Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published March 1, 2021 Previous issue | Next issue

  • Volume 131, Issue 5
Go to section:
  • Viewpoint
  • Reviews
  • Commentaries
  • Research Articles

On the cover: Enhanced fatty acid oxidation protects from kidney fibrosis

In this issue, Miguel et al. examine the metabolic basis of kidney fibrosis and the contribution of energy failure in tubular epithelial cells. Using a mouse model with enhanced fatty acid oxidation (FAO) in tubular epithelial cells, they demonstrate protection from kidney fibrosis, with substantial improvements in mitochondrial function and reduced epithelial cell damage. The cover image is an electron micrograph showing mitochondria from kidney proximal tubules of a mouse with folic acid nephropathy.

Viewpoint
COVID-19 vaccine testing in pregnant females is necessary
Sabra L. Klein, … , Patrick S. Creisher, Irina Burd
Sabra L. Klein, … , Patrick S. Creisher, Irina Burd
Published January 14, 2021
Citation Information: J Clin Invest. 2021;131(5):e147553. https://doi.org/10.1172/JCI147553.
View: Text | PDF

COVID-19 vaccine testing in pregnant females is necessary

  • Text
  • PDF
Abstract

Authors

Sabra L. Klein, Patrick S. Creisher, Irina Burd

×
Reviews
Visualizing the dynamics of tuberculosis pathology using molecular imaging
Alvaro A. Ordonez, … , Laura E. Via, Sanjay K. Jain
Alvaro A. Ordonez, … , Laura E. Via, Sanjay K. Jain
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e145107. https://doi.org/10.1172/JCI145107.
View: Text | PDF

Visualizing the dynamics of tuberculosis pathology using molecular imaging

  • Text
  • PDF
Abstract

Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.

Authors

Alvaro A. Ordonez, Elizabeth W. Tucker, Carolyn J. Anderson, Claire L. Carter, Shashank Ganatra, Deepak Kaushal, Igor Kramnik, Philana L. Lin, Cressida A. Madigan, Susana Mendez, Jianghong Rao, Rada M. Savic, David M. Tobin, Gerhard Walzl, Robert J. Wilkinson, Karen A. Lacourciere, Laura E. Via, Sanjay K. Jain

×

Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms
Javid Moslehi, … , Lorenzo Galluzzi, Richard N. Kitsis
Javid Moslehi, … , Lorenzo Galluzzi, Richard N. Kitsis
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e145186. https://doi.org/10.1172/JCI145186.
View: Text | PDF

Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms

  • Text
  • PDF
Abstract

Immune checkpoint inhibitors (ICIs) have transformed the treatment of various cancers, including malignancies once considered untreatable. These agents, however, are associated with inflammation and tissue damage in multiple organs. Myocarditis has emerged as a serious ICI-associated toxicity, because, while seemingly infrequent, it is often fulminant and lethal. The underlying basis of ICI-associated myocarditis is not completely understood. While the importance of T cells is clear, the inciting antigens, why they are recognized, and the mechanisms leading to cardiac cell injury remain poorly characterized. These issues underscore the need for basic and clinical studies to define pathogenesis, identify predictive biomarkers, improve diagnostic strategies, and develop effective treatments. An improved understanding of ICI-associated myocarditis will provide insights into the equilibrium between the immune and cardiovascular systems.

Authors

Javid Moslehi, Andrew H. Lichtman, Arlene H. Sharpe, Lorenzo Galluzzi, Richard N. Kitsis

×
Commentaries
A clear pathway to tubulointerstitial disease: is an exclusive focus on fibrosis justified?
Robert Safirstein
Robert Safirstein
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e144803. https://doi.org/10.1172/JCI144803.
View: Text | PDF

A clear pathway to tubulointerstitial disease: is an exclusive focus on fibrosis justified?

  • Text
  • PDF
Abstract

Tubulointerstitial accumulation of matrix proteins in human kidney biopsies is the best predictor of renal survival. In this issue of the JCI, Yen-Ting Chen et al. elegantly show that an endoplasmic reticulum resident protein, thioredoxin domain containing 5 (TXNDC5), is a key mediator of experimental kidney fibrosis. The researchers used knockout or conditional knockout animals to reduce Txndc5 expression, which reduced the accumulation of fibrous tissue in three models of chronic kidney disease (CKD), including unilateral ureteral obstruction, unilateral ischemia reperfusion injury, and folic acid nephropathy. More importantly, the studies demonstrate that the activated fibroblasts are almost exclusively responsible for producing matrix proteins. The study also showed that reducing Txndc5 in mice after tubulointerstitial fibrosis (TIF) was established mitigated the fibrosis. These experiments have obvious clinical importance but warrant caution because a key question remains unanswered. The impact of reducing TXNDC5 on renal function itself, the very heart of CKD, demands further exploration.

Authors

Robert Safirstein

×

From the gut to bone: connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis
Joseph Lorenzo
Joseph Lorenzo
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e146619. https://doi.org/10.1172/JCI146619.
View: Text | PDF

From the gut to bone: connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis

  • Text
  • PDF
Abstract

Osteoporosis is a serious clinical problem that often follows the accelerated bone loss that occurs after the estrogen withdrawal of menopause. In order to better understand the mechanism that produces estrogen withdrawal–induced bone loss, Yu and Pal et al., as reported in this issue of the JCI, examined mice that underwent ovariectomy (OVX). In C57BL/6 mice with enhanced Th17 cells in gut tissue, the authors demonstrated that OVX increased migration of TNF-expressing Th17 cells from the gut to the bone marrow. Furthermore, they found that manipulation of the pathways by which lymphocytes migrate and home to bone marrow prevented the increase of TNF+, Th17 cells in bone marrow after OVX in mice and the trabecular, but not cortical, bone loss in this model. These results argue that interactions of the gut microbiota with the immune system are involved in the effects of estrogen withdrawal on trabecular bone.

