Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

Articles in this category appear as authors submitted them for publication, prior to copyediting and publication layout.
Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl co-transporter and reduces blood pressure
Consumption of low dietary potassium, common with ultra-processed foods, activates the thiazide-sensitive sodium chloride cotransporter (NCC) via the WNK-SPAK kinase pathway to induce salt...
Published September 7, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI158498.
View: Text | PDF
Research In-Press Preview Nephrology

Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl co-transporter and reduces blood pressure

  • Text
  • PDF
Abstract

Consumption of low dietary potassium, common with ultra-processed foods, activates the thiazide-sensitive sodium chloride cotransporter (NCC) via the WNK-SPAK kinase pathway to induce salt retention and elevate blood pressure (BP). However, it remains unclear how high potassium “DASH-like” diets inactivate the cotransporter and whether this decreases BP. A transcriptomic screen identified Ppp1C⍺, encoding PP1A, as a potassium up-regulated gene, and its negative regulator, Ppp1r1a, as a potassium-suppressed gene in the kidney. PP1A directly binds to and dephosphorylates NCC when extracellular potassium is elevated. Using mice genetically engineered to constitutively activate the NCC-regulatory kinase SPAK and thereby eliminate the effects of the WNK-SPAK kinase cascade, we confirmed that PP1A dephosphorylates NCC directly in a potassium-regulated manner. Prior adaptation to a high potassium diet was required to maximally dephosphorylate NCC and lower BP in the constitutively active SPAK mice, and this was associated with potassium-dependent suppression of Ppp1r1a, and dephosphorylation of its cognate protein, Inhibitory Subunit 1 (I1). In conclusion, potassium-dependent activation of PP1A and inhibition of I1 drives NCC dephosphorylation, providing a mechanism to explain how high dietary K+ lowers BP. Shifting signaling of PP1A in favor of activation of WNK-SPAK may provide an improved therapeutic approach for treating salt-sensitive hypertension.

Authors

Paul Richard Grimm, Anamaria Tatomir, Lena L. Rosenbaek, Bo Young Kim, Dimin Li, Eric J. Delpire, Robert A. Fenton, Paul A. Welling

×

Vaccine effectiveness of BNT162b2 mRNA Covid-19 vaccine in children under 5 years
Published September 5, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI173329.
View: Text | PDF
Research Letter In-Press Preview Infectious disease

Vaccine effectiveness of BNT162b2 mRNA Covid-19 vaccine in children under 5 years

  • Text
  • PDF
Abstract

Authors

Christoph Strumann, Otavio T. Ranzani, Jeanne Moor, Reinhard Berner, Nicole Toepfner, Cho-Ming Chao, Matthias B. Moor

×

Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation
Identifying branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of propionyl-CoA that are utilized for histone propionylation and, thereby,...
Published September 5, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI169399.
View: Text | PDF
Research In-Press Preview Cardiology Metabolism

Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation

  • Text
  • PDF
Abstract

Identifying branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of propionyl-CoA that are utilized for histone propionylation and, thereby, regulate gene expression. To investigate the effects of BCAA on the development of cardiac hypertrophy and failure, we applied pressure overload on the heart in mice maintained on a diet with standard levels of BCAA (BCAA-control) versus a BCAA-free diet. The former was associated with an increase in histone H3K23-propionyl (H3K23Pr) at the promoters of upregulated genes [e.g., cell signaling and extracellular matrix genes] and a decrease at the promoters of downregulated genes [e.g., electron transfer complex (ETC I-V) and metabolic genes]. Intriguingly, the BCAA-free diet tempered the increases in promoter-H3K23Pr, thus, reducing collagen gene expression and fibrosis during cardiac hypertrophy. Conversely, the BCAA-free diet inhibited the reductions in promoter-H3K23Pr and abolished the downregulation of ETC I-V subunits, enhanced mitochondrial respiration, and curbed progression of cardiac hypertrophy. Thus, lowering the intake of BCAA reduces pressure overload-induced changes in histone propionylation-dependent gene expression in the heart, which retards the development of cardiomyopathy.

Authors

Zhi Yang, Minzhen He, Julianne Austin, Danish Sayed, Maha Abdellatif

×

Antioxidants stimulate BACH1-dependent tumor angiogenesis
Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs); but growing evidence indicate that...
Published August 31, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI169671.
View: Text | PDF
Research In-Press Preview Angiogenesis

Antioxidants stimulate BACH1-dependent tumor angiogenesis

  • Text
  • PDF
Abstract

Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs); but growing evidence indicate that transcriptional programs beyond HIFs control tumor angiogenesis. Here we show that the redox-sensitive transcription factor BTB and CNC homology 1 (BACH1) controls the transcription of a broad range of angiogenesis genes. BACH1 is stabilized by lowering reactive oxygen species levels; consequently, angiogenesis gene expression in lung cancer cells, tumor organoids, and xenograft tumors increased substantially following vitamin C and E and N-acetylcysteine administration in a BACH1-dependent fashion under normoxia. Moreover, angiogenesis gene expression increased in endogenous BACH1–overexpressing cells and decreased in BACH1-knockouts in the absence of antioxidants. BACH1 levels also increased upon hypoxia and following administration of prolyl hydroxylase inhibitors in both HIF1a-knockout and wild-type cells. BACH1 was found to be a transcriptional target of HIF1α but BACH1’s ability to stimulate angiogenesis gene expression was HIF1a independent. Antioxidants increased tumor vascularity in vivo in a BACH1-dependent fashion, and overexpressing BACH1 rendered tumors sensitive to anti-angiogenesis therapy. BACH1 expression in tumor sections from lung cancer patients correlates with angiogenesis gene and protein expression. We conclude that BACH1 is an oxygen- and redox-sensitive angiogenesis transcription factor.

Authors

Ting Wang, Yongqiang Dong, Zhiqiang Huang, Guoqing Zhang, Ying Zhao, Haidong Yao, Jianjiang Hu, Elin Tüksammel, Huan Cai, Ning Liang, Xiufeng Xu, Xijie Yang, Sarah Schmidt, Xi Qiao, Susanne Schlisio, Staffan Strömblad, Hong Qian, Changtao Jiang, Eckardt Treuter, Martin O. Bergo

×

Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and anti-tumor immunity through eNOS/Src
Endothelial phospholipase Cγ (PLCγ) is essential for vascular development, however, its role in healthy, mature or pathological vessels is unexplored. PLCγ was prominently expressed in vessels of...
Published August 31, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI161366.
View: Text | PDF
Research In-Press Preview Oncology Vascular biology

Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and anti-tumor immunity through eNOS/Src

  • Text
  • PDF
Abstract

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development, however, its role in healthy, mature or pathological vessels is unexplored. PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2+/Y1173F mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B-cells, CD4+ and regulatory T-cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS, and suppressed vascular leakage. Thus, we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier resulting in loss of anti-tumor immunity.

Authors

Elin Sjöberg, Marit Melssen, Mark Richards, Yindi Ding, Catarina Chanoca, Dongying Chen, Emmanuel Nwadozi, Sagnik Pal, Dominic T. Love, Takeshi Ninchoji, Masabumi Shibuya, Michael Simons, Anna Dimberg, Lena Claesson-Welsh

×

Theranostic gold-in-gold cage nanoparticles enable photothermal ablation and photoacoustic imaging in biofilm-associated infection models
Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including...
Published August 31, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI168485.
View: Text | PDF
Research In-Press Preview Infectious disease

Theranostic gold-in-gold cage nanoparticles enable photothermal ablation and photoacoustic imaging in biofilm-associated infection models

  • Text
  • PDF
Abstract

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.

Authors

Maryam Hajfathalian, Christiaan R. de Vries, Jessica C. Hsu, Ahmad Amirshaghaghi, Yuxi C. Dong, Zhi Ren, Yuan Liu, Yue Huang, Yong Li, Simon A.B. Knight, Pallavi Jonnalagadda, Aimen Zlitni, Elizabeth A. Grice, Paul L. Bollyky, Hyun Koo, David P. Cormode

×

Targeting TREM1 augments antitumor T-cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance
The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most...
Published August 31, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI167951.
View: Text | PDF
Research In-Press Preview Oncology

Targeting TREM1 augments antitumor T-cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance

  • Text
  • PDF
Abstract

The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most solid tumors. We examined whether loss of TREM1 signaling can abrogate immunosuppressive TME and enhance cancer immunity. To investigate the therapeutic potential of TREM1 in cancer, we used mice deficient in Trem1 and developed a novel small molecule TREM1 inhibitor, VJDT. We demonstrated that genetic or pharmacological TREM1 silencing significantly delayed tumor growth in murine melanoma (B16F10) and fibrosarcoma (MCA205) models. Single-cell RNA-seq combined with functional assays during TREM1 deficiency revealed decreased immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs) accompanied by expansion in cytotoxic CD8+ T cells and increased PD-1 expression. Furthermore, TREM1 inhibition enhanced antitumorigenic effect of anti-PD-1 treatment in part by limiting MDSC frequency and abrogating T cell exhaustion. In melanoma patient-derived xenograft tumors, treatment with VJDT downregulated key oncogenic signaling pathways involved in cell proliferation, migration, and survival. Our work highlights the role in cancer progression of TREM1 expressed intrinsically in cancer cells and extrinsically in TME. Thus, targeting TREM1 to modify an immunosuppressive TME and improve efficacy of immune checkpoint therapy represents a promising therapeutic approach in cancer.

Authors

Ashwin Ajith, Kenza Mamouni, Daniel D. Horuzsko, Abu Musa, Amiran K. Dzutsev, Jennifer R. Fang, Ahmed Chadli, Xingguo Zhu, Iryna Lebedyeva, Giorgio Trinchieri, Anatolij Horuzsko

×

Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children (MIS-C)
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2...
Published August 31, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI171729.
View: Text | PDF | Corrigendum
Research In-Press Preview Infectious disease Inflammation

Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children (MIS-C)

  • Text
  • PDF
Abstract

Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomic analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared to pediatric healthy controls (pHC) and pCOVID-19, MIS-C patients had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and non-hematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Non-hematopoietic tissue cfDNA levels demonstrated significant inter-individual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the innate immune cells cfDNA in MIS-C correlated with levels of innate immune inflammatory cytokines and non-hematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for multi-system pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multi-organ inflammatory conditions.

Authors

Temesgen E. Andargie, Katerina Roznik, Neelam R. Redekar, Tom Hill, Weiqiang Zhou, Zainab Apalara, Hyesik Kong, Oren Gordon, Rohan Meda, Woojin Park, Trevor S. Johnston, Yi Wang, Sheila Brady, Hongkai Ji, Jack A. Yanovski, Moon Kyoo Jang, Clarence M. Lee, Andrew H. Karaba, Andrea L. Cox, Sean Agbor-Enoh

×

Effects of AFQ056 on language learning in fragile X syndrome
BACKGROUND. FXLEARN, the first-ever large multi-site trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a new paradigm for measuring effects of...
Published August 31, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI171723.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Neuroscience

Effects of AFQ056 on language learning in fragile X syndrome

  • Text
  • PDF
Abstract

BACKGROUND. FXLEARN, the first-ever large multi-site trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a new paradigm for measuring effects of mechanism-targeted treatment in fragile X syndrome (FXS). In FXLEARN, the effects of mGluR5 negative allosteric modulator (NAM) AFQ056 on language learning were evaluated in 3-6 year-old children with FXS, expected to have more learning plasticity than adults, where prior trials of mGluR5 NAMs have failed. METHODS. After a 4-month single-blind placebo lead-in, participants were randomized 1:1 to AFQ056 or placebo, with 2 months of dose optimization to the maximum tolerated dose, then 6 months of treatment during which a language learning intervention was implemented for both groups. The primary outcome was a centrally scored videotaped communication measure, the Weighted Communication Scale (WCS). Secondary outcomes were objective performance-based and parent-report cognitive and language measures. RESULTS. FXLEARN enrolled 110 participants, randomized 99, and 91 completed the placebo-controlled period. Although both groups made language progress and there were no safety issues, the change in WCS score during the placebo-controlled period was not significantly different between the AFQ056 and placebo-treated groups, nor were there any significant between-group differences in change in any secondary measures. CONCLUSION. Despite the large body of evidence supporting use of mGluR5 NAMs in animal models of FXS, this study suggests that this mechanism of action does not translate into benefit for the human FXS population and that better strategies are needed to determine which mechanisms will translate from pre-clinical models to humans in genetic neurodevelopmental disorders. TRIAL REGISTRATION. ClincalTrials.gov NCT02920892 FUNDING. This study was supported by NeuroNEXT network NIH grants U01NS096767, U24NS107200, U24NS107209, U01NS077323, U24NS107183, U24NS107168, U24NS107128, U24NS107199, U24NS107198, U24NS107166, U10NS077368, U01NS077366, U24NS107205, U01NS077179, and U01NS077352, NIH grant P50HD103526 and Novartis IIT grant AFQ056X2201T for provision of AFQ056.

Authors

Elizabeth Berry-Kravis, Leonard Abbeduto, Randi Hagerman, Christopher S. Coffey, Merit Cudkowicz, Craig A. Erickson, Andrea McDuffie, David Hessl, Lauren E. Ethridge, Flora Tassone, Walter E. Kaufmann, Katherine Friedmann, Lauren Bullard, Anne Hoffmann, Jeremy Veenstra-VanderWeele, Kevin Staley, David Klements, Michael Moshinsky, Brittney Harkey, Jeffrey D. Long, Janel Fedler, Elizabeth Klingner, Dixie J. Ecklund, Michele Costigan, Trevis Huff, Brenda Pearson

×

Posttranslational ISGylation of NLRP3 by HERCs enzymes facilitates inflammasome activation in models of inflammation
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system that initiates inflammatory responses. Post-translational modifications...
Published August 31, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI161935.
View: Text | PDF
Research In-Press Preview Immunology Inflammation

Posttranslational ISGylation of NLRP3 by HERCs enzymes facilitates inflammasome activation in models of inflammation

  • Text
  • PDF
Abstract

The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system that initiates inflammatory responses. Post-translational modifications (PTMs) of NLRP3, including ubiquitination and phosphorylation, control inflammasome activation and determine the intensity of inflammation. However, the role of other PTMs in controlling NLRP3 inflammasome activation remains unclear. This study founded that toll-like receptor (TLR) priming induced NLRP3 ISGylation (a type of PTM in which ISG15 covalently binds to the target protein) to stabilise the NLRP3 protein. Viral infection, represented by SARS-COV-2 infection, and type I IFNs induced the expression of ISG15 and the predominant E3 ISGylation ligases HECT domain- and RCC1-like domain-containing proteins (HERCs; HERC5 in humans and HERC6 in mice). HERCs promoted NLRP3 ISGylation and inhibited K48-linked ubiquitination and proteasomal degradation, resulting in the enhancement of NLRP3 inflammasome activation. Concordantly, Herc6 deficiency ameliorated NLRP3-dependent inflammation, and hyperinflammation caused by viral infection. These results illustrate the mechanism by which type I IFNs responses control inflammasome activation and viral infection-induced aberrant NLRP3 activation. This work identifies ISGylation as a PTM of NLRP3 and provides a priming target for modulating NLRP3-dependent immunopathology.

Authors

Ying Qin, Xintong Meng, Mengge Wang, Wenbo Liang, Rong Xu, Jingchunyu Chen, Hui Song, Yue Fu, Jingxin Li, Chengjiang Gao, Mutian Jia, Chunyuan Zhao, Wei Zhao

×

Patient-derived Enteroids provide a Platform for the Development of Therapeutic Approaches in Microvillus Inclusion Disease
Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and...
Published August 29, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI169234.
View: Text | PDF
Research In-Press Preview Gastroenterology

Patient-derived Enteroids provide a Platform for the Development of Therapeutic Approaches in Microvillus Inclusion Disease

  • Text
  • PDF
Abstract

Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid-base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex Immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking anti-diarrheal drug, Crofelemer, dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. Gamma-secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum- and glucocorticoid-induced protein kinase 2 (SGK2), and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.

Authors

Meri Kalashyan, Krishnan Raghunathan, Haley Oller, Marie-Theres Bayer, Lissette Jimenez, Joseph T. Roland, Elena Kolobova, Susan J. Hagen, Jeffrey D. Goldsmith, Mitchell D. Shub, James R. Goldenring, Izumi Kaji, Jay R. Thiagarajah

×

The CTBP2-PCIF1 complex regulates m6Am modification of mRNA in head and neck squamous cell carcinoma
PCIF1 can mediate the methylation of N6,2′-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remains...
Published August 29, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI170173.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

The CTBP2-PCIF1 complex regulates m6Am modification of mRNA in head and neck squamous cell carcinoma

  • Text
  • PDF
Abstract

PCIF1 can mediate the methylation of N6,2′-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remains elusive. Here, we demonstrated that PCIF1-mediated cap mRNA m6Am modification promoted head and neck squamous cell carcinoma (HNSCC) progression both in vitro and in vivo. CTBP2 was identified as a cofactor of PCIF1 to catalyze m6Am deposition on mRNA. CLIP-seq data demonstrated CTBP2 bound to similar mRNAs as PCIF1. We then utilized m6Am-seq method to profile mRNA m6Am site at single-base resolution and found mRNA of TET2, a well-known tumor suppressor, was a major target substrate of PCIF1-CTBP2 complex. Mechanistically, knockout of CTBP2 reduced PCIF1 occupancy on TET2 mRNA and PCIF1-CTBP2 complex negatively regulated the translation of TET2 mRNA. Collectively, our study demonstrated the oncogenic function of the epitranscriptome regulator PCIF1-CTBP2 complex, highlighting the importance of the m6Am modification in tumor progression.

Authors

Kang Li, Jie Chen, Caihua Zhang, Maosheng Cheng, Shuang Chen, Wei Song, Chunlong Yang, Rongsong Ling, Zhi Chen, Xiaocheng Wang, Gan Xiong, Jieyi Ma, Yan Zhu, Quan Yuan, Qi Liu, Liang Peng, Qianming Chen, Demeng Chen

×

Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis
The gastrointestinal tract relies on the production, maturation, and transit of mucin to protect against pathogens and to lubricate the epithelial lining. Although the molecular and cellular...
Published August 29, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI163591.
View: Text | PDF
Research In-Press Preview Gastroenterology

Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis

  • Text
  • PDF
Abstract

The gastrointestinal tract relies on the production, maturation, and transit of mucin to protect against pathogens and to lubricate the epithelial lining. Although the molecular and cellular mechanisms that regulate mucin production and movement are beginning to be understood, the upstream epithelial signals that contribute to mucin regulation remain unclear. Here, we report that the inflammatory cytokine tumor necrosis factor (TNF), generated by the epithelium, contributes to mucin homeostasis by regulating both cell differentiation and cystic fibrosis transmembrane conductance regulator (CFTR) activity. We used genetic mouse models and non-inflamed samples from Inflammatory Bowel Disease (IBD) patients undergoing anti-TNF therapy to assess the effect of in vivo perturbation of TNF. We found that inhibition of epithelial TNF promotes the differentiation of secretory progenitor cells into mucus-producing goblet cells. Furthermore, TNF treatment and CFTR inhibition in intestinal organoids demonstrated that TNF promotes ion transport and luminal flow via CFTR. The absence of TNF led to slower gut transit times, which we propose results from increased mucus accumulation coupled with decreased luminal fluid pumping. These findings point to a TNF-CFTR signaling axis in the adult intestine and identify epithelial-derived TNF as an upstream regulator of mucin homeostasis.

Authors

Efren A. Reyes, David Castillo-Azofeifa, Jérémie Rispal, Tomas Wald, Rachel K. Zwick, Brisa Palikuqi, Angela Mujukian, Shervin Rabizadeh, Alexander R. Gupta, James M. Gardner, Dario Boffelli, Zev J. Gartner, Ophir D. Klein

×

Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients
Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without...
Published August 24, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI170341.
View: Text | PDF
Research In-Press Preview Nephrology

Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients

  • Text
  • PDF
Abstract

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from Chronic Renal Insufficiency Cohort (CRIC), Singapore Study of Macro-Angiopathy and Reactivity in Type 2 Diabetes (SMART2D), and the Pima Indian Study determined if urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in CRIC (HR 1.57, 1.18, 2.10) and SMART2D (HR 1.77, 1.00, 3.12). ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in CRIC (HR 2.36, 1.26, 4.39), SMART2D (HR 2.39, 1.08, 5.29), and Pima Indian study (HR 4.57, CI 1.37-13.34). Empagliflozin lowered UAdCR in non-macroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology and transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mammalian target of rapamycin (mTOR). Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.

Authors

Kumar Sharma, Guanshi Zhang, Jens Hansen, Petter Bjornstad, Hak Joo Lee, Rajasree Menon, Leila Hejazi, Jian-Jun Liu, Anthony Franzone, Helen C. Looker, Byeong Yeob Choi, Roman Fernandez, Manjeri A. Venkatachalam, Luxcia Kugathasan, Vikas S. Sridhar, Loki Natarajan, Jing Zhang, Varun S. Sharma, Brian Kwan, Sushrut S. Waikar, Jonathan Himmelfarb, Katherine R. Tuttle, Bryan Kestenbaum, Tobias Fuhrer, Harold Feldman, Ian H. de Boer, Fabio C. Tucci, John Sedor, Hiddo Lambers Heerspink, Jennifer Schaub, Edgar A. Otto, Jeffrey B. Hodgin, Matthias Kretzler, Christopher R. Anderton, Theodore Alexandrov, David Cherney, Su Chi Lim, Robert G. Nelson, Jonathan Gelfond, Ravi Iyengar

×

Peroxisome disruption alters lipid metabolism and potentiates anti-tumor response with MAPK-targeted therapy in melanoma
Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma...
Published August 24, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI166644.
View: Text | PDF
Research In-Press Preview Oncology

Peroxisome disruption alters lipid metabolism and potentiates anti-tumor response with MAPK-targeted therapy in melanoma

  • Text
  • PDF
Abstract

Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK-pathway inhibitors (MAPKi) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the pro-apoptotic effects of MAPKi via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism. Co-targeting PEX3 and UGCG selectively eliminated a subset of metabolically active, drug-tolerant CD36+ melanoma persister cells, thereby sensitizing melanoma to MAPKi and delaying resistance. Increased levels of peroxisomal genes and UGCG were found in patient-derived MAPKi-relapsed melanomas, and simultaneously inhibiting PEX3 and UGCG restored MAPKi sensitivity in multiple models of therapy resistance. Finally, combination therapy comprised of a newly identified inhibitor of the PEX3-PEX19 interaction, a UGCG inhibitor and MAPKi demonstrated potent anti-tumor activity in pre-clinical melanoma models, thus representing a promising approach for melanoma treatment.

Authors

Fan Huang, Feiyang Cai, Michael S. Dahabieh, Kshemaka Gunawardena, Ali Talebi, Jonas Dehairs, Farah El-Turk‬, Jae Yeon Park, Mengqi Li, Christophe Goncalves, Natascha Gagnon, Jie Su, Judith H. LaPierre, Perrine Gaub, Jean-Sébastien Joyal, John J. Mitchell, Johannes V. Swinnen, Wilson H. Miller Jr., Sonia V. del Rincón

×

A systematic analysis of the human immune response to Plasmodium vivax
BACKGROUND. The biology of Plasmodium vivax is markedly different to that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we...
Published August 24, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI152463.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Immunology Infectious disease

A systematic analysis of the human immune response to Plasmodium vivax

  • Text
  • PDF
Abstract

BACKGROUND. The biology of Plasmodium vivax is markedly different to that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence. METHODS. Participants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real-time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA-sequencing and Cytometry by Time Of Flight (CyTOF), and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous datasets derived from prior controlled human malaria infection studies. RESULTS.P. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein level) leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation was significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease. CONCLUSION.P. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease. TRIAL REGISTRATION. ClinicalTrials.gov NCT03797989 FUNDING. Supported by the European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust and the Royal Society.

Authors

Florian A. Bach, Diana Muñoz Sandoval, Michalina Mazurczyk, Yrene Themistocleous, Thomas A. Rawlinson, Adam C. Harding, Alison Kemp, Sarah E. Silk, Jordan R. Barrett, Nick J. Edwards, Alasdair C. Ivens, Julian C. Rayner, Angela M. Minassian, Giorgio Napolitani, Simon J. Draper, Philip J. Spence

×

HDAC11 inhibition triggers bimodal thermogenic pathways to circumvent adipocyte catecholamine resistance
Stimulation of adipocyte beta-adrenergic receptors (beta-ARs) induces expression of uncoupling protein 1 (UCP1), promoting non-shivering thermogenesis. Association of beta-ARs with a lysine...
Published August 22, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI168192.
View: Text | PDF
Research In-Press Preview Metabolism

HDAC11 inhibition triggers bimodal thermogenic pathways to circumvent adipocyte catecholamine resistance

  • Text
  • PDF
Abstract

Stimulation of adipocyte beta-adrenergic receptors (beta-ARs) induces expression of uncoupling protein 1 (UCP1), promoting non-shivering thermogenesis. Association of beta-ARs with a lysine myristoylated form of A-kinase anchoring protein 12 (AKAP12)/gravin-alpha is required for downstream signaling that culminates in UCP1 induction. Conversely, demyristoylation of gravin-alpha by histone deacetylase 11 (HDAC11) suppresses this pathway. Whether inhibition of HDAC11 in adipocytes is sufficient to drive UCP1 expression independently of beta-ARs is not known. Here, we demonstrate that adipocyte-specific deletion of HDAC11 in mice leads to robust induction of UCP1 in adipose tissue (AT), resulting in increased body temperature. These effects are mimicked by treating mice in vivo or human AT ex vivo with an HDAC11-selective inhibitor, FT895. FT895 triggers biphasic, gravin-alpha myristoylation-dependent induction of UCP1 protein expression, with a non-canonical acute response that is post-transcriptional and independent of protein kinase A (PKA), and a delayed response requiring PKA activity and new Ucp1 mRNA synthesis. Remarkably, HDAC11 inhibition promotes UCP1 expression even in models of adipocyte catecholamine resistance where beta-AR signaling is blocked. These findings define cell autonomous, multi-modal roles for HDAC11 as a suppressor of thermogenesis, and highlight the potential of inhibiting HDAC11 to therapeutically alter AT phenotype independently of beta-AR stimulation.

Authors

Emma L. Robinson, Rushita Bagchi, Jennifer L. Major, Bryan C. Bergman, Jennifer L. Matsuda, Timothy A. McKinsey

×

Repression of rRNA gene transcription by endothelial SPEN deficiency normalizes tumor vasculature via nucleolar stress
Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and dampens most current therapies, but the underlying mechanism has been unclear. Here we show that SPEN (split...
Published August 22, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI159860.
View: Text | PDF
Research In-Press Preview Vascular biology

Repression of rRNA gene transcription by endothelial SPEN deficiency normalizes tumor vasculature via nucleolar stress

  • Text
  • PDF
Abstract

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and dampens most current therapies, but the underlying mechanism has been unclear. Here we show that SPEN (split end), a transcription repressor, coordinates ribosome RNA (rRNA) synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating the noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, low endothelial SPEN level correlated with extended overall survival. Consistently in mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, which was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization, and combining CX-5461 with cisplatin substantially improved the efficacy on treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis, and that RNPI represents a target for tumor vessel normalization therapy of cancer.

Authors

Zi-Yan Yang, Xian-Chun Yan, Jia-Yu-Lin Zhang, Liang Liang, Chun-Chen Gao, Pei-Ran Zhang, Yuan Liu, Jia-Xing Sun, Bai Ruan, Juan-Li Duan, Ruo-Nan Wang, Xing-Xing Feng, Bo Che, Tian Xiao, Hua Han

×

Phenotype screens of murine pancreatic cancer identify a Tgfa-Ccl2-paxillin axis driving human-like neural invasion
Solid cancers like pancreatic cancer (PDAC) frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modelled in...
Published August 22, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI166333.
View: Text | PDF
Research In-Press Preview Oncology

Phenotype screens of murine pancreatic cancer identify a Tgfa-Ccl2-paxillin axis driving human-like neural invasion

  • Text
  • PDF
Abstract

Solid cancers like pancreatic cancer (PDAC) frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modelled in genetically-engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe’s largest repository of GEMM of PDAC comprising 295 different genotypes. This phenotype screen uncovered two GEMM of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming-growth-factor-alpha (TGFa) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGFa upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI, and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGFa-expression constituted strong prognostic factors. Therefore, TGFa-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.

Authors

Xiaobo Wang, Rouzanna Istvanffy, Linhan Ye, Steffen Teller, Melanie Laschinger, Kalliope N. Diakopoulos, Kıvanç Görgülü, Qiaolin Li, Lei Ren, Carsten Jäger, Katja Steiger, Alexander Muckenhuber, Baiba Vilne, Kaan Çifcibaşı, Carmen Mota Reyes, Ümmügülsüm Yurteri, Maximilian Kießler, Ibrahim H. Gürçınar, Maya M. Sugden, Saliha Elif Yıldızhan, Osman Ugur Sezerman, Sümeyye Çilingir, Güldal Süyen, Maximilian Reichert, Roland M. Schmid, Stefanie Bärthel, Rupert Öllinger, Achim Krüger, Roland Rad, Dieter Saur, Hana Algül, Helmut Friess, Marina Lesina, Güralp Onur Ceyhan, Ihsan Ekin Demir

×

Somatic rearrangements causing oncogenic ectodomain deletions of FGFR1 in squamous cell lung cancer
The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only...
Published August 22, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI170217.
View: Text | PDF
Research In-Press Preview Genetics Oncology

Somatic rearrangements causing oncogenic ectodomain deletions of FGFR1 in squamous cell lung cancer

  • Text
  • PDF
Abstract

The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only 11% of patients with 8p11 amplification (detected by FISH) responded to FGFR kinase inhibitor treatment. To understand the mechanism of FGFR1 dependency, we performed deep genomic characterization of 52 squamous cell lung carcinomas with 8p11-p12-amplification, including 10 tumors obtained from patients who had been treated with FGFR inhibitors. We discovered somatically altered variants of FGFR1 with deletion of exons 1-8 that resulted from intragenic tail-to-tail rearrangements. These ectodomain-deficient FGFR1 variants (ΔEC-FGFR1) were expressed in the affected tumors and tumorigenic in in-vitro and in-vivo. Mechanistically, Breakage-Fusion-Bridges were the source of 8p11-p12 amplification, resulting from frequent head-to-head and tail-to-tail rearrangements. However, only tumors with tail-to-tail rearrangements within or in close proximity upstream of FGFR1 exhibited FGFR1 dependency. Thus, the genomic events shaping the architecture of the 8p11-p12 amplicon provide a mechanistic explanation for the emergence of FGFR1-driven squamous cell lung cancer. Specifically, FGFR1 ectodomain deficient and FGFR1-centered amplifications caused by tail-to-tail rearrangements are novel somatic genomic event, which might be predictive of therapeutically relevant FGFR1 dependency.

Authors

Florian Malchers, Lucia Nogova, Martijn H. van Attekum, Lukas Maas, Johannes Brägelmann, Christoph Bartenhagen, Luc Girard, Graziella Bosco, Ilona Dahmen, Sebastian Michels, Clare E. Weeden, Andreas H. Scheel, Lydia Meder, Kristina Golfmann, Philipp Schuldt, Janna Siemanowski, Jan Rehker, Sabine Merkelbach-Bruse, Roopika Menon, Oliver Gautschi, Johannes M. Heuckmann, Elisabeth Brambilla, Marie-Liesse Asselin-Labat, Thorsten Persigehl, John D. Minna, Henning Walczak, Roland T. Ullrich, Matthias Fischer, Hans Christian Reinhardt, Juergen Wolf, Reinhard Büttner, Martin Peifer, Julie George, Roman K. Thomas

×

← Previous 1 2 … 29 30 31 … 104 105 Next →


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts