Background: Viral load surrogate endpoints transformed development of HIV and hepatitis C therapeutics. Surrogate endpoints for cytomegalovirus (CMV)-related morbidity and mortality could advance development of antiviral treatments. While observational data support using CMV viral load (VL) as a trial endpoint, randomized controlled trials (RCT) demonstrating direct associations between virologic markers and clinical endpoints are lacking. Methods: We performed CMV DNA polymerase chain reaction (PCR) on frozen serum samples from the only placebo-controlled RCT of ganciclovir for early treatment of CMV after hematopoietic cell transplantation (HCT). We used established criteria to assess VL kinetics as surrogates for CMV disease or death by weeks 8, 24, and 48 after randomization and quantified antiviral effects captured by each marker. We used ensemble-based machine learning to assess the predictive ability of VL kinetics and performed this analysis on a ganciclovir prophylaxis RCT for validation. Results: VL suppression with ganciclovir reduced cumulative incidence of CMV disease and death for 20 years after HCT. Mean VL, peak VL, and change in VL during the first five weeks of treatment fulfilled the Prentice definition for surrogacy, capturing > 95% of ganciclovir’s effect, and yielded highly sensitive and specific predictions by week 48. In the prophylaxis trial, viral shedding rate satisfied the Prentice definition for CMV disease by week 24. Conclusion: Our results support using CMV VL kinetics as surrogates for CMV disease, provide a framework for developing CMV preventative and therapeutic agents, and support reductions in viral load as the mechanism through which antivirals reduce CMV disease.
Elizabeth R. Duke, Brian D. Williamson, Bhavesh Borate, Jonathan L. Golob, Chiara Wychera, Terry Stevens-Ayers, Meei-Li Huang, Nicole Cossrow, Hong Wan, T. Christopher Mast, Morgan A. Marks, Mary Flowers, Keith R. Jerome, Lawrence Corey, Peter B. Gilbert, Joshua T. Schiffer, Michael Boeckh
Background. Chimeric antigen receptor (CAR) T cell immunotherapy has achieved complete remission and durable response in highly refractory patients. However, logistical complexity and high costs of manufacturing autologous viral products limit CAR T cell availability. Methods. We reported the early results of a phase I/II trial in B-cell acute lymphoblastic leukemia (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT) using donor-derived CD19 CAR T cells generated with the Sleeping Beauty (SB) transposon and differentiated into cytokine induced killer cells (CIK). Results. The cellular product was produced successfully for all patients from the donor peripheral blood (PB) and consisted mostly of CD3+ lymphocytes with 43% CAR expression. Four pediatric and 9 adult patients were infused with a single dose of CAR T cells. Toxicities reported were two grade I and a grade II cytokine release syndrome (CRS) cases at the highest dose, in the absence of graft-versus-host disease (GvHD), neurotoxicity, or dose-limiting toxicities. Six out of 7 patients, receiving the highest doses, achieved CR and CRi at day 28. Five out of 6 patients in CR were also minimal residual disease (MRD)-negative. Robust expansion was achieved in the majority of the patients. CAR T cells were measurable by transgene copy PCR up to 10 months. Integration site analysis showed a positive safety profile and highly polyclonal repertoire in vitro and at early time points after infusion. Conclusion. SB-engineered CAR T cells expand and persist in pediatric and adult B-ALL patients relapsed after HSCT. Anti-leukemic activity was achieved without severe toxicities. Trial registration. clinicaltrials.gov NCT03389035.Funding. This study was supported by grants from AIRC; CRUK; FC AECC; Ministero della salute; FRRB.
Chiara F. Magnani, Giuseppe Gaipa, Federico Lussana, Daniela Belotti, Giuseppe Gritti, Sara Napolitano, Giada Matera, Benedetta Cabiati, Chiara Buracchi, Gianmaria Borleri, Grazia Fazio, Silvia Zaninelli, Sarah Tettamanti, Stefania Cesana, Valentina Colombo, Michele Quaroni, Giovanni Cazzaniga, Attilio Rovelli, Ettore Biagi, Stefania Galimberti, Andrea Calabria, Fabrizio Benedicenti, Eugenio Montini, Silvia Ferrari, Martino Introna, Adriana Balduzzi, Maria Grazia Valsecchi, Giuseppe Dastoli, Alessandro Rambaldi, Andrea Biondi
BACKGROUND Novel therapeutic approaches are critically needed for Staphylococcus aureus bloodstream infections (BSI), particularly for methicillin-resistant S. aureus (MRSA). Exebacase, a first-in-class antistaphylococcal lysin, is a direct lytic agent that is rapidly bacteriolytic, eradicates biofilms, and synergizes with antibiotics. METHODS In this superiority-design study, we randomly assigned 121 patients with S. aureus BSI/endocarditis to receive a single dose of exebacase or placebo. All patients received standard-of-care antibiotics. The primary efficacy endpoint was clinical outcome (responder rate) at Day 14. RESULTS Clinical responder rates at Day 14 were 70.4% and 60.0% in the exebacase + antibiotics and antibiotics alone groups, respectively (difference=10.4, 90% CI [-6.3, 27.2], p-value=0.31), and were 42.8 percentage points higher in the pre-specified exploratory MRSA subgroup (74.1% vs. 31.3%, difference=42.8, 90% CI [14.3, 71.4], ad hoc p value=0.01). Rates of adverse events (AEs) were similar in both groups. No AEs of hypersensitivity to exebacase were reported. Thirty-day all-cause mortality rates were 9.7% and 12.8% in the exebacase + antibiotics and antibiotics alone groups, respectively, with a notable difference in MRSA (3.7% vs. 25.0%, difference= –21.3, 90% CI [-45.1, 2.5], ad hoc p-value=0.06). Among MRSA patients in the United States, median length-of-stay was 4-days shorter and 30-day hospital readmission rates were 48 percentage points lower in the exebacase-treated group compared with antibiotics alone. CONCLUSIONS This study establishes proof-of-concept for exebacase and direct lytic agents as potential therapeutics and supports conduct of a confirmatory study focused on exebacase to treat MRSA BSI.
Vance G. Fowler, Jr., Anita F. Das, Joy Lipka-Diamond, Raymond Schuch, Roger Pomerantz, Luis Jáuregui-Peredo, Adam Bressler, David C. Evans, Gregory J. Moran, Mark E. Rupp, Robert A. Wise, G. Ralph Corey, Marcus Zervos, Pamela S. Douglas, Cara Cassino
Background. Preclinical experiments have shown that donor blood cells, modified in vitro by an alkylating agent (MIC, modified immune cells), induced long-term specific immunosuppression against the allogeneic donor. Methods. In this phase-I trial, patients received either 1.5x106 MIC per kg b.w. on day -2 (N=3, group A), or 1.5x108 MIC per kg b.w. on day -2 (N=3, group B) or day -7 (N=4, group C) before living donor kidney transplantation in addition to post-transplant immunosuppression. Primary outcome measure was the frequency of adverse events (AE) until day 30 (study phase) with follow-up to day 360. Results. MIC infusions were extremely well tolerated. During the study phase, a total of 69 AE occurred in 10 treated patients which were unlikely/not related to MIC infusion. No donor-specific human leukocyte antigen antibodies or rejection episodes were noted even though the patients received up to 1.3x1010 of donor mononuclear cells prior to transplantation. Group C patients with low immunosuppression during follow-up showed no in vitro reactivity against stimulatory donor blood cells on day 360 while reactivity against third party cells was preserved. Frequencies of CD19+CD24highCD38high transitional B lymphocytes (Breg) increased from a median of 6% before MIC infusion to 20% on day 180, which was 19- and 68-fold higher, respectively, than in two independent cohorts of transplanted controls. The majority of Breg produced immunosuppressive cytokine IL-10. MIC-treated patients showed the Immune Tolerance Network operational tolerance signature. Conclusion. MIC administration was safe and could be a future tool for the targeted induction of tolerogenic Breg.
Christian Morath, Anita Schmitt, Christian Kleist, Volker Daniel, Gerhard Opelz, Caner Süsal, Eman H. Ibrahim, Florian Kälble, Claudius Speer, Christian Nusshag, Luiza Pego da Silva, Claudia Sommerer, Lei Wang, Ming Ni, Angela Hückelhoven-Krauss, David Czock, Uta Merle, Arianeb Mehrabi, Anja Sander, Matthes Hackbusch, Christoph Eckert, Rüdiger Waldherr, Paul Schnitzler, Carsten Müller-Tidow, Jörg D. Hoheisel, Shakhawan A. Mustafa, Mohamed S.S. Alhamdani, Andrea S Bauer, Jochen Reiser, Martin Zeier, Michael Schmitt, Matthias Schaier, Peter Terness
BACKGROUND. Beige adipose tissue is associated with improved glucose homeostasis in mice. Adipose tissue contains β3 adrenergic receptors (β3-AR), and this study was intended to determine whether the treatment of obese, insulin-resistant humans with the β3AR agonist mirabegron, which stimulates beige adipose formation in subcutaneous white adipose tissue (SC WAT), would induce other beneficial changes in fat and muscle, and improve metabolic homeostasis. METHODS. Before and after β3AR agonist treatment, oral glucose tolerance tests and euglycemic clamps were performed, and histochemistry and gene expression profiling were performed from fat and muscle biopsies. PET CT scans quantified brown adipose tissue volume and activity and we conducted in vitro studies with primary cultures of differentiated human adipocytes and muscle.RESULTS. Clinical effects of mirabegron treatment included improved oral glucose tolerance (P<0.01), reduced hemoglobin A1c (P=0.01), and improved insulin sensitivity (P=0.03) and β-cell function (P=0.01). In SC WAT, mirabegron treatment stimulated lipolysis, reduced fibrotic gene expression and increased alternatively activated macrophages. Subjects with the most SC WAT beiging demonstrated the most improvement in β-cell function. In skeletal muscle, mirabegron reduced triglycerides, increased expression of PGC1A (P<0.05), and increased type I fibers (P<0.01). Conditioned media from adipocytes treated with mirabegron stimulated muscle fiber PGC1A expression in vitro (P<0.001). CONCLUSION. Mirabegron treatment significantly improves glucose tolerance in obese, insulin resistant humans. Since β-cells and skeletal muscle do not express β3-ARs, these data suggest that the beiging of SC WAT by mirabegron reduces adipose tissue dysfunction, which enhances muscle oxidative capacity and improves β-cell function. TRIAL REGISTRATION. Clinicaltrials.gov NCT02919176.FUNDING. NIH (DK112282, P30GM127211, DK 71349, and CTSA grant UL1TR001998).
Brian S. Finlin, Hasiyet Memetimin, Beibei Zhu, Amy L. Confides, Hemendra J. Vekaria, Riham H. El Khouli, Zachary R. Johnson, Philip M. Westgate, Jianzhong Chen, Andrew J. Morris, Patrick G. Sullivan, Esther E. Dupont-Versteegden, Philip A. Kern
Background: Chimeric antigen receptor (CAR) T cells are a promising therapy for hematologic malignancies. B-cell maturation antigen (BCMA) is a rational target in multiple myeloma (MM). Methods: We conducted a phase I study of autologous T cells lentivirally-transduced with a fully-human, BCMA-specific CAR containing CD3ζ and 4-1BB signaling domains (CART-BCMA), in subjects with relapsed/refractory MM. Twenty-five subjects were treated in 3 cohorts: 1) 1-5 x 108 CART-BCMA cells alone; 2) Cyclophosphamide (Cy) 1.5 g/m2 + 1-5 x 107 CART-BCMA cells; and 3) Cy 1.5 g/m2 + 1-5 x 108 CART-BCMA cells. No pre-specified BCMA expression level was required. Results: CART-BCMA cells were manufactured and expanded in all subjects. Toxicities included cytokine release syndrome and neurotoxicity, which were grade 3-4 in 8 (32%) and 3 (12%) subjects, respectively, and reversible. One subject died at day 24 from candidemia and progressive myeloma, following treatment for severe CRS and encephalopathy. Responses (based on treated subjects) were seen in 4/9 (44%) in cohort 1, 1/5 (20%) in cohort 2, and 7/11 (64%) in cohort 3, including 5 partial, 5 very good partial, and 2 complete responses, 3 of which were ongoing at 11, 14, and 32 months. Decreased BCMA expression on residual MM cells was noted in responders; expression increased at progression in most. Responses and CART-BCMA expansion were associated with CD4:CD8 T cell ratio and frequency of CD45RO-CD27+CD8+ T cells in the pre-manufacturing leukapheresis product. Conclusion: CART-BCMA infusions with or without lymphodepleting chemotherapy are clinically active in heavily-pretreated MM patients. Trial Registration: NCT02546167. Funding: University of Pennsylvania-Novartis Alliance and NIH.
Adam D. Cohen, Alfred L. Garfall, Edward A. Stadtmauer, J. Joseph Melenhorst, Simon F. Lacey, Eric Lancaster, Dan T. Vogl, Brendan M. Weiss, Karen Dengel, Annemarie Nelson, Gabriela Plesa, Fang Chen, Megan M. Davis, Wei-Ting Hwang, Regina M. Young, Jennifer L. Brogdon, Randi Isaacs, Iulian Pruteanu-Malinici, Don L. Siegel, Bruce L. Levine, Carl H. June, Michael C. Milone
BACKGROUND. The effect of a brief analytical treatment interruption (ATI) on the HIV-1 latent reservoir of individuals who initiate antiretroviral therapy (ART) during chronic infection is unknown. METHODS. We evaluated the impact of transient viremia on the latent reservoir in participants who underwent an ATI and at least 6 months of subsequent viral suppression in a clinical trial testing the effect of passive infusion of the broadly neutralizing Ab VRC01 during ATI. RESULTS. Measures of total HIV-1 DNA, cell-associated RNA, and infectious units per million cells (IUPM) (measured by quantitative viral outgrowth assay [QVOA]) were not statistically different before or after ATI. Phylogenetic analyses of HIV-1 env sequences from QVOA and proviral DNA demonstrated little change in the composition of the virus populations comprising the pre- and post-ATI reservoir. Expanded clones were common in both QVOA and proviral DNA sequences. The frequency of clonal populations differed significantly between QVOA viruses, proviral DNA sequences, and the viruses that reactivated in vivo. CONCLUSIONS. The results indicate that transient viremia from ATI does not substantially alter measures of the latent reservoir, that clonal expansion is prevalent within the latent reservoir, and that characterization of latent viruses that can reactivate in vivo remains challenging. TRIAL REGISTRATION. ClinicalTrials.gov NCT02463227 FUNDING. Funding was provided by the NIH.
D. Brenda Salantes, Yu Zheng, Felicity Mampe, Tuhina Srivastava, Subul Beg, Jun Lai, Jonathan Z. Li, Randall L. Tressler, Richard A. Koup, James Hoxie, Mohamed Abdel-Mohsen, Scott Sherrill-Mix, Kevin McCormick, E. Turner Overton, Frederic D. Bushman, Gerald H. Learn, Robert F. Siliciano, Janet M. Siliciano, Pablo Tebas, Katharine J. Bar
Transient vanilloid potential 1 (TRPV1) agonists are emerging as highly efficacious non-opioid analgesics in preclinical studies. These drugs selectively lesion TRPV1+ primary sensory afferents, which are responsible for the transmission of many noxious stimulus modalities. Resiniferatoxin (RTX) is a very potent and selective TRPV1 agonist and is a promising candidate for treating many types of pain. Recent work establishing intrathecal application of RTX for the treatment of pain resulting from advanced cancer has demonstrated profound analgesia in client-owned dogs with osteosarcoma. The present study uses transcriptomics and histochemistry to examine the molecular mechanism of RTX action in rats, in clinical canine subjects, and in one human subject with advanced cancer treated for pain using intrathecal RTX. In all three species we observe a strong analgesic action, yet this was accompanied by limited transcriptional alterations at the level of the DRG. Functional and neuroanatomical studies demonstrated that intrathecal RTX largely spares susceptible neuronal perikarya, which remain active peripherally, but unable to transmit signals to the spinal cord. The results demonstrate that central chemo-axotomy of the TRPV1+ afferents underlies RTX analgesia and refine the neurobiology underlying effective clinical use of TRPV1 agonists for pain control.
Matthew R. Sapio, John K. Neubert, Danielle M. LaPaglia, Dragan Maric, Jason M. Keller, Stephen J. Raithel, Eric L. Rohrs, Ethan M. Anderson, John A. Butman, Robert M. Caudle, Dorothy C. Brown, John D. Heiss, Andrew J. Mannes, Michael J. Iadarola
BACKGROUND. Cytotoxic T lymphocyte–mediated (CTL-mediated) severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), are rare but life-threatening adverse reactions commonly induced by drugs. Although high levels of CTL-associated cytokines, chemokines, or cytotoxic proteins, including TNF-α and granulysin, were observed in SJS-TEN patients in recent studies, the optimal treatment for these diseases remains controversial. We aimed to evaluate the efficacy, safety, and therapeutic mechanism of a TNF-α antagonist in CTL-mediated SCARs. METHODS. We enrolled 96 patients with SJS-TEN in a randomized trial to compare the effects of the TNF-α antagonist etanercept versus traditional corticosteroids. RESULTS. Etanercept improved clinical outcomes in patients with SJS-TEN. Etanercept decreased the SCORTEN-based predicted mortality rate (predicted and observed rates, 17.7% and 8.3%, respectively). Compared with corticosteroids, etanercept further reduced the skin-healing time in moderate-to-severe SJS-TEN patients (median time for skin healing was 14 and 19 days for etanercept and corticosteroids, respectively; P = 0.010), with a lower incidence of gastrointestinal hemorrhage in all SJS-TEN patients (2.6% for etanercept and 18.2% for corticosteroids; P = 0.03). In the therapeutic mechanism study, etanercept decreased the TNF-α and granulysin secretions in blister fluids and plasma (45.7%–62.5% decrease after treatment; all P < 0.05) and increased the Treg population (2-fold percentage increase after treatment; P = 0.002), which was related to mortality in severe SJS-TEN. CONCLUSIONS. The anti–TNF-α biologic agent etanercept serves as an effective alternative for the treatment of CTL-mediated SCARs. TRIAL REGISTRATION. ClinicalTrials.gov NCT01276314. FUNDING. Ministry of Science and Technology of Taiwan.
Chuang-Wei Wang, Lan-Yan Yang, Chun-Bing Chen, Hsin-Chun Ho, Shuen-Iu Hung, Chih-Hsun Yang, Chee-Jen Chang, Shih-Chi Su, Rosaline Chung-Yee Hui, See-Wen Chin, Li-Fang Huang, Yang Yu-Wei Lin, Wei-Yang Chang, Wen-Lang Fan, Chin-Yi Yang, Ji-Chen Ho, Ya-Ching Chang, Chun-Wei Lu, Wen-Hung Chung, the Taiwan Severe Cutaneous Adverse Reaction (TSCAR) Consortium
BACKGROUND. Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here we describe a new model for evaluating malaria transmission from humans to Anopheles mosquitoes using controlled human malaria infection (CHMI). METHODS. Seventeen healthy malaria-naïve volunteers underwent CHMI by intravenous inoculation of P. falciparum-infected erythrocytes to initiate blood-stage infection. Seven to eight days after inoculation participants received piperaquine (480 mg) to attenuate asexual parasite replication while allowing gametocytes to develop and mature. Primary endpoints were development of gametocytemia, the transmissibility of gametocytes from humans to mosquitoes, and the safety and tolerability of the CHMI transmission model. To investigate in-vivo gametocytocidal drug activity in this model, participants were either given an experimental antimalarial, artefenomel (500 mg), a known gametocytocidal drug, primaquine (15 mg), or remained untreated during the period of gametocyte carriage. RESULTS. Male and female gametocytes were detected in all participants, and transmission to mosquitoes was achieved from 8/11 (73%) participants evaluated. Compared to untreated controls (n = 7), primaquine (15 mg, n = 5) significantly reduced gametocyte burden (P = 0.01), while artefenomel (500 mg, n = 4) had no effect. Adverse events (AEs) were mostly mild or moderate. Three AEs were assessed as severe — fatigue, elevated alanine aminotransferase, and elevated aspartate aminotransferase — and were attributed to malaria infection. Transaminase elevations were transient, asymptomatic, and resolved without intervention. CONCLUSION. We report the safe and reproducible induction of P. falciparum gametocytes in healthy malaria-naïve volunteers at densities infectious to mosquitoes, thereby demonstrating the potential for evaluating transmission-blocking interventions in this model. TRIAL REGISTRATION. ClinicalTrials.gov NCT02431637 and NCT02431650 FUNDING. Bill & Melinda Gates Foundation
Katharine A. Collins, Claire Y.T. Wang, Matthew Adams, Hayley Mitchell, Melanie Rampton, Suzanne Elliott, Isaie J. Reuling, Teun Bousema, Robert Sauerwein, Stephan Chalon, Jörg J. Möhrle, James S. McCarthy