Authors

Joseph Lorenzo

×

YAP/TFEB pathway promotes autophagic cell death and hypertrophic cardiomyopathy in lysosomal storage diseases
Inna Rabinovich-Nikitin, Lorrie A. Kirshenbaum
Inna Rabinovich-Nikitin, Lorrie A. Kirshenbaum
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e146821. https://doi.org/10.1172/JCI146821.
View: Text | PDF

YAP/TFEB pathway promotes autophagic cell death and hypertrophic cardiomyopathy in lysosomal storage diseases

  • Text
  • PDF
Abstract

Lysosomal storage disorders (LSD) are a group of inherited metabolic diseases characterized by lysosomal enzyme deficiency. The cardiac phenotype includes cardiomyopathy with eventual heart failure. Lysosome-mediated degradation processes, such as autophagy, maintain cellular homeostasis by discarding cellular debris and damaged organelles. Under stress, the transcription factor EB (TFEB) moves into the nucleus to activate transcription of lysosome biogenesis and autophagic proteins. In this issue of the JCI, Ikeda et al. report on their exploration of the signaling pathway involved with regulating lysosomal proteins specifically in the heart. The researchers generated a mouse model for LSD that was restricted to cardiac tissue. Unexpectedly, modulation of TFEB alone was insufficient to fully rescue the underlying clearance defect in lysosomal-associated disorders. The authors identified the Yes-associated protein (YAP)/TFEB signaling pathway as a key regulator of autophagosomes. These findings suggest that undigested autophagosomes accumulate and result in the cell death and cardiac dysfunction observed with LSD.

Authors

Inna Rabinovich-Nikitin, Lorrie A. Kirshenbaum

×

Nitric oxide and bone: The phoenix rises again
Hanghang Liu, Clifford J. Rosen
Hanghang Liu, Clifford J. Rosen
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e147072. https://doi.org/10.1172/JCI147072.
View: Text | PDF

Nitric oxide and bone: The phoenix rises again

  • Text
  • PDF
Abstract

The involvement of nitric oxide (NO) in preventing bone loss has long been hypothesized, but despite decades of research the mechanisms remain obscure. In this issue of the JCI, Jin et al. explored NO deficiency using human cell and mouse models that lacked argininosuccinate lyase (ASL), the enzyme involved in synthesizing arginine and NO production. Osteoblasts that did not express ASL produced less NO and failed to differentiate. Notably, in the context of Asl deficiency, heterozygous deletion of caveolin 1, which normally inhibits NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass. These experiments suggest that ASL regulates arginine synthesis in osteoblasts, which leads to enhanced NO production and increased glucose metabolism. After a period when research slowed, these studies, like the legendary phoenix, renew the exploration of NO in bone biology, and provide exciting translational potential.

Authors

Hanghang Liu, Clifford J. Rosen

×
Research Articles
Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy
Jerome Fortin, … , Vuk Stambolic, Tak W. Mak
Jerome Fortin, … , Vuk Stambolic, Tak W. Mak
Published January 14, 2021
Citation Information: J Clin Invest. 2021;131(5):e131698. https://doi.org/10.1172/JCI131698.
View: Text | PDF

Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy

  • Text
  • PDF
Abstract

In order to sustain proficient life-long hematopoiesis, hematopoietic stem cells (HSCs) must possess robust mechanisms to preserve their quiescence and genome integrity. DNA-damaging stress can perturb HSC homeostasis by affecting their survival, self-renewal, and differentiation. Ablation of the kinase ataxia telangiectasia mutated (ATM), a master regulator of the DNA damage response, impairs HSC fitness. Paradoxically, we show here that loss of a single allele of Atm enhances HSC functionality in mice. To explain this observation, we explored a possible link between ATM and the tumor suppressor phosphatase and tensin homolog (PTEN), which also regulates HSC function. We generated and analyzed a knockin mouse line (PtenS398A/S398A), in which PTEN cannot be phosphorylated by ATM. Similar to Atm+/–, PtenS398A/S398A HSCs have enhanced hematopoietic reconstitution ability, accompanied by resistance to apoptosis induced by genotoxic stress. Single-cell transcriptomic analyses and functional assays revealed that dormant PtenS398A/S398A HSCs aberrantly tolerate elevated mitochondrial activity and the accumulation of reactive oxygen species, which are normally associated with HSC priming for self-renewal or differentiation. Our results unveil a molecular connection between ATM and PTEN, which couples the response to genotoxic stress and dormancy in HSCs.

Authors

Jerome Fortin, Christian Bassi, Parameswaran Ramachandran, Wanda Y. Li, Ruxiao Tian, Ida Zarrabi, Graham Hill, Bryan E. Snow, Jillian Haight, Chantal Tobin, Kelsey Hodgson, Andrew Wakeham, Vuk Stambolic, Tak W. Mak

×

CC17 group B Streptococcus exploits integrins for neonatal meningitis development
Romain Deshayes de Cambronne, … , Claire Poyart, Julie Guignot
Romain Deshayes de Cambronne, … , Claire Poyart, Julie Guignot
Published January 19, 2021
Citation Information: J Clin Invest. 2021;131(5):e136737. https://doi.org/10.1172/JCI136737.
View: Text | PDF

CC17 group B Streptococcus exploits integrins for neonatal meningitis development

  • Text
  • PDF
Abstract

Group B Streptococcus (GBS) is the major cause of human neonatal infections. A single clone, designated CC17-GBS, accounts for more than 80% of meningitis cases, the most severe form of the infection. However, the events allowing blood-borne GBS to penetrate the brain remain largely elusive. In this study, we identified the host transmembrane receptors α5β1 and αvβ3 integrins as the ligands of Srr2, a major CC17-GBS–specific adhesin. Two motifs located in the binding region of Srr2 were responsible for the interaction between CC17-GBS and these integrins. We demonstrated in a blood-brain-barrier cellular model that both integrins contributed to the adhesion and internalization of CC17-GBS. Strikingly, both integrins were overexpressed during the postnatal period in the brain vessels of the blood-brain barrier and blood-cerebrospinal fluid barrier and contributed to juvenile susceptibility to CC17 meningitis. Finally, blocking these integrins decreased the ability of CC17-GBS to cross into the CNS of juvenile mice in an in vivo model of meningitis. Our study demonstrated that CC17-GBS exploits integrins in order to cross the brain vessels, leading to meningitis. Importantly, it provides host molecular insights into neonate’s susceptibility to CC17-GBS meningitis, thereby opening new perspectives for therapeutic and prevention strategies of GBS-elicited meningitis.

Authors

Romain Deshayes de Cambronne, Agnès Fouet, Amandine Picart, Anne-Sophie Bourrel, Cyril Anjou, Guillaume Bouvier, Cristina Candeias, Abdelouhab Bouaboud, Lionel Costa, Anne-Cécile Boulay, Martine Cohen-Salmon, Isabelle Plu, Caroline Rambaud, Eva Faurobert, Corinne Albigès-Rizo, Asmaa Tazi, Claire Poyart, Julie Guignot

×

Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis
Kunio Kawanishi, … , Anja Münster-Kühnel, Ajit Varki
Kunio Kawanishi, … , Anja Münster-Kühnel, Ajit Varki
Published December 29, 2020
Citation Information: J Clin Invest. 2021;131(5):e137681. https://doi.org/10.1172/JCI137681.
View: Text | PDF

Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis

  • Text
  • PDF
Abstract

Human metabolic incorporation of nonhuman sialic acid (Sia) N-glycolylneuraminic acid into endogenous glycans generates inflammation via preexisting antibodies, which likely contributes to red meat–induced atherosclerosis acceleration. Exploring whether this mechanism affects atherosclerosis in end-stage renal disease (ESRD), we instead found serum accumulation of 2-keto-3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (Kdn), a Sia prominently expressed in cold-blooded vertebrates. In patients with ESRD, levels of the Kdn precursor mannose also increased, but within a normal range. Mannose ingestion by healthy volunteers raised the levels of urinary mannose and Kdn. Kdn production pathways remained conserved in mammals but were diminished by an M42T substitution in a key biosynthetic enzyme, N-acetylneuraminate synthase. Remarkably, reversion to the ancestral methionine then occurred independently in 2 lineages, including humans. However, mammalian glycan databases contain no Kdn-glycans. We hypothesize that the potential toxicity of excess mannose in mammals is partly buffered by conversion to free Kdn. Thus, mammals probably conserve Kdn biosynthesis and modulate it in a lineage-specific manner, not for glycosylation, but to control physiological mannose intermediates and metabolites. However, human cells can be forced to express Kdn-glycans via genetic mutations enhancing Kdn utilization, or by transfection with fish enzymes producing cytidine monophosphate–Kdn (CMP-Kdn). Antibodies against Kdn-glycans occur in pooled human immunoglobulins. Pathological conditions that elevate Kdn levels could therefore result in antibody-mediated inflammatory pathologies.

Authors

Kunio Kawanishi, Sudeshna Saha, Sandra Diaz, Michael Vaill, Aniruddha Sasmal, Shoib S. Siddiqui, Biswa Choudhury, Kumar Sharma, Xi Chen, Ian C. Schoenhofen, Chihiro Sato, Ken Kitajima, Hudson H. Freeze, Anja Münster-Kühnel, Ajit Varki

×

Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control
Claire Lhuillier, … , Silvia C. Formenti, Sandra Demaria
Claire Lhuillier, … , Silvia C. Formenti, Sandra Demaria
Published January 21, 2021
Citation Information: J Clin Invest. 2021;131(5):e138740. https://doi.org/10.1172/JCI138740.
View: Text | PDF

Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control

  • Text
  • PDF
Abstract

Neoantigens generated by somatic nonsynonymous mutations are key targets of tumor-specific T cells, but only a small number of mutations predicted to be immunogenic are presented by MHC molecules on cancer cells. Vaccination studies in mice and patients have shown that the majority of neoepitopes that elicit T cell responses fail to induce significant antitumor activity, for incompletely understood reasons. We report that radiotherapy upregulates the expression of genes containing immunogenic mutations in a poorly immunogenic mouse model of triple-negative breast cancer. Vaccination with neoepitopes encoded by these genes elicited CD8+ and CD4+ T cells that, whereas ineffective in preventing tumor growth, improved the therapeutic efficacy of radiotherapy. Mechanistically, neoantigen-specific CD8+ T cells preferentially killed irradiated tumor cells. Neoantigen-specific CD4+ T cells were required for the therapeutic efficacy of vaccination and acted by producing Th1 cytokines, killing irradiated tumor cells, and promoting epitope spread. Such a cytotoxic activity relied on the ability of radiation to upregulate class II MHC molecules as well as the death receptors FAS/CD95 and DR5 on the surface of tumor cells. These results provide proof-of-principle evidence that radiotherapy works in concert with neoantigen vaccination to improve tumor control.

Authors

Claire Lhuillier, Nils-Petter Rudqvist, Takahiro Yamazaki, Tuo Zhang, Maud Charpentier, Lorenzo Galluzzi, Noah Dephoure, Cristina C. Clement, Laura Santambrogio, Xi Kathy Zhou, Silvia C. Formenti, Sandra Demaria

×

Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation
Zixue Jin, … , Sandesh C.S. Nagamani, Brendan Lee
Zixue Jin, … , Sandesh C.S. Nagamani, Brendan Lee
Published December 29, 2020
Citation Information: J Clin Invest. 2021;131(5):e138935. https://doi.org/10.1172/JCI138935.
View: Text | PDF

Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation

  • Text
  • PDF
Abstract

Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase–dependent (NOS-dependent) NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of caveolin 1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO/glycolysis pathway may be a new target to modulate bone anabolism.

Authors

Zixue Jin, Jordan Kho, Brian Dawson, Ming-Ming Jiang, Yuqing Chen, Saima Ali, Lindsay C. Burrage, Monica Grover, Donna J. Palmer, Dustin L. Turner, Philip Ng, Sandesh C.S. Nagamani, Brendan Lee

×

Integrating imaging and RNA-seq improves outcome prediction in cervical cancer
Jin Zhang, … , Stephanie Markovina, Julie K. Schwarz
Jin Zhang, … , Stephanie Markovina, Julie K. Schwarz
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e139232. https://doi.org/10.1172/JCI139232.
View: Text | PDF Concise Communication

Integrating imaging and RNA-seq improves outcome prediction in cervical cancer

  • Text
  • PDF
Abstract

Approaches using a single type of data have been applied to classify human tumors. Here we integrate imaging features and transcriptomic data using a prospectively collected tumor bank. We demonstrate that increased maximum standardized uptake value on pretreatment 18F-fluorodeoxyglucose–positron emission tomography correlates with epithelial-to-mesenchymal transition (EMT) gene expression. We derived and validated 3 major molecular groups, namely squamous epithelial, squamous mesenchymal, and adenocarcinoma, using prospectively collected institutional (n = 67) and publicly available (n = 304) data sets. Patients with tumors of the squamous mesenchymal subtype showed inferior survival outcomes compared with the other 2 molecular groups. High mesenchymal gene expression in cervical cancer cells positively correlated with the capacity to form spheroids and with resistance to radiation. CaSki organoids were radiation-resistant but sensitive to the glycolysis inhibitor, 2-DG. These experiments provide a strategy for response prediction by integrating large data sets, and highlight the potential for metabolic therapy to influence EMT phenotypes in cervical cancer.

Authors

Jin Zhang, Ramachandran Rashmi, Matthew Inkman, Kay Jayachandran, Fiona Ruiz, Michael R. Waters, Perry W. Grigsby, Stephanie Markovina, Julie K. Schwarz

×

Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1–associated membranous nephropathy
George Haddad, … , Gérard Lambeau, Andreas D. Kistler
George Haddad, … , Gérard Lambeau, Andreas D. Kistler
Published December 22, 2020
Citation Information: J Clin Invest. 2021;131(5):e140453. https://doi.org/10.1172/JCI140453.
View: Text | PDF

Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1–associated membranous nephropathy

  • Text
  • PDF
Abstract

Primary membranous nephropathy (pMN) is a leading cause of nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1–positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induced proteolysis of the 2 essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton. Specific blockade of the lectin pathway prevented degradation of synaptopodin and NEPH1. Anti-PLA2R1 IgG4 directly bound mannose-binding lectin in a glycosylation-dependent manner. In a cohort of pMN patients, we identified increased levels of galactose-deficient IgG4, which correlated with anti-PLA2R1 titers and podocyte damage induced by patient sera. Assembly of the terminal C5b-9 complement complex and activation of the complement receptors C3aR1 or C5aR1 were required to induce proteolysis of synaptopodin and NEPH1 by 2 distinct proteolytic pathways mediated by cysteine and aspartic proteinases, respectively. Together, these results demonstrated a mechanism by which aberrantly glycosylated IgG4 activated the lectin pathway and induced podocyte injury in primary membranous nephropathy.

Authors

George Haddad, Johan M. Lorenzen, Hong Ma, Noortje de Haan, Harald Seeger, Christelle Zaghrini, Simone Brandt, Malte Kölling, Urs Wegmann, Bence Kiss, Gábor Pál, Péter Gál, Rudolf P. Wüthrich, Manfred Wuhrer, Laurence H. Beck, David J. Salant, Gérard Lambeau, Andreas D. Kistler

×

NOD2 drives early IL-33–dependent expansion of group 2 innate lymphoid cells during Crohn’s disease–like ileitis
Carlo De Salvo, … , Séverine Vermeire, Theresa T. Pizarro
Carlo De Salvo, … , Séverine Vermeire, Theresa T. Pizarro
Published January 14, 2021
Citation Information: J Clin Invest. 2021;131(5):e140624. https://doi.org/10.1172/JCI140624.
View: Text | PDF Concise Communication

NOD2 drives early IL-33–dependent expansion of group 2 innate lymphoid cells during Crohn’s disease–like ileitis

  • Text
  • PDF
Abstract

Innate lymphoid cells (ILCs) are enriched at barrier surfaces, including the gastrointestinal tract. While most studies have focused on the balance between pathogenic group 1 ILCs (ILC1s) and protective ILC3s in maintaining gut homeostasis and during chronic intestinal inflammation, such as Crohn’s disease (CD), less is known regarding ILC2s. Using an established murine model of CD-like ileitis, i.e., the SAMP1/YitFc (SAMP) mouse strain, we showed that ILC2s, compared with ILC1s and ILC3s, were increased within draining mesenteric lymph nodes and ilea of SAMP versus AKR (parental control) mice early, during the onset of disease. Gut-derived ILC2s from CD patients versus healthy controls were also increased and expanded, similarly to ILC1s, in greater proportion compared with ILC3s. Importantly, we report that the intracellular bacteria–sensing protein, nucleotide-binding oligomerization domaining–containing protein 2, encoded by Nod2, the first and strongest susceptibility gene identified for CD, promoted ILC2 expansion, which was dramatically reduced in SAMP mice lacking NOD2 and in SAMP mice raised under germ-free conditions. Furthermore, these effects occurred through a mechanism involving the IL-33/ST2 ligand-receptor pair. Collectively, our results indicate a functional link between NOD2 and ILC2s, regulated by the IL-33/ST2 axis, that mechanistically may contribute to early events leading to CD pathogenesis.

Authors

Carlo De Salvo, Kristine-Ann Buela, Brecht Creyns, Daniele Corridoni, Nitish Rana, Hannah L. Wargo, Chiara L. Cominelli, Peter G. Delaney, Alexander Rodriguez-Palacios, Fabio Cominelli, Séverine Vermeire, Theresa T. Pizarro

×

Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis
Verónica Miguel, … , Ricardo Ramos, Santiago Lamas
Verónica Miguel, … , Ricardo Ramos, Santiago Lamas
Published January 19, 2021
Citation Information: J Clin Invest. 2021;131(5):e140695. https://doi.org/10.1172/JCI140695.
View: Text | PDF

Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis

  • Text
  • PDF
Abstract

Chronic kidney disease (CKD) remains a major epidemiological, clinical, and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) present a persistent inflammatory and profibrotic response. Fatty acid oxidation (FAO), the main source of energy for TECs, is reduced in kidney fibrosis and contributes to its pathogenesis. To determine whether gain of function in FAO (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyl-transferase 1A (CPT1A) in TECs. Cpt1a-knockin (CPT1A-KI) mice subjected to 3 models of renal fibrosis (unilateral ureteral obstruction, folic acid nephropathy [FAN], and adenine-induced nephrotoxicity) exhibited decreased expression of fibrotic markers, a blunted proinflammatory response, and reduced epithelial cell damage and macrophage influx. Protection from fibrosis was also observed when Cpt1a overexpression was induced after FAN. FAO-GOF restored oxidative metabolism and mitochondrial number and enhanced bioenergetics, increasing palmitate oxidation and ATP levels, changes that were also recapitulated in TECs exposed to profibrotic stimuli. Studies in patients showed decreased CPT1 levels and increased accumulation of short- and middle-chain acylcarnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD.

Authors

Verónica Miguel, Jessica Tituaña, J. Ignacio Herrero, Laura Herrero, Dolors Serra, Paula Cuevas, Coral Barbas, Diego Rodríguez Puyol, Laura Márquez-Expósito, Marta Ruiz-Ortega, Carolina Castillo, Xin Sheng, Katalin Susztak, Miguel Ruiz-Canela, Jordi Salas-Salvadó, Miguel A. Martínez González, Sagrario Ortega, Ricardo Ramos, Santiago Lamas

×

A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity
Kenta Matsuda, … , Florian Krammer, Mark Connors
Kenta Matsuda, … , Florian Krammer, Mark Connors
Published February 2, 2021
Citation Information: J Clin Invest. 2021;131(5):e140794. https://doi.org/10.1172/JCI140794.
View: Text | PDF Clinical Research and Public Health

A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity

  • Text
  • PDF
Abstract

BACKGROUND To understand the features of a replicating vaccine that might drive potent and durable immune responses to transgene-encoded antigens, we tested a replication-competent adenovirus type 4 encoding influenza virus H5 HA (Ad4-H5-Vtn) administered as an oral capsule or via tonsillar swab or nasal spray.METHODS Viral shedding from the nose, mouth, and rectum was measured by PCR and culturing. H5-specific IgG and IgA antibodies were measured by bead array binding assays. Serum antibodies were measured by a pseudovirus entry inhibition, microneutralization, and HA inhibition assays.RESULTS Ad4-H5-Vtn DNA was shed from most upper respiratory tract–immunized (URT-immunized) volunteers for 2 to 4 weeks, but cultured from only 60% of participants, with a median duration of 1 day. Ad4-H5-Vtn vaccination induced increases in H5-specific CD4+ and CD8+ T cells in the peripheral blood as well as increases in IgG and IgA in nasal, cervical, and rectal secretions. URT immunizations induced high levels of serum neutralizing antibodies (NAbs) against H5 that remained stable out to week 26. The duration of viral shedding correlated with the magnitude of the NAb response at week 26. Adverse events (AEs) were mild, and peak NAb titers were associated with overall AE frequency and duration. Serum NAb titers could be boosted to very high levels 2 to 5 years after Ad4-H5-Vtn vaccination with recombinant H5 or inactivated split H5N1 vaccine.CONCLUSION Replicating Ad4 delivered to the URT caused prolonged exposure to antigen, drove durable systemic and mucosal immunity, and proved to be a promising platform for the induction of immunity against viral surface glycoprotein targets.TRIAL REGISTRATION ClinicalTrials.gov NCT01443936 and NCT01806909.FUNDING Intramural and Extramural Research Programs of the NIAID, NIH (U19 AI109946) and the Centers of Excellence for Influenza Research and Surveillance (CEIRS), NIAID, NIH (contract HHSN272201400008C).

Authors

Kenta Matsuda, Stephen A. Migueles, Jinghe Huang, Lyuba Bolkhovitinov, Sarah Stuccio, Trevor Griesman, Alyssa A. Pullano, Byong H. Kang, Elise Ishida, Matthew Zimmerman, Neena Kashyap, Kelly M. Martins, Daniel Stadlbauer, Jessica Pederson, Andy Patamawenu, Nathaniel Wright, Tulley Shofner, Sean Evans, C. Jason Liang, Julián Candia, Angelique Biancotto, Giovanna Fantoni, April Poole, Jon Smith, Jeff Alexander, Marc Gurwith, Florian Krammer, Mark Connors

×

Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor–mediated lymphangiogenesis
Julio Furlong-Silva, … , Mark J. Taylor, Joseph D. Turner
Julio Furlong-Silva, … , Mark J. Taylor, Joseph D. Turner
Published January 12, 2021
Citation Information: J Clin Invest. 2021;131(5):e140853. https://doi.org/10.1172/JCI140853.
View: Text | PDF

Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor–mediated lymphangiogenesis

  • Text
  • PDF
Abstract

Lymphatic filariasis is the major global cause of nonhereditary lymphedema. We demonstrate that the filarial nematode Brugia malayi induced lymphatic remodeling and impaired lymphatic drainage following parasitism of limb lymphatics in a mouse model. Lymphatic insufficiency was associated with elevated circulating lymphangiogenic mediators, including vascular endothelial growth factor C. Lymphatic insufficiency was dependent on type 2 adaptive immunity, the interleukin-4 receptor, and recruitment of C-C chemokine receptor-2–positive monocytes and alternatively activated macrophages with a prolymphangiogenic phenotype. Oral treatments with second-generation tetracyclines improved lymphatic function, while other classes of antibiotic had no significant effect. Second-generation tetracyclines directly targeted lymphatic endothelial cell proliferation and modified type 2 prolymphangiogenic macrophage development. Doxycycline treatment impeded monocyte recruitment, inhibited polarization of alternatively activated macrophages, and suppressed T cell adaptive immune responses following infection. Our results determine a mechanism of action for the antimorbidity effects of doxycycline in filariasis and support clinical evaluation of second-generation tetracyclines as affordable, safe therapeutics for lymphedemas of chronic inflammatory origin.

Authors

Julio Furlong-Silva, Stephen D. Cross, Amy E. Marriott, Nicolas Pionnier, John Archer, Andrew Steven, Stefan Schulte Merker, Matthias Mack, Young-Kwon Hong, Mark J. Taylor, Joseph D. Turner

×

Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease
Eriene-Heidi Sidhom, … , Catarina M. Quinzii, Anna Greka
Eriene-Heidi Sidhom, … , Catarina M. Quinzii, Anna Greka
Published January 14, 2021
Citation Information: J Clin Invest. 2021;131(5):e141380. https://doi.org/10.1172/JCI141380.
View: Text | PDF

Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease

  • Text
  • PDF
Abstract

Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.

Authors

Eriene-Heidi Sidhom, Choah Kim, Maria Kost-Alimova, May Theng Ting, Keith Keller, Julian Avila-Pacheco, Andrew J.B. Watts, Katherine A. Vernon, Jamie L. Marshall, Estefanía Reyes-Bricio, Matthew Racette, Nicolas Wieder, Giulio Kleiner, Elizabeth J. Grinkevich, Fei Chen, Astrid Weins, Clary B. Clish, Jillian L. Shaw, Catarina M. Quinzii, Anna Greka

×

Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration
Anne Winkler, … , Stefan Nessler, Christine Stadelmann
Anne Winkler, … , Stefan Nessler, Christine Stadelmann
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e141694. https://doi.org/10.1172/JCI141694.
View: Text | PDF

Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration

  • Text
  • PDF
Abstract

Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti–aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated. Using an experimental model of targeted NMOSD lesions in rats, we demonstrate that astrocyte destruction coincides with a transient disruption of the BBB and a selective loss of occludin from tight junctions. It is noteworthy that BBB integrity is reestablished before astrocytes repopulate. Rather than persistent astrocyte loss, polymorphonuclear leukocytes (PMNs) are the main mediators of BBB disruption, and their depletion preserves BBB integrity and prevents astrocyte loss. Inhibition of PMN chemoattraction, activation, and proteolytic function reduces lesion size. In summary, our data support a crucial role for PMNs in BBB disruption and NMOSD lesion development, rendering their recruitment and activation promising therapeutic targets.

Authors

Anne Winkler, Claudia Wrzos, Michael Haberl, Marie-Theres Weil, Ming Gao, Wiebke Möbius, Francesca Odoardi, Dietmar R. Thal, Mayland Chang, Ghislain Opdenakker, Jeffrey L. Bennett, Stefan Nessler, Christine Stadelmann

×

Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy
Najim Lahrouchi, … , Michael A. Frohman, Connie R. Bezzina
Najim Lahrouchi, … , Michael A. Frohman, Connie R. Bezzina
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e142148. https://doi.org/10.1172/JCI142148.
View: Text | PDF

Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy

  • Text
  • PDF
Abstract

Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.

Authors

Najim Lahrouchi, Alex V. Postma, Christian M. Salazar, Daniel M. De Laughter, Fleur Tjong, Lenka Piherová, Forrest Z. Bowling, Dominic Zimmerman, Elisabeth M. Lodder, Asaf Ta-Shma, Zeev Perles, Leander Beekman, Aho Ilgun, Quinn Gunst, Mariam Hababa, Doris Škorić-Milosavljević, Viktor Stránecký, Viktor Tomek, Peter de Knijff, Rick de Leeuw, Jamille Y. Robinson, Sabrina C. Burn, Hiba Mustafa, Matthew Ambrose, Timothy Moss, Jennifer Jacober, Dmitriy M. Niyazov, Barry Wolf, Katherine H. Kim, Sara Cherny, Andreas Rousounides, Aphrodite Aristidou-Kallika, George Tanteles, Bruel Ange-Line, Anne-Sophie Denommé-Pichon, Christine Francannet, Damara Ortiz, Monique C. Haak, Arend D.J. Ten Harkel, Gwendolyn T.R. Manten, Annemiek C. Dutman, Katelijne Bouman, Monia Magliozzi, Francesca Clementina Radio, Gijs W.E. Santen, Johanna C. Herkert, H. Alex Brown, Orly Elpeleg, Maurice J.B. van den Hoff, Barbara Mulder, Michael V. Airola, Stanislav Kmoch, Joey V. Barnett, Sally-Ann Clur, Michael A. Frohman, Connie R. Bezzina

×

CRISPR/Cas9 directed to the Ube3a antisense transcript improves Angelman syndrome phenotype in mice
Ralf S. Schmid, … , Camilo Breton, James M. Wilson
Ralf S. Schmid, … , Camilo Breton, James M. Wilson
Published January 7, 2021
Citation Information: J Clin Invest. 2021;131(5):e142574. https://doi.org/10.1172/JCI142574.
View: Text | PDF Concise Communication

CRISPR/Cas9 directed to the Ube3a antisense transcript improves Angelman syndrome phenotype in mice

  • Text
  • PDF
Abstract

Gene editing holds the potential to correct mutations and cure devastating genetic disorders. The technology has not yet proven efficacious for therapeutic use in CNS diseases with ubiquitous neuronal defects. Angelman syndrome (AS), a severe neurodevelopmental disorder, is caused by a lack of maternal expression of the UBE3A gene. Because of genomic imprinting, only neurons are affected. One therapeutic approach focuses on the intact paternal UBE3A copy in patients with AS that is silenced by an antisense transcript (UBE3A-ATS). We show here that gene editing of Ube3a-ATS in the mouse brain resulted in the formation of base pair insertions/deletions (indels) in neurons and the subsequent unsilencing of the paternal Ube3a allele in neurons, which partially corrected the behavioral phenotype of a murine AS model. This study provides compelling evidence to further investigate editing of the homologous region of the human UBE3A-ATS because this may provide a lasting therapeutic effect for patients with AS.

Authors

Ralf S. Schmid, Xuefeng Deng, Priyalakshmi Panikker, Msema Msackyi, Camilo Breton, James M. Wilson

×

YAP plays a crucial role in the development of cardiomyopathy in lysosomal storage diseases
Shohei Ikeda, … , Hiroaki Shimokawa, Junichi Sadoshima
Shohei Ikeda, … , Hiroaki Shimokawa, Junichi Sadoshima
Published December 29, 2020
Citation Information: J Clin Invest. 2021;131(5):e143173. https://doi.org/10.1172/JCI143173.
View: Text | PDF

YAP plays a crucial role in the development of cardiomyopathy in lysosomal storage diseases

  • Text
  • PDF
Abstract

Lysosomal dysfunction caused by mutations in lysosomal genes results in lysosomal storage disorder (LSD), characterized by accumulation of damaged proteins and organelles in cells and functional abnormalities in major organs, including the heart, skeletal muscle, and liver. In LSD, autophagy is inhibited at the lysosomal degradation step and accumulation of autophagosomes is observed. Enlargement of the left ventricle (LV) and contractile dysfunction were observed in RagA/B cardiac-specific KO (cKO) mice, a mouse model of LSD in which lysosomal acidification is impaired irreversibly. YAP, a downstream effector of the Hippo pathway, was accumulated in RagA/B cKO mouse hearts. Inhibition of YAP ameliorated cardiac hypertrophy and contractile dysfunction and attenuated accumulation of autophagosomes without affecting lysosomal function, suggesting that YAP plays an important role in mediating cardiomyopathy in RagA/B cKO mice. Cardiomyopathy was also alleviated by downregulation of Atg7, an intervention to inhibit autophagy, whereas it was exacerbated by stimulation of autophagy. YAP physically interacted with transcription factor EB (TFEB), a master transcription factor that controls autophagic and lysosomal gene expression, thereby facilitating accumulation of autophagosomes without degradation. These results indicate that accumulation of YAP in the presence of LSD promotes cardiomyopathy by stimulating accumulation of autophagosomes through activation of TFEB.

Authors

Shohei Ikeda, Jihoon Nah, Akihiro Shirakabe, Peiyong Zhai, Shin-ichi Oka, Sebastiano Sciarretta, Kun-Liang Guan, Hiroaki Shimokawa, Junichi Sadoshima

×

Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE production and ensuing allergic disease
Garrett J. Patrick, … , Nathan K. Archer, Lloyd S. Miller
Garrett J. Patrick, … , Nathan K. Archer, Lloyd S. Miller
Published March 1, 2021
Citation Information: J Clin Invest. 2021;131(5):e143334. https://doi.org/10.1172/JCI143334.
View: Text | PDF

Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE production and ensuing allergic disease

  • Text
  • PDF
Abstract

IgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis–like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL‑36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels—all of which were abrogated in IL-36R–deficient mice or anti-IL‑36R–blocking antibody–treated mice. Moreover, skin allergen sensitization during S. aureus epicutaneous exposure-induced IL-36 responses was required for the development of allergen-specific lung inflammation. In translating these findings, elevated IL‑36 cytokines in human atopic dermatitis skin and in IL‑36 receptor antagonist–deficiency patients coincided with increased serum IgE levels. Collectively, keratinocyte-initiated IL‑36 responses represent a key mechanism and potential therapeutic target against allergic diseases.

Authors

Garrett J. Patrick, Haiyun Liu, Martin P. Alphonse, Dustin A. Dikeman, Christine Youn, Jack C. Otterson, Yu Wang, Advaitaa Ravipati, Momina Mazhar, George Denny, Roger V. Ortines, Emily Zhang, Robert J. Miller, Carly A. Dillen, Qi Liu, Sabrina J. Nolan, Kristine Nguyen, LeeAnn Marcello, Danh C. Do, Eric M. Wier, Yan Zhang, Gary Caviness, Alexander C. Klimowicz, Diane V. Mierz, Jay S. Fine, Guangping Sun, Raphaela Goldbach-Mansky, Alina I. Marusina, Alexander A. Merleev, Emanual Maverakis, Luis A. Garza, Joshua D. Milner, Peisong Gao, Meera Ramanujam, Ernest L. Raymond, Nathan K. Archer, Lloyd S. Miller

×

Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts
Yen-Ting Chen, … , Shuei-Liong Lin, Kai-Chien Yang
Yen-Ting Chen, … , Shuei-Liong Lin, Kai-Chien Yang
Published January 19, 2021
Citation Information: J Clin Invest. 2021;131(5):e143645. https://doi.org/10.1172/JCI143645.
View: Text | PDF

Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts

  • Text
  • PDF
Abstract

Renal fibrosis, a common pathological manifestation of virtually all types of chronic kidney disease (CKD), often results in diffuse kidney scarring and predisposes to end-stage renal disease. Currently, there is no effective therapy against renal fibrosis. Recently, our laboratory identified an ER-resident protein, thioredoxin domain containing 5 (TXNDC5), as a critical mediator of cardiac fibrosis. Transcriptome analyses of renal biopsy specimens from patients with CKD revealed marked TXNDC5 upregulation in fibrotic kidneys, suggesting a potential role of TXNDC5 in renal fibrosis. Employing multiple fluorescence reporter mouse lines, we showed that TXNDC5 was specifically upregulated in collagen-secreting fibroblasts in fibrotic mouse kidneys. In addition, we showed that TXNDC5 was required for TGF-β1–induced fibrogenic responses in human kidney fibroblasts (HKFs), whereas TXNDC5 overexpression was sufficient to promote HKF activation, proliferation, and collagen production. Mechanistically, we showed that TXNDC5, transcriptionally controlled by the ATF6-dependent ER stress pathway, mediated its profibrogenic effects by enforcing TGF-β signaling activity through posttranslational stabilization and upregulation of type I TGF-β receptor in kidney fibroblasts. Using a tamoxifen-inducible, fibroblast-specific Txndc5 knockout mouse line, we demonstrated that deletion of Txndc5 in kidney fibroblasts mitigated the progression of established kidney fibrosis, suggesting the therapeutic potential of TXNDC5 targeting for renal fibrosis and CKD.

Authors

Yen-Ting Chen, Pei-Yu Jhao, Chen-Ting Hung, Yueh-Feng Wu, Sung-Jan Lin, Wen-Chih Chiang, Shuei-Liong Lin, Kai-Chien Yang

×

Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle–mediated trafficking
Miao Zhao, … , Tim S. Bugni, David R. Andes
Miao Zhao, … , Tim S. Bugni, David R. Andes
Published December 29, 2020
Citation Information: J Clin Invest. 2021;131(5):e145123. https://doi.org/10.1172/JCI145123.
View: Text | PDF Concise Communication

Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle–mediated trafficking

  • Text
  • PDF
Abstract

The emergence of drug-resistant fungi has prompted an urgent threat alert from the US Centers for Disease Control (CDC). Biofilm assembly by these pathogens further impairs effective therapy. We recently identified an antifungal, turbinmicin, that inhibits the fungal vesicle–mediated trafficking pathway and demonstrates broad-spectrum activity against planktonically growing fungi. During biofilm growth, vesicles with unique features play a critical role in the delivery of biofilm extracellular matrix components. As these components are largely responsible for the drug resistance associated with biofilm growth, we explored the utility of turbinmicin in the biofilm setting. We found that turbinmicin disrupted extracellular vesicle (EV) delivery during biofilm growth and that this impaired the subsequent assembly of the biofilm matrix. We demonstrated that elimination of the extracellular matrix rendered the drug-resistant biofilm communities susceptible to fungal killing by turbinmicin. Furthermore, the addition of turbinmicin to otherwise ineffective antifungal therapy potentiated the activity of these drugs. The underlying role of vesicles explains this dramatic activity and was supported by phenotype reversal with the addition of exogenous biofilm EVs. This striking capacity to cripple biofilm assembly mechanisms reveals a new approach to eradicating biofilms and sheds light on turbinmicin as a promising anti-biofilm drug.

Authors

Miao Zhao, Fan Zhang, Robert Zarnowski, Kenneth Barns, Ryley Jones, Jen Fossen, Hiram Sanchez, Scott R. Rajski, Anjon Audhya, Tim S. Bugni, David R. Andes

×

SARS-CoV-2–specific CD8+ T cell responses in convalescent COVID-19 individuals
Hassen Kared, … , Aaron A.R. Tobian, Thomas C. Quinn
Hassen Kared, … , Aaron A.R. Tobian, Thomas C. Quinn
Published January 11, 2021
Citation Information: J Clin Invest. 2021;131(5):e145476. https://doi.org/10.1172/JCI145476.
View: Text | PDF

SARS-CoV-2–specific CD8+ T cell responses in convalescent COVID-19 individuals

  • Text
  • PDF
Abstract

Characterization of the T cell response in individuals who recover from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is critical to understanding its contribution to protective immunity. A multiplexed peptide-MHC tetramer approach was used to screen 408 SARS-CoV-2 candidate epitopes for CD8+ T cell recognition in a cross-sectional sample of 30 coronavirus disease 2019 convalescent individuals. T cells were evaluated using a 28-marker phenotypic panel, and findings were modelled against time from diagnosis and from humoral and inflammatory responses. There were 132 SARS-CoV-2–specific CD8+ T cell responses detected across 6 different HLAs, corresponding to 52 unique epitope reactivities. CD8+ T cell responses were detected in almost all convalescent individuals and were directed against several structural and nonstructural target epitopes from the entire SARS-CoV-2 proteome. A unique phenotype for SARS-CoV-2–specific T cells was observed that was distinct from other common virus-specific T cells detected in the same cross-sectional sample and characterized by early differentiation kinetics. Modelling demonstrated a coordinated and dynamic immune response characterized by a decrease in inflammation, increase in neutralizing antibody titer, and differentiation of a specific CD8+ T cell response. Overall, T cells exhibited distinct differentiation into stem cell and transitional memory states (subsets), which may be key to developing durable protection.

Authors

Hassen Kared, Andrew D. Redd, Evan M. Bloch, Tania S. Bonny, Hermi Sumatoh, Faris Kairi, Daniel Carbajo, Brian Abel, Evan W. Newell, Maria P. Bettinotti, Sarah E. Benner, Eshan U. Patel, Kirsten Littlefield, Oliver Laeyendecker, Shmuel Shoham, David Sullivan, Arturo Casadevall, Andrew Pekosz, Alessandra Nardin, Michael Fehlings, Aaron A.R. Tobian, Thomas C. Quinn

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts