stresses the challenge to develop an effective HIV vaccine, but also emphasizes that unconventional and novel vaccine strategies are urgently needed. Here, we report that a vaccine focusing the immune response on the sequences surrounding the 12 viral protease cleavage sites (PCSs) provided greater than 80% protection to Mauritian cynomolgus macaques (MCMs) against repeated intravaginal SIVmac251 challenges. The PCS-specific T cell responses correlated with vaccine efficacy. The PCS vaccine did not induce immune activation or inflammation known to be associated with increased susceptibility to HIV infection. Machine learning analyses revealed that the immune microenvironment generated by the PCS vaccine was predictive of vaccine efficacy. Our study demonstrates for the first time that a vaccine which targets only viral maturation, but lacks full-length Env and Gag immunogens, can prevent intravaginal infection in a stringent macaque/SIV challenge model. Targeting HIV maturation thus offers a novel approach to developing an effective HIV vaccine.

Authors

Hongzhao Li, Robert W. Omange, Binhua Liang, Nikki Toledo, Yan Hai, Lewis R. Liu, Dane Schalk, Jose Crecente-Campo, Tamara G. Dacoba, Andrew B. Lambe, So-Yon Lim, Lin Li, Mohammad Abul Kashem, Yanmin Wan, Jorge F. Correia-Pinto, Michael S. Seaman, Xiao-Qing Liu, Robert F. Balshaw, Qingsheng Li, Nancy Schultz-Darken, Maria Jose Alonso, Francis A. Plummer, James B. Whitney, Ma Luo

×

Circadian rhythm influences induction of trained immunity by BCG vaccination
L. Charlotte J. de Bree, … , Christine S. Benn, Mihai G. Netea
L. Charlotte J. de Bree, … , Christine S. Benn, Mihai G. Netea
Published July 21, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133934.
View: Text | PDF

Circadian rhythm influences induction of trained immunity by BCG vaccination

  • Text
  • PDF
Abstract

BACKGROUND. The anti-tuberculosis vaccine Bacillus Calmette-Guérin (BCG) reduces overall infant mortality. Induction of innate immune memory, also termed trained immunity, contributes towards protection against heterologous infections. Since immune cells display oscillations in numbers and function throughout the day, we investigated the effect of BCG administration time on the induction of trained immunity. METHODS. 18 volunteers were vaccinated with BCG at 6pm and compared with 36 age- and sex-matched volunteers vaccinated between 8-9 am. Peripheral blood mononuclear cells were stimulated with Staphylococcus aureus and Mycobacterium tuberculosis before, as well as two weeks and three months after BCG vaccination. Cytokine production was measured to assess the induction of trained immunity and adaptive responses, respectively. Additionally, the influence of vaccination time on induction of trained immunity was studied in an independent cohort of 302 individuals vaccinated between 8am-12pm with BCG. RESULTS. Compared to evening vaccination, morning vaccination elicited both a stronger trained immunity and adaptive immune phenotype. In a large cohort of 302 volunteers, early morning vaccination resulted in a superior cytokine production capacity compared with later morning. A cellular, rather than soluble, substrate of the circadian effect of BCG vaccination was demonstrated by the enhanced capacity to induce trained immunity in vitro in morning compared to evening isolated monocytes. CONCLUSIONS. BCG vaccination in the morning induces stronger trained immunity and adaptive responses compared to evening vaccination. Future studies should take vaccine administration time into account when studying specific and non-specific effects of vaccines: early morning should be the preferred moment of BCG administration. FUNDING Spinoza grant of the Netherlands Organization for Scientific Research, ERC Advanced Grant (TRAIN-OLD nr. 833247), Danish National Research Foundation (DNRF108).

Authors

L. Charlotte J. de Bree, Vera P. Mourits, Valerie A.C.M. Koeken, Simone J.C.F.M. Moorlag, Robine Janssen, Lukas Folkman, Daniele Barreca, Thomas Krausgruber, Victoria Fife-Gernedl, Boris Novakovic, Rob J.W. Arts, Helga Dijkstra, Heidi Lemmers, Christoph Bock, Leo A.B. Joosten, Reinout van Crevel, Christine S. Benn, Mihai G. Netea

×

BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner
Valerie A. C. M. Koeken, … , Reinout van Crevel, Mihai Netea
Valerie A. C. M. Koeken, … , Reinout van Crevel, Mihai Netea
Published July 21, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133935.
View: Text | PDF

BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner

  • Text
  • PDF
Abstract

Background. Induction of innate immune memory, also termed trained immunity, by the anti-tuberculosis vaccine Bacillus Calmette-Guérin (BCG) contributes to protection against heterologous infections. However, the overall impact of BCG vaccination on the inflammatory status of an individual is not known: while induction of trained immunity may suggest increased inflammation, BCG vaccination has been epidemiologically associated with a reduced incidence of inflammatory and allergic diseases. Methods. We investigated the impact of BCG (BCG-Bulgaria, InterVax) vaccination on systemic inflammation in a cohort of 303 healthy volunteers, as well as the effect of the inflammatory status on the response to vaccination. A targeted proteome platform was used to measure circulating inflammatory proteins before and after BCG vaccination, while ex vivo Mycobacterium tuberculosis and Staphylococcus aureus induced cytokine responses in peripheral blood mononuclear cells were used to assess trained immunity. Results. While BCG vaccination enhanced cytokine responses to restimulation, it reduced systemic inflammation. This effect was validated in three smaller cohorts, and was much stronger in men than in women. In addition, baseline circulating inflammatory markers were associated with ex vivo cytokine responses (trained immunity) after BCG vaccination. Conclusion. The capacity of BCG to enhance microbial responsiveness while dampening systemic inflammation should be further explored for potential therapeutic applications. Funding. This study was funded by a Spinoza grant of the Netherlands Organization for Scientific Research and an ERC Advanced Grant (TRAIN-OLD nr. 833247).

Authors

Valerie A. C. M. Koeken, L. Charlotte J. de Bree, Vera P. Mourits, Simone J.C.F.M. Moorlag, Jona Walk, Branko Cirovic, Rob J.W. Arts, Martin Jaeger, Helga Dijkstra, Heidi Lemmers, Leo A.B. Joosten, Christine Stabell Benn, Reinout van Crevel, Mihai Netea

×

Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation
Wenqiang Cao, … , Cornelia M. Weyand, Jörg J. Goronzy
Wenqiang Cao, … , Cornelia M. Weyand, Jörg J. Goronzy
Published May 26, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132417.
View: Text | PDF

Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation

  • Text
  • PDF
Abstract

Vaccination is a mainstay in preventive medicine, reducing morbidity and mortality from infection, largely by generating pathogen-specific neutralizing antibodies. However, standard immunization strategies are insufficient with increasing age due to immunological impediments, including defects in T follicular helper (Tfh) cells. Here, we found that Tfh generation is inversely linked to the expression of the ecto-NTPDase CD39 that modifies purinergic signaling. The lineage-determining transcription factor BCL6 inhibited CD39 expression, while increased Tfh frequencies were found in individuals with a germline polymorphism preventing transcription of ENTPD1, encoding CD39. In in vitro human and in vivo mouse studies, Tfh generation and germinal center responses were enhanced by reducing CD39 expression through the inhibition of the cAMP/PKA/p-CREB pathway, or by blocking adenosine signaling downstream of CD39 using the selective adenosine A2a receptor antagonist istradefylline. Thus, purinergic signaling in differentiating T cells can be targeted to improve vaccine responses, in particular in older individuals who have increased CD39 expression.

Authors

Wenqiang Cao, Fengqin Fang, Timothy Gould, Xuanying Li, Chulwoo Kim, Claire Gustafson, Simon Lambert, Cornelia M. Weyand, Jörg J. Goronzy

×

Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses
Helen R. Wagstaffe, … , Eleanor M. Riley, Martin Goodier
Helen R. Wagstaffe, … , Eleanor M. Riley, Martin Goodier
Published April 21, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132438.
View: Text | PDF

Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses

  • Text
  • PDF
Abstract

Backgroun NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells; these functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. Methods The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analysed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen, and in response to in vitro Ebola glycoprotein stimulation of PBMC isolated before and after vaccination. Results We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whilst IFN-γ secretion was restricted by high concentrations of IL-10. Conclusion This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola GP. Trial registration ClinicalTrials.gov Identifier: NCT02313077 Funding U.K. Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (Grant 115861) and Crucell Holland (now Janssen Vaccines & Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).

Authors

Helen R. Wagstaffe, Elizabeth A. Clutterbuck, Viki Bockstal, Jeroen N. Stoop, Kerstin Luhn, Macaya J. Douoguih, Georgi Shukarev, Matthew D. Snape, Andrew J. Pollard, Eleanor M. Riley, Martin Goodier

×

A Plasmodium vivax experimental human infection model for evaluating the efficacy of interventions
Katharine A. Collins, … , Jörg J. Möhrle, James S. McCarthy
Katharine A. Collins, … , Jörg J. Möhrle, James S. McCarthy
Published February 11, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134923.
View: Text | PDF

A Plasmodium vivax experimental human infection model for evaluating the efficacy of interventions

  • Text
  • PDF
Abstract

Background: Interventions that interrupt Plasmodium vivax transmission or eliminate dormant P. vivax liver-stage parasites will be essential for malaria elimination. Development of these interventions has been hindered by the lack of P. vivax in vitro culture and could be accelerated by a safe and reproducible clinical model in malaria-naïve individuals. Method: Healthy, malaria-naïve adults were enrolled in two studies to assess the safety and infectivity and transmissibility of a new P. vivax isolate. Participants (Study 1; n=2, Study 2; n=24) were inoculated with P. vivax-infected red blood cells to initiate infection, and were treated with artemether-lumefantrine (Study 1) or chloroquine (Study 2). Primary endpoints were safety and infectivity of the new isolate. In Study 2, transmission to mosquitoes was also evaluated using mosquito feeding assays, and sporozoite viability was assessed using in vitro cultured hepatocytes. Results: Parasitaemia and gametocytemia developed in all participants and was cleared by antimalarial treatment. Adverse events were mostly mild or moderate and none were serious. Participants were infectious to Anopheles mosquitoes at peak gametocytemia 69% (11/16). Mosquito infection rates reached 97% following membrane feeding with gametocyte-enriched blood, and sporozoites developed into liver-stage schizonts in culture. Conclusion: We have demonstrated the safe, reproducible, and efficient transmission of P. vivax gametocytes from humans to mosquitoes, and have established an experimental model that will accelerate the development of interventions targeting multiple stages of the P. vivax life cycle. Trial registration: ACTRN12614000930684 and ACTRN12616000174482. Funding: (Australian) NHMRC Program Grant: 1132975 (Study 1). Bill & Melinda Gates Foundation (OPP1111147) (Study 2).

Authors

Katharine A. Collins, Claire Y.T. Wang, Matthew Adams, Hayley Mitchell, Gregory J. Robinson, Melanie Rampton, Suzanne Elliott, Anand Odedra, David S. Khoury, Emma Ballard, Todd B. Shelper, Leonardo Lucantoni, Vicky M. Avery, Stephan Chalon, Jörg J. Möhrle, James S. McCarthy

×

Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans
Ang Lin, … , Marcel Thalen, Karin Loré
Ang Lin, … , Marcel Thalen, Karin Loré
Published January 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135020.
View: Text | PDF

Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans

  • Text
  • PDF
Abstract

BACKGROUND. The live attenuated BPZE1 vaccine candidate induces protection against B. pertussis and prevents nasal colonization in animal models. Here we report on the responses in humans receiving a single intranasal administration of BPZE1. METHODS. We performed multiple assays to dissect the immune responses induced in humans (n=12) receiving BPZE1, with particular emphasis on the magnitude and characteristics of the antibody responses. Such responses were benchmarked to adolescents (n=12) receiving the complete vaccination program of the currently used acellular pertussis vaccine (aPV). Using immunoproteomics analysis, novel immunogenic B. pertussis antigens were identified. RESULTS. All BPZE1 vaccinees showed robust B. pertussis-specific antibody responses with regard to significant increase in one or more of the parameters IgG, IgA and memory B cells to B. pertussis antigens. BPZE1-specific T cells showed a Th1 phenotype and the IgG exclusively consisted of IgG1 and IgG3. In contrast, all aPV vaccinees showed a Th2-biased response. Immunoproteomics profiling revealed that BPZE1 elicited broader and different antibody specificities to B. pertussis antigens as compared to the aPV that primarily induced antibodies to the vaccine antigens. Moreover, BPZE1 was superior at inducing opsonizing antibodies that stimulated reactive oxygen species (ROS) production in neutrophils and enhanced bactericidal function, which was in line with that antibodies against adenylate cyclase toxin were only elicited by BPZE1. CONCLUSIONS. The breadth of the antibodies, the Th1-type cellular response and killing mechanisms elicited by BPZE1 may hold prospects of improving vaccine efficacy and protection against B. pertussis transmission. TRIAL REGISTRATION. ClinicalTrials.gov NCT02453048, NCT00870350 FUNDING. ILiAD Biotechnologies, Swedish Research Council (Vetenskapsrådet), Swedish Heart-lung Foundation.

Authors

Ang Lin, Danijela Apostolovic, Maja Jahnmatz, Frank Liang, Sebastian Ols, Teghesti Tecleab, Chenyan Wu, Marianne van Hage, Ken Solovay, Keith Rubin, Camille Locht, Rigmor Thorstensson, Marcel Thalen, Karin Loré

×

Selective induction of antibody effector functional responses using MF59-adjuvanted vaccination
Carolyn M. Boudreau, … , Kathryn M. Edwards, Galit Alter
Carolyn M. Boudreau, … , Kathryn M. Edwards, Galit Alter
Published December 17, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129520.
View: Text | PDF

Selective induction of antibody effector functional responses using MF59-adjuvanted vaccination

  • Text
  • PDF
Abstract

Seasonal and pandemic influenza infection remains a major public health concern worldwide. Driving robust humoral immunity has been a challenge given preexisting, often cross-reactive, immunity and in particular, poorly immunogenic avian antigens. To overcome immune barriers, the adjuvant MF59 has been used in seasonal influenza vaccines to increase antibody titers and improve neutralizing activity, translating to a moderate increase in protection in vulnerable populations. However, its effects on stimulating antibody effector functions, including NK cell activation, monocyte phagocytosis, and complement activity, all of which have been implicated in protection against influenza, have yet to be defined. Using systems serology, we assessed changes in antibody functional profiles in individuals who received H5N1 avian influenza vaccine administered with MF59, with alum, or delivered unadjuvanted. MF59 elicited antibody responses that stimulated robust neutrophil phagocytosis and complement activity. Conversely, vaccination with MF59 recruited NK cells poorly and drove moderate monocyte phagocytic activity, both likely compromised because of the induction of antibodies that did not bind FCGR3A. Collectively, defining the humoral antibody functions induced by distinct adjuvants may provide a path to designing next-generation vaccines that can selectively leverage the humoral immune functions, beyond binding and neutralization, resulting in better protection from infection.

Authors

Carolyn M. Boudreau, Wen-Han Yu, Todd J. Suscovich, H. Keipp Talbot, Kathryn M. Edwards, Galit Alter

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts