Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

Articles in this category appear as authors submitted them for publication, prior to copyediting and publication layout.
Elastase 3B mutation links to familial pancreatitis with diabetes and pancreatic adenocarcinoma
While improvements in genetic analysis have greatly enhanced our understanding of the mechanisms behind pancreatitis, it continues to afflict many families for whom the hereditary factors remain...
Published August 1, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129961.
View: Text | PDF
Concise Communication In-Press Preview Cell biology Gastroenterology

Elastase 3B mutation links to familial pancreatitis with diabetes and pancreatic adenocarcinoma

  • Text
  • PDF
Abstract

While improvements in genetic analysis have greatly enhanced our understanding of the mechanisms behind pancreatitis, it continues to afflict many families for whom the hereditary factors remain unknown. Recent evaluation of a patient with a strong family history of pancreatitis sparked us to reexamine a large kindred originally reported over 50 years ago with an autosomal dominant inheritance pattern of chronic pancreatitis, diabetes and pancreatic adenocarcinoma. Whole exome sequencing analysis identified a rare missense mutation in the gene encoding pancreas-specific protease Elastase 3B (CELA3B) that cosegregates with disease. Studies of the mutant protein in vitro, in cell lines and in CRISPR-Cas9 engineered mice indicate that this mutation causes translational upregulation of CELA3B, which upon secretion and activation by trypsin leads to uncontrolled proteolysis and recurrent pancreatitis. Although lesions in several other pancreatitic proteases have been previously linked to hereditary pancreatitis, this is the first known instance of a mutation in CELA3B and a defect in translational control contributing to this disease.

Authors

Paul C. Moore, Jessica T. Cortez, Chester E. Chamberlain, Diana Alba, Amy C. Berger, Zoe Quandt, Alice Chan, Mickie H. Cheng, Jhoanne L. Bautista, Justin Peng, Michael S. German, Mark Anderson, Scott A. Oakes

×

Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer
Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic...
Published July 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128212.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer

  • Text
  • PDF
Abstract

Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole genome RNA sequencing, gene set enrichment analysis and immunohistochemistry. Our analyses revealed five mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: (i) AR-high tumors (ARPC), (ii) AR-low tumors (ARLPC), (iii) amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), (iv) double-negative tumors (i.e. AR-/NE-; DNPC) and (v) tumors with small cell or NE gene expression without AR activity (SCNPC). RE1-silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the five mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.

Authors

Mark P. Labrecque, Ilsa M. Coleman, Lisha G. Brown, Lawrence D. True, Lori Kollath, Bryce Lakely, Holly M. Nguyen, Yu C. Yang, Rui M. Gil da Costa, Arja Kaipainen, Roger Coleman, Celestia S. Higano, Evan Y. Yu, Heather H. Cheng, Elahe A. Mostaghel, Bruce Montgomery, Michael T. Schweizer, Andrew C. Hsieh, Daniel W. Lin, Eva Corey, Peter S. Nelson, Colm Morrissey

×

Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease
The rate of disease progression in autosomal-dominant (AD) polycystic kidney disease (PKD) exhibits high intra-familial variability suggesting that environmental factors may play a role. We...
Published July 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128503.
View: Text | PDF | Corrigendum
Research In-Press Preview Nephrology

Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease

  • Text
  • PDF
Abstract

The rate of disease progression in autosomal-dominant (AD) polycystic kidney disease (PKD) exhibits high intra-familial variability suggesting that environmental factors may play a role. We hypothesized that a prevalent form of renal insult may accelerate cystic progression and investigated tubular crystal deposition. We report that calcium oxalate (CaOx) crystal deposition led to rapid tubule dilation, activation of PKD-associated signaling pathways, and hypertrophy in tubule segments along the affected nephrons. Blocking mTOR signaling blunted this response and inhibited efficient excretion of lodged crystals. This mechanism of “flushing out” crystals by purposefully dilating renal tubules has not previously been recognized. Challenging PKD rat models with CaOx crystal deposition, or inducing calcium phosphate deposition by increasing dietary phosphorous intake, led to increased cystogenesis and disease progression. In a cohort of ADPKD patients, lower levels of urinary excretion of citrate, an endogenous inhibitor of calcium crystal formation, correlated with increased disease severity. These results suggest that PKD progression may be accelerated by commonly occurring renal crystal deposition which could be therapeutically controlled by relatively simple measures.

Authors

Jacob A. Torres, Mina Rezaei, Caroline Broderick, Louis Lin, Xiaofang Wang, Bernd Hoppe, Benjamin D. Cowley, Jr., Vincenzo Savica, Vicente E. Torres, Saeed Khan, Ross P. Holmes, Michal Mrug, Thomas Weimbs

×

HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy
To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during ART, we looked for evidence of viral replication in 5 donors after up to 13 years of viral...
Published July 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126714.
View: Text | PDF
Research In-Press Preview AIDS/HIV

HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy

  • Text
  • PDF
Abstract

To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during ART, we looked for evidence of viral replication in 5 donors after up to 13 years of viral suppression. We characterized proviral populations in lymph nodes and peripheral blood before and during ART, evaluated the levels of viral RNA expression in single lymph node and blood cells, and characterized the proviral integration sites in paired lymph node and blood samples. Proviruses with identical sequences, identical integration sites, and similar levels of RNA expression were found in lymph nodes and blood samples collected during ART, and no single sequence with significant divergence from the pretherapy population was present in either blood or lymph nodes. These findings show that all detectable persistent HIV-1 infection is consistent with maintenance in lymph nodes by clonal proliferation of cells infected before ART and not by ongoing viral replication during ART.

Authors

William R. McManus, Michael J. Bale, Jonathan Spindler, Ann Wiegand, Andrew Musick, Sean C. Patro, Michele D. Sobolewski, Victoria K. Musick, Elizabeth M. Anderson, Joshua C. Cyktor, Elias K. Halvas, Wei Shao, Daria Wells, Xiaolin Wu, Brandon F. Keele, Jeffrey M. Milush, Rebecca Hoh, John W. Mellors, Stephen H. Hughes, Steven G. Deeks, John M. Coffin, Mary F. Kearney

×

Innate and adaptive nasal mucosal immune responses following experimental human pneumococcal colonization
Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from...
Published July 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128865.
View: Text | PDF | Erratum
Research In-Press Preview Immunology Infectious disease

Innate and adaptive nasal mucosal immune responses following experimental human pneumococcal colonization

  • Text
  • PDF
Abstract

Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD8+CD161+ T cell clusters were significantly lower in colonized than in non-colonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide-specific and total plasmablasts in blood. Moreover, increased responses of blood mucosal associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.

Authors

Simon P. Jochems, Karin de Ruiter, Carla Solórzano, Astrid Voskamp, Elena Mitsi, Elissavet Nikolaou, Beatriz F. Carniel, Sherin Pojar, Esther L. German, Jesús Reiné, Alessandra Soares-Schanoski, Helen Hill, Rachel Robinson, Angela D. Hyder-Wright, Caroline M. Weight, Pascal F. Durrenberger, Robert S. Heyderman, Stephen B. Gordon, Hermelijn H. Smits, Britta C. Urban, Jamie Rylance, Andrea M. Collins, Mark D. Wilkie, Lepa Lazarova, Samuel C. Leong, Maria Yazdanbakhsh, Daniela M. Ferreira

×

STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade
The stimulator of interferon genes (STING) signaling pathway is a critical link between innate and adaptive immunity, and induces anti-tumor immune responses. STING is expressed in vasculatures,...
Published July 25, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125413.
View: Text | PDF
Research In-Press Preview Angiogenesis Immunology

STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade

  • Text
  • PDF
Abstract

The stimulator of interferon genes (STING) signaling pathway is a critical link between innate and adaptive immunity, and induces anti-tumor immune responses. STING is expressed in vasculatures, but its role in tumor angiogenesis has not been elucidated. Here we investigated STING-induced tumor vascular remodeling and the potential of STING-based combination immunotherapy. Endothelial STING expression was correlated with enhanced T-cell infiltration and prolonged survival in human colon and breast cancer. Intratumoral STING activation with STING agonists (cGAMP or RR-CDA) normalized tumor vasculatures in implanted and spontaneous cancers, but not in STING-deficient mice. These were mediated by upregulation of type I/II interferon genes and vascular stabilizing genes (e.g., Angpt1, Pdgfrb, and Col4a). STING in non-hematopoietic cells is as important as STING in hematopoietic cells to induce a maximal therapeutic efficacy of exogenous STING agonist. Vascular normalizing effects of STING agonists were dependent on type I interferon signaling and CD8+ T cells. Notably, STING-based immunotherapy was maximally effective when combined with VEGFR2 blockade and/or immune checkpoint blockade (αPD-1 or αCTLA-4), leading to complete regression of immunotherapy-resistant tumors. Our data show that intratumoral STING activation can normalize tumor vasculature and the tumor microenvironment, providing a rationale for combining STING-based immunotherapy and anti-angiogenic therapy.

Authors

Hannah Yang, Won Suk Lee, So Jung Kong, Chang Gon Kim, Joo Hoon Kim, Sei Kyung Chang, Sewha Kim, Gwangil Kim, Hong Jae Chon, Chan Kim

×

Impaired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development
3-M primordial dwarfism is an inherited disease characterized by severe pre- and postnatal growth retardation and by mutually exclusive mutations in three genes, CUL7, OBSL1, and CCDC8. The...
Published July 25, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129107.
View: Text | PDF
Research In-Press Preview Development Genetics

Impaired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development

  • Text
  • PDF
Abstract

3-M primordial dwarfism is an inherited disease characterized by severe pre- and postnatal growth retardation and by mutually exclusive mutations in three genes, CUL7, OBSL1, and CCDC8. The mechanism underlying 3-M dwarfism is not clear. We showed here that CCDC8, derived from a retrotransposon Gag protein in placental mammals, exclusively localized on the plasma membrane and was phosphorylated by CK2 and GSK3. Phosphorylation of CCDC8 resulted in its binding first with OBSL1, and then CUL7, leading to the membrane assembly of the 3-M E3 ubiquitin ligase complex. We identified LL5β, a plasma membrane protein that regulates cell migration, as a substrate of 3-M ligase. Wnt inhibition of CCDC8 phosphorylation or patient-derived mutations in 3-M genes disrupted membrane localization of the 3-M complex and accumulated LL5β. Deletion of Ccdc8 in mice impaired trophoblast migration and placental development, resulting in intrauterine growth restriction and perinatal lethality. These results identified a mechanism regulating cell migration and placental development that underlies the development of 3-M dwarfism.

Authors

Pu Wang, Feng Yan, Zhijun Li, Yanbao Yu, Scott E. Parnell, Yue Xiong

×

Gene loci associated with insulin secretion in islets from non-diabetic mice
Genetic susceptibility to type 2 diabetes is primarily due to β-cell dysfunction. However, a genetic study to directly interrogate β-cell function ex vivo has never been previously performed. We...
Published July 25, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129143.
View: Text | PDF
Research In-Press Preview Cell biology Genetics

Gene loci associated with insulin secretion in islets from non-diabetic mice

  • Text
  • PDF
Abstract

Genetic susceptibility to type 2 diabetes is primarily due to β-cell dysfunction. However, a genetic study to directly interrogate β-cell function ex vivo has never been previously performed. We isolated 233,447 islets from 483 Diversity Outbred (DO) mice maintained on a Western-style diet, and measured insulin secretion in response to a variety of secretagogues. Insulin secretion from DO islets ranged >1,000-fold even though none of the mice were diabetic. The insulin secretory response to each secretagogue had a unique genetic architecture; some of the loci were specific for one condition, whereas others overlapped. Human loci that are syntenic to many of the insulin secretion QTL from mouse are associated with diabetes-related SNPs in human genome-wide association studies. We report on three genes, Ptpn18, Hunk and Zfp148, where the phenotype predictions from the genetic screen were fulfilled in our studies of transgenic mouse models. These three genes encode a non-receptor type protein tyrosine phosphatase, a serine/threonine protein kinase, and a Krϋppel-type zinc-finger transcription factor, respectively. Our results demonstrate that genetic variation in insulin secretion that can lead to type 2 diabetes is discoverable in non-diabetic individuals.

Authors

Mark P. Keller, Mary E. Rabaglia, Kathryn L. Schueler, Donnie S. Stapleton, Daniel M. Gatti, Matthew Vincent, Kelly A. Mitok, Ziyue Wang, Takanao Ishimura, Shane P. Simonett, Christopher H. Emfinger, Rahul Das, Tim Beck, Christina Kendziorski, Karl W. Broman, Brian S. Yandell, Gary A. Churchill, Alan D. Attie

×

Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4
Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein-coupled receptors (GPCRs), LPA1–6. Previous studies have demonstrated that...
Published July 23, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI121955.
View: Text | PDF
Research In-Press Preview Angiogenesis

Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4

  • Text
  • PDF
Abstract

Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein-coupled receptors (GPCRs), LPA1–6. Previous studies have demonstrated that LPA-Gα12/Gα13 signaling plays an important role in embryonic vascular development. However, the responsible LPA receptors and underlying mechanisms are poorly understood. Here, we show a critical role of LPA4 and LPA6 in developmental angiogenesis. In mice, Lpa4;Lpa6 double knockout (DKO) embryos were lethal due to global vascular deficiencies, and endothelial cell (EC)-specific Lpa4;Lpa6 DKO retinas had impaired sprouting angiogenesis. Mechanistically, LPA activated the transcriptional regulators YAP and TAZ through LPA4/LPA6-mediated Gα12/Gα13-Rho-ROCK signaling in ECs. YAP/TAZ knockdown increased β-catenin- and Notch intracellular domain (NICD)-mediated endothelial expression of the Notch ligand delta-like 4 (DLL4). Fibrin gel sprouting assay revealed that LPA4/LPA6, Gα12/Gα13, or YAP/TAZ knockdown consistently blocked EC sprouting, which was rescued by a Notch inhibitor. Of note, the inhibition of Notch signaling also ameliorated impaired retinal angiogenesis in EC-specific Lpa4;Lpa6 DKO mice. Overall, these results suggest that the Gα12/Gα13-coupled receptors LPA4 and LPA6 synergistically regulate endothelial Dll4 expression through YAP/TAZ activation. This could in part account for the mechanism of YAP/TAZ-mediated developmental angiogenesis. Our findings provide a novel insight into the biology of GPCR-activated YAP/TAZ.

Authors

Daisuke Yasuda, Daiki Kobayashi, Noriyuki Akahoshi, Takayo Ohto-Nakanishi, Kazuaki Yoshioka, Yoh Takuwa, Seiya Mizuno, Satoru Takahashi, Satoshi Ishii

×

The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis
Background: Checkpoint inhibitor pneumonitis (CIP) is a highly morbid complication of immune checkpoint immunotherapy (ICI), one which precludes the continuation of ICI. Yet, the mechanistic...
Published July 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128654.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Immunology Pulmonology

The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis

  • Text
  • PDF
Abstract

Background: Checkpoint inhibitor pneumonitis (CIP) is a highly morbid complication of immune checkpoint immunotherapy (ICI), one which precludes the continuation of ICI. Yet, the mechanistic underpinnings of CIP are unknown. Methods: To better understand the mechanism of lung injury in CIP, we prospectively collected bronchoalveolar lavage (BAL) samples in ICI-treated patients with (n=12) and without CIP (n=6), prior to initiation of first-line therapy for CIP (high dose corticosteroids. We analyzed BAL immune cell populations using a combination of traditional multicolor flow cytometry gating, unsupervised clustering analysis and BAL supernatant cytokine measurements. Results: We found increased BAL lymphocytosis, predominantly CD4+ T cells, in CIP. Specifically, we observed increased numbers of BAL central memory T-cells (Tcm), evidence of Type I polarization, and decreased expression of CTLA-4 and PD-1 in BAL Tregs, suggesting both activation of pro-inflammatory subsets and an attenuated suppressive phenotype. CIP BAL myeloid immune populations displayed enhanced expression of IL-1β and decreased expression of counter-regulatory IL-1RA. We observed increased levels of T cell chemoattractants in the BAL supernatant, consistent with our pro-inflammatory, lymphocytic cellular landscape. Conclusion: We observe several immune cell subpopulations that are dysregulated in CIP, which may represent possible targets that could lead to therapeutics for this morbid immune related adverse event.

Authors

Karthik Suresh, Jarushka Naidoo, Qiong Zhong, Ye Xiong, Jennifer Mammen, Marcia Villegas de Flores, Laura Cappelli, Aanika Balaji, Tsvi Palmer, Patrick M. Forde, Valsamo Anagnostou, David S. Ettinger, Kristen A. Marrone, Ronan J. Kelly, Christine L. Hann, Benjamin Levy, Josephine L. Feliciano, Cheng-Ting Lin, David Feller-Kopman, Andrew D. Lerner, Hans Lee, Majid Shafiq, Lonny Yarmus, Evan J. Lipson, Mark Soloski, Julie R. Brahmer, Sonye K. Dannoff, Franco D'Alessio

×

Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy
Loss-of-function mutations in genes encoding TET DNA dioxygenase occur frequently in hematopoietic malignancy, but rarely in solid tumors which instead commonly have reduced activity. The impact of...
Published July 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129317.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy

  • Text
  • PDF
Abstract

Loss-of-function mutations in genes encoding TET DNA dioxygenase occur frequently in hematopoietic malignancy, but rarely in solid tumors which instead commonly have reduced activity. The impact of decreased TET activity in solid tumors is not known. Here we show that TET2 mediates interferon γ (IFNγ)-JAK-STAT signaling pathway to control chemokine and PD-L1 expression, lymphocyte infiltration and cancer immunity. IFNγ stimulated STAT1 to bind TET2 and recruit TET2 to hydroxymethylate chemokine and PD-L1 genes. Reduced TET activity was associated with decreased TH1-type chemokines and tumor-infiltrating lymphocytes (TILs) and the progression of human colon cancer. Deletion of Tet2 in murine melanoma and colon tumor cells reduced chemokine expression and TILs, enabling tumors to evade anti-tumor immunity and to resist anti-PD-L1 therapy. Conversely, stimulating TET activity by systematic injection of its co-factor, ascorbate/vitamin C, increased chemokine and TILs, leading to enhanced anti-tumor immunity and anti-PD-L1 efficacy and extended lifespan of tumor-bearing mice. These results suggest an IFNγ-JAK-STAT-TET signaling pathway that mediates tumor response to anti-PD-L1/PD-1 therapy and is frequently disrupted in solid tumors. Our findings also suggest TET activity as a biomarker for predicting the efficacy and patient response to anti-PD-1/PD-L1 therapy, and stimulating TET activity as an adjuvant immunotherapy of solid tumors.

Authors

Yan-ping Xu, Lei Lv, Ying Liu, Matthew D. Smith, Wen-Cai Li, Xian-ming Tan, Meng Cheng, Zhijun Li, Michael Bovino, Jeffrey Aubé, Yue Xiong

×

Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage
Prostate cancer (PC) is initially dependent on androgen receptor (AR) signaling for survival and growth. Therapeutics designed to suppress AR activity serve as the primary intervention for advanced...
Published July 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127613.
View: Text | PDF
Research In-Press Preview Endocrinology Oncology

Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage

  • Text
  • PDF
Abstract

Prostate cancer (PC) is initially dependent on androgen receptor (AR) signaling for survival and growth. Therapeutics designed to suppress AR activity serve as the primary intervention for advanced disease. However, supraphysiological androgen (SPA) concentrations can produce paradoxical responses leading to PC growth inhibition. We sought to discern the mechanisms by which SPA inhibits PC and to determine if molecular context associates with anti-tumor activity. SPA produced an AR-mediated, dose-dependent induction of DNA double-strand breaks (DSBs), G0/G1 cell cycle arrest and cellular senescence. SPA repressed genes involved in DNA repair and delayed the restoration of damaged DNA which was augmented by PARP1 inhibition. SPA-induced DSBs were accentuated in BRCA2-deficient PCs, and combining SPA with PARP or DNA-PKcs inhibition further repressed growth. Next-generation sequencing was performed on biospecimens from PC patients receiving SPA as part of ongoing Phase II clinical trials. Patients with mutations in genes mediating homology-directed DNA repair were more likely to exhibit clinical responses to SPA. These results provide a mechanistic rationale for directing SPA therapy to PCs with AR amplification or DNA repair deficiency, and for combining SPA therapy with PARP inhibition.

Authors

Payel Chatterjee, Michael T. Schweizer, Jared M. Lucas, Ilsa Coleman, Michael D. Nyquist, Sander B. Frank, Robin Tharakan, Elahe Mostaghel, Jun Luo, Colin C. Pritchard, Hung-Ming Lam, Eva Corey, Emmanuel S. Antonarakis, Samuel R. Denmeade, Peter S. Nelson

×

Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes
Type 1 diabetes mellitus (T1DM) increases the risk of atherosclerotic cardiovascular disease (CVD) in humans by poorly understood mechanisms. Using mouse models of T1DM-accelerated atherosclerosis,...
Published July 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127308.
View: Text | PDF
Research In-Press Preview Metabolism

Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes

  • Text
  • PDF
Abstract

Type 1 diabetes mellitus (T1DM) increases the risk of atherosclerotic cardiovascular disease (CVD) in humans by poorly understood mechanisms. Using mouse models of T1DM-accelerated atherosclerosis, we found that relative insulin deficiency rather than hyperglycemia elevated levels of apolipoprotein C3 (APOC3), an apolipoprotein that prevents clearance of triglyceride-rich lipoproteins (TRLs) and their remnants. We then showed that serum APOC3 levels predict incident CVD events in subjects with T1DM in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. To explore underlying mechanisms, we investigated the impact of Apoc3 antisense oligonucleotides (ASOs) on lipoprotein metabolism and atherosclerosis in a mouse model of T1DM. Apoc3 ASO treatment abolished the increased hepatic Apoc3 expression in diabetic mice - resulting in lower levels of TRLs - without improving glycemic control. APOC3 suppression also prevented arterial accumulation of APOC3-containing lipoprotein particles, macrophage foam cell formation, and the accelerated atherosclerosis in diabetic mice. Our observations demonstrate that relative insulin deficiency increases APOC3 and that this results in elevated levels of TRLs and accelerated atherosclerosis in a mouse model of T1DM. Because serum levels of APOC3 predicted incident CVD events in the CACTI study, inhibiting APOC3 might reduce CVD risk in T1DM patients.

Authors

Jenny E. Kanter, Baohai Shao, Farah Kramer, Shelley Barnhart, Masami Shimizu-Albergine, Tomas Vaisar, Mark J. Graham, Rosanne M. Crooke, Clarence R. Manuel, Rebecca A. Haeusler, Daniel Mar, Karol Bomsztyk, John E. Hokanson, Gregory L. Kinney, Janet K. Snell-Bergeon, Jay W. Heinecke, Karin E. Bornfeldt

×

Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223
Persistent, unresolved inflammation in the liver represents a key trigger for hepatic injury and fibrosis in various liver diseases and is controlled by classically activated pro-inflammatory...
Published July 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122258.
View: Text | PDF
Research In-Press Preview Hepatology

Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223

  • Text
  • PDF
Abstract

Persistent, unresolved inflammation in the liver represents a key trigger for hepatic injury and fibrosis in various liver diseases and is controlled by classically activated pro-inflammatory macrophages, while restorative macrophages of the liver are capable of reversing inflammation once the injury trigger ceases. Here we have identified a novel role for neutrophils as key contributors to resolving the inflammatory response in the liver. Using two models of liver inflammatory resolution, we found that mice undergoing neutrophil depletion during the resolution phase exhibited unresolved hepatic inflammation, activation of the fibrogenic machinery and early fibrosis. These findings were associated with an impairment of the phenotypic switch of pro-inflammatory macrophages into a restorative stage after removal of the cause of injury and an increased NLRP3 / miR-223 ratio. Mice with a deletion of the granulocyte specific miR-223 gene showed a similarly impaired resolution profile that could be reversed by restoring miR-223 levels using a miR-223 3p mimic or infusing neutrophils from wildtype animals. Collectively, our findings reveal a novel role for neutrophils in the liver as resolving effector cells that induce pro-inflammatory macrophages into a restorative phenotype, potentially via miR-223.

Authors

Carolina Jimenez Calvente, Masahiko Tameda, Casey D. Johnson, Hana del Pilar, Yun Chin Lin, Nektaria Andronikou, Xavier De Mollerat Du Jeu, Cristina Llorente, Josh Boyer, Ariel E. Feldstein

×

Stromal integrin α11 regulates PDGFR-β signaling and promotes breast cancer progression
Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRβ+ CAF subset displaying...
Published July 9, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125890.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

Stromal integrin α11 regulates PDGFR-β signaling and promotes breast cancer progression

  • Text
  • PDF
Abstract

Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRβ+ CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin α11-deficiency led to a drastic reduction of tumor progression and metastasis. A clear association between integrin α11 and PDGFRβ was found at both transcriptional and histological levels in BC specimens. High stromal integrin α11/PDGFRβ expression was associated with high grades and poorer clinical outcome in human BC patients. Functional assays using five CAF subpopulations (one murine, four human) revealed that integrin α11 promotes CAF invasion and CAF-induced tumor cell invasion upon PDGF-BB stimulation. Mechanistically, integrin α11 pro-invasive activity relies on its ability to interact with PDGFRβ in a ligand-dependent manner and to promote its downstream JNK activation, leading to the production of tenascin C, a pro-invasive matricellular protein. Pharmacological inhibition of PDGFRβ and JNK impaired tumor cell invasion induced by integrin α11-positive CAFs. Collectively, our study uncovers an integrin α11-positive subset of pro-tumoral CAFs that exploits PDGFRβ/JNK signalling axis to promote tumor invasiveness in BC.

Authors

Irina Primac, Erik Maquoi, Silvia Blacher, Ritva Heljasvaara, Jan Van Deun, Hilde Y. H. Smeland, Annalisa Canale, Thomas Louis, Linda Stuhr, Nor Eddine Sounni, Didier Cataldo, Taina Pihlajaniemi, Christel Pequeux, Olivier De Wever, Donald Gullberg, Agnès Noel

×

mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes
Pancreatic beta cells (β-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In...
Published July 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127021.
View: Text | PDF
Research In-Press Preview Endocrinology

mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes

  • Text
  • PDF
Abstract

Pancreatic beta cells (β-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of β-cell function, we found that the control of cellular signaling in β-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult β-cell phenotype. While forcing constitutive mTORC1 signaling in adult β-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote β-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult β-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate β-cell metabolism may thus offer new targets to improve β-cell function in diabetes.

Authors

Rami Jaafar, Stella Tran, Ajit Shah, Gao Sun, Martin Valdearcos, Piero Marchetti, Matilde Masini, Avital Swisa, Simone Giacometti, Ernesto Bernal-Mizrachi, Aleksey Matveyenko, Matthias Hebrok, Yuval Dor, Guy A. Rutter, Suneil K. Koliwad, Anil Bhushan

×

Dengue virus-elicited tryptase induces endothelial permeability and shock
Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology...
Published July 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128426.
View: Text | PDF
Research In-Press Preview Infectious disease Vascular biology

Dengue virus-elicited tryptase induces endothelial permeability and shock

  • Text
  • PDF
Abstract

Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we identified that a MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection, through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in two independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock.

Authors

Abhay P.S. Rathore, Chinmay Kumar Mantri, Siti A.B. Aman, Ayesa Syenina, Justin Ooi, Cyril J. Jagaraj, Chi Ching Goh, Hasitha Tissera, Annelies Wilder-Smith, Lai Guan Ng, Duane J. Gubler, Ashley L. St. John

×

N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer
Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR)...
Published July 1, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127961.
View: Text | PDF
Research In-Press Preview Genetics Oncology

N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer

  • Text
  • PDF
Abstract

Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.

Authors

Adeline Berger, Nicholas J. Brady, Rohan Bareja, Brian D. Robinson, Vincenza Conteduca, Michael A. Augello, Loredana Puca, Adnan Ahmed, Etienne Dardenne, Xiaodong Lu, Inah Hwang, Alyssa M. Bagadion, Andrea Sboner, Olivier Elemento, Jihye Paik, Jindan Yu, Christopher E. Barbieri, Noah Dephoure, Himisha Beltran, David S. Rickman

×

Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation
Resident and inflammatory mononuclear phagocytes (MPh) with functional plasticity in the intestine are critically involved in the pathology of Inflammatory Bowel Diseases (IBD), in which the...
Published June 27, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123374.
View: Text | PDF
Research In-Press Preview Immunology Inflammation

Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation

  • Text
  • PDF
Abstract

Resident and inflammatory mononuclear phagocytes (MPh) with functional plasticity in the intestine are critically involved in the pathology of Inflammatory Bowel Diseases (IBD), in which the mechanism remains incompletely understood. In the present study, we found that increased expression of E3 ligase FBXW7 in the inflamed intestine was significantly correlated to IBD severity in both human diseases and mice model. Myeloid-Fbxw7 deficiency protected mice from dextran sodium sulfate (DSS) and 2,6,4-trinitrobenzene sulfonic acid (TNBS) induced colitis. Fbxw7 deficiency resulted in decreased production of chemokines CCL2 and CCL7 by colonic CX3CR1hi resident macrophages and reduced accumulation of CX3CR1int pro-inflammatory MPh in colitis colon tissue. Mice received AAV-shFbxw7 administration showed significantly improved survival rate and alleviated colitis. Mechanisms screening demonstrated that FBXW7 suppresses H3K27me3 modification and promotes Ccl2 and Ccl7 expression via degradation of histone-lysine N-methyltransferase EZH2 in macrophages. Taken together, our results indicate that FBXW7 degrades EZH2 and increases Ccl2/Ccl7 in CX3CR1hi macrophages, which promotes the recruiting CX3CR1int pro-inflammatory MPh into local colon tissues with colitis. Targeting FBXW7 might represent a potential therapeutic approach for intestine inflammation intervention.

Authors

Jia He, Yinjing Song, Gaopeng Li, Peng Xiao, Yang Liu, Yue Xue, Qian Cao, Xintao Tu, Ting Pan, Zhinong Jiang, Xuetao Cao, Lihua Lai, Qingqing Wang

×

Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells
Induction of memory CD8 T cells is important for controlling infections such as malaria HIV/AIDS, and for cancer immunotherapy. Accurate assessment of antigen (Ag)-specific CD8 T-cells is critical...
Published June 20, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124443.
View: Text | PDF
Research In-Press Preview Immunology

Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells

  • Text
  • PDF
Abstract

Induction of memory CD8 T cells is important for controlling infections such as malaria HIV/AIDS, and for cancer immunotherapy. Accurate assessment of antigen (Ag)-specific CD8 T-cells is critical for vaccine optimization and defining correlates of protection. However, conditions for determining Ag-specific CD8 T-cell responses ex-vivo using ICS may be variable, especially in humans with complex antigens. Here, we used an attenuated whole parasite malaria vaccine model in humans and various experimental infections in mice to show that the duration of antigenic stimulation and timing of brefeldin A (BFA) addition influences the magnitude of Ag-specific and bystander T cell responses. Indeed, following immunization with an attenuated whole sporozoite malaria vaccine in humans, significantly higher numbers of IFN-γ producing memory CD8 T-cells comprised of antigen specific and bystander responses were detected by increasing the duration of Ag-stimulation prior to addition of BFA. Mechanistic analyses of virus-specific CD8 T-cells in mice revealed that the increase in IFNg producing CD8 T-cells was due to bystander activation of Ag-experienced memory CD8 T-cells, and correlated with the proportion of Ag-experienced CD8 T-cells in the stimulated populations. Incubation with anti-cytokine antibodies (ex. IL-12) improved accuracy in detecting bona-fide memory CD8 T-cell responses suggesting this as the mechanism for the bystander activation. These data have important implications for accurate assessment of immune responses generated by vaccines intended to elicit protective memory CD8 T-cells.

Authors

Matthew D. Martin, Isaac J. Jensen, Andrew S. Ishizuka, Mitchell Lefebvre, Qiang Shan, Hai-Hui Xue, John T. Harty, Robert A. Seder, Vladimir P. Badovinac

×

← Previous 1 2 … 89 90 91 … 103 104 Next →


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts