Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published April 3, 2017 Previous issue | Next issue

  • Volume 127, Issue 4
Go to section:
  • Conversations with Giants in Medicine
  • News
  • Review Series
  • Commentaries
  • Research Articles
  • Corrigendum

On the cover: Prostaglandins drive pain aversion

Singh et al. identify a prostaglandin-driven neural circuit driving aversion in response to inflammatory pain. The cover image is a confocal micrograph showing cell-type–specific expression of Cre (green) and tryptophan hydroxylase, which is selectively expressed in serotonergic cells (purple), in the dorsal raphe nucleus of Sert-Cre mice.

Conversations with Giants in Medicine
A conversation with Stuart Orkin
Ushma S. Neill
Ushma S. Neill
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1119-1120. https://doi.org/10.1172/JCI93915.
View: Text | PDF

A conversation with Stuart Orkin

  • Text
  • PDF
Abstract

Authors

Ushma S. Neill

×
News
Immunologist James E. Crowe is selected for 2017 ASCI/Korsmeyer Award
Sarah Jackson
Sarah Jackson
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1121-1122. https://doi.org/10.1172/JCI93171.
View: Text | PDF

Immunologist James E. Crowe is selected for 2017 ASCI/Korsmeyer Award

  • Text
  • PDF
Abstract

Authors

Sarah Jackson

×
Review Series
Maturing of the nuclear receptor family
Mitchell A. Lazar
Mitchell A. Lazar
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1123-1125. https://doi.org/10.1172/JCI92949.
View: Text | PDF

Maturing of the nuclear receptor family

  • Text
  • PDF
Abstract

Members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors play important roles in reproduction, development, and physiology. In humans, genetic mutations in NRs are causes of rare diseases, while hormones and drugs that target NRs are in widespread therapeutic use. The present issue of the JCI includes a series of Review articles focused on specific NRs and their wide range of biological functions. Here I reflect on the past, present, and potential future highlights of research on the NR superfamily.

Authors

Mitchell A. Lazar

×

Role of steroid receptor and coregulator mutations in hormone-dependent cancers
Anna C. Groner, Myles Brown
Anna C. Groner, Myles Brown
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1126-1135. https://doi.org/10.1172/JCI88885.
View: Text | PDF

Role of steroid receptor and coregulator mutations in hormone-dependent cancers

  • Text
  • PDF
Abstract

Steroid hormones mediate critical lineage-specific developmental and physiologic responses. They function by binding their cognate receptors, which are transcription factors that drive specific gene expression programs. The requirement of most prostate cancers for androgen and most breast cancers for estrogen has led to the development of endocrine therapies that block the action of these hormones in these tumors. While initial endocrine interventions are successful, resistance to therapy often arises. We will review how steroid receptor–dependent genomic signaling is affected by genetic alterations in endocrine therapy resistance. The detailed understanding of these interactions will not only provide improved treatment options to overcome resistance, but, in the future, will also be the basis for implementing precision cancer medicine approaches.

Authors

Anna C. Groner, Myles Brown

×

Glucocorticoid receptors: finding the middle ground
Sofie J. Desmet, Karolien De Bosscher
Sofie J. Desmet, Karolien De Bosscher
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1136-1145. https://doi.org/10.1172/JCI88886.
View: Text | PDF

Glucocorticoid receptors: finding the middle ground

  • Text
  • PDF
Abstract

Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.

Authors

Sofie J. Desmet, Karolien De Bosscher

×

The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights
J. Wesley Pike, … , Melda Onal, Nancy A. Benkusky
J. Wesley Pike, … , Melda Onal, Nancy A. Benkusky
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1146-1154. https://doi.org/10.1172/JCI88887.
View: Text | PDF

The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights

  • Text
  • PDF
Abstract

The vitamin D receptor (VDR) is the single known regulatory mediator of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in higher vertebrates. It acts in the nucleus of vitamin D target cells to regulate the expression of genes whose products control diverse, cell type–specific biological functions that include mineral homeostasis. In this Review we describe progress that has been made in defining new cellular sites of action of this receptor, the mechanisms through which this mediator controls the expression of genes, the biology that ensues, and the translational impact of this receptor on human health and disease. We conclude with a brief discussion of what comes next in understanding vitamin D biology and the mechanisms that underlie its actions.

Authors

J. Wesley Pike, Mark B. Meyer, Seong-Min Lee, Melda Onal, Nancy A. Benkusky

×

Cardiac nuclear receptors: architects of mitochondrial structure and function
Rick B. Vega, Daniel P. Kelly
Rick B. Vega, Daniel P. Kelly
Published February 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1155-1164. https://doi.org/10.1172/JCI88888.
View: Text | PDF

Cardiac nuclear receptors: architects of mitochondrial structure and function

  • Text
  • PDF
Abstract

The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.

Authors

Rick B. Vega, Daniel P. Kelly

×

Nuclear receptors: emerging drug targets for parasitic diseases
Zhu Wang, … , Steven A. Kliewer, David J. Mangelsdorf
Zhu Wang, … , Steven A. Kliewer, David J. Mangelsdorf
Published February 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1165-1171. https://doi.org/10.1172/JCI88890.
View: Text | PDF

Nuclear receptors: emerging drug targets for parasitic diseases

  • Text
  • PDF
Abstract

Parasitic worms infect billions of people worldwide. Current treatments rely on a small group of drugs that have been used for decades. A shortcoming of these drugs is their inability to target the intractable infectious stage of the parasite. As well-known therapeutic targets in mammals, nuclear receptors have begun to be studied in parasitic worms, where they are widely distributed and play key roles in governing metabolic and developmental transcriptional networks. One such nuclear receptor is DAF-12, which is required for normal nematode development, including the all-important infectious stage. Here we review the emerging literature that implicates DAF-12 and potentially other nuclear receptors as novel anthelmintic targets.

Authors

Zhu Wang, Nathaniel E. Schaffer, Steven A. Kliewer, David J. Mangelsdorf

×

Brain nuclear receptors and body weight regulation
Yong Xu, … , Bert W. O’Malley, Joel K. Elmquist
Yong Xu, … , Bert W. O’Malley, Joel K. Elmquist
Published February 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1172-1180. https://doi.org/10.1172/JCI88891.
View: Text | PDF

Brain nuclear receptors and body weight regulation

  • Text
  • PDF
Abstract

Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects.

Authors

Yong Xu, Bert W. O’Malley, Joel K. Elmquist

×

Genetic disorders of nuclear receptors
John C. Achermann, … , Louise Fairall, Krishna Chatterjee
John C. Achermann, … , Louise Fairall, Krishna Chatterjee
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1181-1192. https://doi.org/10.1172/JCI88892.
View: Text | PDF

Genetic disorders of nuclear receptors

  • Text
  • PDF
Abstract

Following the first isolation of nuclear receptor (NR) genes, genetic disorders caused by NR gene mutations were initially discovered by a candidate gene approach based on their known roles in endocrine pathways and physiologic processes. Subsequently, the identification of disorders has been informed by phenotypes associated with gene disruption in animal models or by genetic linkage studies. More recently, whole exome sequencing has associated pathogenic genetic variants with unexpected, often multisystem, human phenotypes. To date, defects in 20 of 48 human NR genes have been associated with human disorders, with different mutations mediating phenotypes of varying severity or several distinct conditions being associated with different changes in the same gene. Studies of individuals with deleterious genetic variants can elucidate novel roles of human NRs, validating them as targets for drug development or providing new insights into structure-function relationships. Importantly, human genetic discoveries enable definitive disease diagnosis and can provide opportunities to therapeutically manage affected individuals. Here we review germline changes in human NR genes associated with “monogenic” conditions, including a discussion of the structural basis of mutations that cause distinctive changes in NR function and the molecular mechanisms mediating pathogenesis.

Authors

John C. Achermann, John Schwabe, Louise Fairall, Krishna Chatterjee

×

Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance
Geoffrey A. Preidis, … , Kang Ho Kim, David D. Moore
Geoffrey A. Preidis, … , Kang Ho Kim, David D. Moore
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1193-1201. https://doi.org/10.1172/JCI88893.
View: Text | PDF

Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance

  • Text
  • PDF
Abstract

The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

Authors

Geoffrey A. Preidis, Kang Ho Kim, David D. Moore

×

Distinct but complementary contributions of PPAR isotypes to energy homeostasis
Vanessa Dubois, … , Philippe Lefebvre, Bart Staels
Vanessa Dubois, … , Philippe Lefebvre, Bart Staels
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1202-1214. https://doi.org/10.1172/JCI88894.
View: Text | PDF

Distinct but complementary contributions of PPAR isotypes to energy homeostasis

  • Text
  • PDF
Abstract

Peroxisome proliferator–activated receptors (PPARs) regulate energy metabolism and hence are therapeutic targets in metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. While they share anti-inflammatory activities, the PPAR isotypes distinguish themselves by differential actions on lipid and glucose homeostasis. In this Review we discuss the complementary and distinct metabolic effects of the PPAR isotypes together with the underlying cellular and molecular mechanisms, as well as the synthetic PPAR ligands that are used in the clinic or under development. We highlight the potential of new PPAR ligands with improved efficacy and safety profiles in the treatment of complex metabolic disorders.

Authors

Vanessa Dubois, Jérôme Eeckhoute, Philippe Lefebvre, Bart Staels

×
Commentaries
T cells take directions from supporting cast in graft-versus-host disease
Derk Amsen
Derk Amsen
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1215-1217. https://doi.org/10.1172/JCI93552.
View: Text | PDF

T cells take directions from supporting cast in graft-versus-host disease

  • Text
  • PDF
Abstract

Allogeneic hematopoietic stem cell transplantation (HSCT) remains the only treatment option for several severe hematological malignancies. The development of graft-versus-host disease (GVHD) is a common complication of the procedure and results when donor T cells become activated against recipient-specific antigens. The factors that drive the alloreactive T cell response are not completely understood. In this issue of the JCI, Chung and colleagues present evidence that stromal cells within lymphoid tissue express the Notch ligands Delta-like 1/4 (DLL1 and DLL4), which in turn directly activate T cells. Importantly, inhibition of DLL1/DLL4-mediated Notch signaling in murine HSCT models dramatically reduced GVHD and improved graft survival.

Authors

Derk Amsen

×

Resisting fatal attraction: a glioma oncometabolite prevents CD8+ T cell recruitment
Liliana E. Lucca, David A. Hafler
Liliana E. Lucca, David A. Hafler
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1218-1220. https://doi.org/10.1172/JCI93565.
View: Text | PDF

Resisting fatal attraction: a glioma oncometabolite prevents CD8+ T cell recruitment

  • Text
  • PDF
Abstract

Immunotherapy has emerged as a potent approach for treating aggressive cancers, such as non–small-cell lung tumors and metastatic melanoma. Clinical trials are now in progress for patients with malignant gliomas; however, a better understanding of how these tumors escape immune surveillance is required to enhance antitumor immune responses. With gliomas, the recruitment of CD8+ T cells to the tumor is impaired, in part preventing containment or elimination of the tumor. In this issue of the JCI, Kohanbash and colleagues present an elegant dissection of how gliomas exploit an enzymatic activity acquired through a common mutation to abrogate the migration of CD8+ T cells to the tumor. They show that the oncometabolite 2-hydroxyglutarate (2HG), generated by mutated forms of isocitrate dehydrogenase (IDH1 and IDH2), reduces the expression of STAT1, thereby limiting the production of the chemokines CXCL9 and CXCL10. As a result, IDH1-mutated tumors are less effectively infiltrated by CD8+ T cells, contributing to tumor escape. Finally, in mice harboring syngeneic gliomas, an inhibitor of 2HG synthesis complemented vaccination to ameliorate tumor control. Understanding how to increase immune infiltration of gliomas represents a key first step in achieving tumor destruction through immunotherapy.

Authors

Liliana E. Lucca, David A. Hafler

×

A “tail” of opioid receptor variants
Stephanie Puig, Howard B. Gutstein
Stephanie Puig, Howard B. Gutstein
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1221-1224. https://doi.org/10.1172/JCI93582.
View: Text | PDF

A “tail” of opioid receptor variants

  • Text
  • PDF
Abstract

Opioids are the gold-standard treatment for severe pain. However, potentially life-threatening side effects decrease the safety and effectiveness of these compounds. The addiction liability of these drugs has led to the current epidemic of opioid abuse in the US. Extensive research efforts have focused on trying to dissociate the analgesic properties of opioids from their undesirable side effects. Splice variants of the mu opioid receptor (MOR), which mediates opioid actions, have unique pharmacological properties and anatomic distributions that make them attractive candidates for therapeutic pain relief. In this issue of the JCI, Xu et al. show that specific C-terminal regions of the MOR can modulate side effects without altering analgesia. This discovery greatly improves our understanding of opioid side effects and suggests intriguing therapeutic approaches that could improve both the safety and long-term effectiveness of opioids.

Authors

Stephanie Puig, Howard B. Gutstein

×
Research Articles
Laminar flow downregulates Notch activity to promote lymphatic sprouting
Dongwon Choi, … , Alex K. Wong, Young-Kwon Hong
Dongwon Choi, … , Alex K. Wong, Young-Kwon Hong
Published March 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1225-1240. https://doi.org/10.1172/JCI87442.
View: Text | PDF

Laminar flow downregulates Notch activity to promote lymphatic sprouting

  • Text
  • PDF
Abstract

The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow–induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of DTX1 and DTX3L. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, concertedly downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of Orai1 and Klf2 also markedly impaired lymphatic sprouting. Moreover, Dtx3l loss of function led to defective lymphatic sprouting, while Dtx3l gain of function rescued impaired sprouting in Orai1 KO embryos. Together, the data reveal a molecular mechanism underlying laminar flow–induced lymphatic sprouting.

Authors

Dongwon Choi, Eunkyung Park, Eunson Jung, Young Jin Seong, Jaehyuk Yoo, Esak Lee, Mingu Hong, Sunju Lee, Hiroaki Ishida, James Burford, Janos Peti-Peterdi, Ralf H. Adams, Sonal Srikanth, Yousang Gwack, Christopher S. Chen, Hans J. Vogel, Chester J. Koh, Alex K. Wong, Young-Kwon Hong

×

FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging
Hanjun Li, … , Zhengju Yao, Xizhi Guo
Hanjun Li, … , Zhengju Yao, Xizhi Guo
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1241-1253. https://doi.org/10.1172/JCI89511.
View: Text | PDF | Corrigendum

FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging

  • Text
  • PDF
Abstract

A hallmark of aged mesenchymal stem/progenitor cells (MSCs) in bone marrow is the pivot of differentiation potency from osteoblast to adipocyte coupled with a decrease in self-renewal capacity. However, how these cellular events are orchestrated in the aging progress is not fully understood. In this study, we have used molecular and genetic approaches to investigate the role of forkhead box P1 (FOXP1) in transcriptional control of MSC senescence. In bone marrow MSCs, FOXP1 expression levels declined with age in an inverse manner with those of the senescence marker p16INK4A. Conditional depletion of Foxp1 in bone marrow MSCs led to premature aging characteristics, including increased bone marrow adiposity, decreased bone mass, and impaired MSC self-renewal capacity in mice. At the molecular level, FOXP1 regulated cell-fate choice of MSCs through interactions with the CEBPβ/δ complex and recombination signal binding protein for immunoglobulin κ J region (RBPjκ), key modulators of adipogenesis and osteogenesis, respectively. Loss of p16INK4A in Foxp1-deficient MSCs partially rescued the defects in replication capacity and bone mass accrual. Promoter occupancy analyses revealed that FOXP1 directly represses transcription of p16INK4A. These results indicate that FOXP1 attenuates MSC senescence by orchestrating their cell-fate switch while maintaining their replicative capacity in a dose- and age-dependent manner.

Authors

Hanjun Li, Pei Liu, Shuqin Xu, Yinghua Li, Joseph D. Dekker, Baojie Li, Ying Fan, Zhenlin Zhang, Yang Hong, Gong Yang, Tingting Tang, Yongxin Ren, Haley O. Tucker, Zhengju Yao, Xizhi Guo

×

Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis
Yukinori Koyama, … , David A. Brenner, Tatiana Kisseleva
Yukinori Koyama, … , David A. Brenner, Tatiana Kisseleva
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1254-1270. https://doi.org/10.1172/JCI88845.
View: Text | PDF

Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis

  • Text
  • PDF
Abstract

Cholestatic liver fibrosis is caused by obstruction of the biliary tract and is associated with early activation of portal fibroblasts (PFs) that express Thy-1, fibulin 2, and the recently identified marker mesothelin (MSLN). Here, we have demonstrated that activated PFs (aPFs) and myofibroblasts play a critical role in the pathogenesis of liver fibrosis induced by bile duct ligation (BDL). Conditional ablation of MSLN+ aPFs in BDL-injured mice attenuated liver fibrosis by approximately 50%. Similar results were observed in MSLN-deficient mice (Msln–/– mice) or mice deficient in the MSLN ligand mucin 16 (Muc16–/– mice). In vitro analysis revealed that MSLN regulates TGF-β1–inducible activation of WT PFs by disrupting the formation of an inhibitory Thy-1–TGFβRI complex. MSLN also facilitated the FGF-mediated proliferation of WT aPFs. Therapeutic administration of anti-MSLN–blocking Abs attenuated BDL-induced fibrosis in WT mice. Liver specimens from patients with cholestatic liver fibrosis had increased numbers of MSLN+ aPFs/myofibroblasts, suggesting that MSLN may be a potential target for antifibrotic therapy.

Authors

Yukinori Koyama, Ping Wang, Shuang Liang, Keiko Iwaisako, Xiao Liu, Jun Xu, Mingjun Zhang, Mengxi Sun, Min Cong, Daniel Karin, Kojiro Taura, Chris Benner, Sven Heinz, Tapan Bera, David A. Brenner, Tatiana Kisseleva

×

CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus
Mohd Hafeez Faridi, … , Mariana J. Kaplan, Vineet Gupta
Mohd Hafeez Faridi, … , Mariana J. Kaplan, Vineet Gupta
Published March 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1271-1283. https://doi.org/10.1172/JCI88442.
View: Text | PDF

CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus

  • Text
  • PDF
Abstract

Genetic variations in the ITGAM gene (encoding CD11b) strongly associate with risk for systemic lupus erythematosus (SLE). Here we have shown that 3 nonsynonymous ITGAM variants that produce defective CD11b associate with elevated levels of type I interferon (IFN-I) in lupus, suggesting a direct link between reduced CD11b activity and the chronically increased inflammatory status in patients. Treatment with the small-molecule CD11b agonist LA1 led to partial integrin activation, reduced IFN-I responses in WT but not CD11b-deficient mice, and protected lupus-prone MRL/Lpr mice from end-organ injury. CD11b activation reduced TLR-dependent proinflammatory signaling in leukocytes and suppressed IFN-I signaling via an AKT/FOXO3/IFN regulatory factor 3/7 pathway. TLR-stimulated macrophages from CD11B SNP carriers showed increased basal expression of IFN regulatory factor 7 (IRF7) and IFN-β, as well as increased nuclear exclusion of FOXO3, which was suppressed by LA1-dependent activation of CD11b. This suggests that pharmacologic activation of CD11b could be a potential mechanism for developing SLE therapeutics.

Authors

Mohd Hafeez Faridi, Samia Q. Khan, Wenpu Zhao, Ha Won Lee, Mehmet M. Altintas, Kun Zhang, Vinay Kumar, Andrew R. Armstrong, Carmelo Carmona-Rivera, Jessica M. Dorschner, Abigail M. Schnaith, Xiaobo Li, Yogita Ghodke-Puranik, Erica Moore, Monica Purmalek, Jorge Irizarry-Caro, Tingting Zhang, Rachael Day, Darren Stoub, Victoria Hoffmann, Shehryar Jehangir Khaliqdina, Prachal Bhargava, Ana M. Santander, Marta Torroella-Kouri, Biju Issac, David J. Cimbaluk, Andrew Zloza, Rajeev Prabhakar, Shashank Deep, Meenakshi Jolly, Kwi Hye Koh, Jonathan S. Reichner, Elizabeth M. Bradshaw, JianFeng Chen, Luis F. Moita, Peter S. Yuen, Wanxia Li Tsai, Bhupinder Singh, Jochen Reiser, Swapan K. Nath, Timothy B. Niewold, Roberto I. Vazquez-Padron, Mariana J. Kaplan, Vineet Gupta

×

AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis
Ni Li, … , Qintong Li, Jun Qin
Ni Li, … , Qintong Li, Jun Qin
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1284-1302. https://doi.org/10.1172/JCI91144.
View: Text | PDF

AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis

  • Text
  • PDF
Abstract

Loss of phosphatase and tensin homolog (PTEN) and activation of the PI3K/AKT signaling pathway are hallmarks of prostate cancer (PCa). However, these alterations alone are insufficient for cells to acquire metastatic traits. Here, we have shown that the histone dimethyl transferase WHSC1 critically drives indolent PTEN-null tumors to become metastatic PCa. In a PTEN-null murine PCa model, WHSC1 overexpression in prostate epithelium cooperated with Pten deletion to produce a metastasis-prone tumor. Conversely, genetic ablation of Whsc1 prevented tumor progression in PTEN-null mice. Molecular characterization revealed that increased AKT activity due to PTEN loss directly phosphorylates WHSC1 at S172, preventing WHSC1 degradation by CRL4Cdt2 E3 ligase. Increased WHSC1 expression transcriptionally upregulates expression of RICTOR, a pivotal component of mTOR complex 2 (mTORC2), to further enhance AKT activity. Therefore, the AKT/WHSC1/mTORC2 signaling cascade represents a vicious feedback loop that elicits unrestrained AKT signaling. Furthermore, we determined that WHSC1 positively regulates Rac1 transcription to increase tumor cell motility. The biological importance of a WHSC1-mediated signaling cascade is substantiated by patient sample analysis in which WHSC1 signaling is tightly correlated with disease progression and recurrence. Taken together, our findings highlight a pivotal link between an epigenetic regulator, WHSC1, and key intracellular signaling molecules, AKT, RICTOR, and Rac1, to drive PCa metastasis.

Authors

Ni Li, Wei Xue, Huairui Yuan, Baijun Dong, Yufeng Ding, Yongfeng Liu, Min Jiang, Shan Kan, Tongyu Sun, Jiale Ren, Qiang Pan, Xiang Li, Peiyuan Zhang, Guohong Hu, Yan Wang, Xiaoming Wang, Qintong Li, Jun Qin

×

RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146
Yoshinori Matsumoto, … , Feng Cong, Robert Rottapel
Yoshinori Matsumoto, … , Feng Cong, Robert Rottapel
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1303-1315. https://doi.org/10.1172/JCI90527.
View: Text | PDF

RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146

  • Text
  • PDF
Abstract

Bone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines. Here, we have provided evidence that RANKL controls the expression of 3BP2, an adapter protein that is required for activation of SRC tyrosine kinase and simultaneously coordinates the attenuation of β-catenin, both of which are required to execute the osteoclast developmental program. We found that RANKL represses the transcription of the E3 ubiquitin ligase RNF146 through an NF-κB–related inhibitory element in the RNF146 promoter. RANKL-mediated suppression of RNF146 results in the stabilization of its substrates, 3BP2 and AXIN1, which consequently triggers the activation of SRC and attenuates the expression of β-catenin, respectively. Depletion of RNF146 caused hypersensitivity to LPS-induced TNF-α production in vivo. RNF146 thus acts as an inhibitory switch to control osteoclastogenesis and cytokine production and may be a control point underlying the pathogenesis of chronic inflammatory diseases.

Authors

Yoshinori Matsumoto, Jose Larose, Oliver A. Kent, Melissa Lim, Adele Changoor, Lucia Zhang, Yaryna Storozhuk, Xiaohong Mao, Marc D. Grynpas, Feng Cong, Robert Rottapel

×

Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis
Laure Gilles, … , Ayalew Tefferi, John D. Crispino
Laure Gilles, … , Ayalew Tefferi, John D. Crispino
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1316-1320. https://doi.org/10.1172/JCI82905.
View: Text | PDF Brief Report

Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis

  • Text
  • PDF
Abstract

Primary myelofibrosis (PMF) is a clonal hematologic malignancy characterized by BM fibrosis, extramedullary hematopoiesis, circulating CD34+ cells, splenomegaly, and a propensity to evolve to acute myeloid leukemia. Moreover, the spleen and BM of patients harbor atypical, clustered megakaryocytes, which contribute to the disease by secreting profibrotic cytokines. Here, we have revealed that megakaryocytes in PMF show impaired maturation that is associated with reduced GATA1 protein. In investigating the cause of GATA1 downregulation, our gene-expression study revealed the presence of the RPS14-deficient gene signature, which is associated with defective ribosomal protein function and linked to the erythroid lineage in 5q deletion myelodysplastic syndrome. Surprisingly, reduced GATA1 expression and impaired differentiation were limited to megakaryocytes, consistent with a proproliferative effect of a GATA1 deficiency on this lineage. Importantly, expression of GATA1 effectively rescued maturation of PMF megakaryocytes. Together, these results suggest that ribosomal deficiency contributes to impaired megakaryopoiesis in myeloproliferative neoplasms.

Authors

Laure Gilles, Ahmet Dirim Arslan, Christian Marinaccio, Qiang Jeremy Wen, Priyanka Arya, Maureen McNulty, Qiong Yang, Jonathan C. Zhao, Katerina Konstantinoff, Terra Lasho, Animesh Pardanani, Brady Stein, Isabelle Plo, Sriram Sundaravel, Amittha Wickrema, Annarita Migliaccio, Sandeep Gurbuxani, William Vainchenker, Leonidas C. Platanias, Ayalew Tefferi, John D. Crispino

×

Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling
Ephraim A. Ansa-Addo, … , Bei Liu, Zihai Li
Ephraim A. Ansa-Addo, … , Bei Liu, Zihai Li
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1321-1337. https://doi.org/10.1172/JCI89281.
View: Text | PDF

Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling

  • Text
  • PDF
Abstract

Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that are important for organizing membrane domains and receptor signaling and regulating the migration of effector T cells. Whether moesin plays any role during the generation of TGF-β–induced Tregs (iTregs) is unknown. Here, we have discovered that moesin is translationally regulated by TGF-β and is also required for optimal TGF-β signaling that promotes efficient development of iTregs. Loss of moesin impaired the development and function of both peripherally derived iTregs and in vitro–induced Tregs. Mechanistically, we identified an interaction between moesin and TGF-β receptor II (TβRII) that allows moesin to control the surface abundance and stability of TβRI and TβRII. We also found that moesin is required for iTreg conversion in the tumor microenvironment, and the deletion of moesin from recipient mice supported the rapid expansion of adoptively transferred CD8+ T cells against melanoma. Our study establishes moesin as an important regulator of the surface abundance and stability of TβRII and identifies moesin’s role in facilitating the efficient generation of iTregs. It also provides an advancement to our understanding about the role of the ERM proteins in regulating signal transduction pathways and suggests that modulation of moesin is a potential therapeutic target for Treg-related immune disorders.

Authors

Ephraim A. Ansa-Addo, Yongliang Zhang, Yi Yang, George S. Hussey, Breege V. Howley, Mohammad Salem, Brian Riesenberg, Shaoli Sun, Don C. Rockey, Serhan Karvar, Philip H. Howe, Bei Liu, Zihai Li

×

Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects
Elena Bekerman, … , Glenn Randall, Shirit Einav
Elena Bekerman, … , Glenn Randall, Shirit Einav
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1338-1352. https://doi.org/10.1172/JCI89857.
View: Text | PDF

Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects

  • Text
  • PDF
Abstract

Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells. Moreover, we found that multiple viruses, including dengue and Ebola, exploit AAK1 and GAK during entry and infectious virus production. In cultured cells, treatment with sunitinib and erlotinib, approved anticancer drugs that inhibit AAK1 or GAK activity, or with more selective compounds inhibited intracellular trafficking of HCV and multiple unrelated RNA viruses with a high barrier to resistance. In murine models of dengue and Ebola infection, sunitinib/erlotinib combination protected against morbidity and mortality. We validated sunitinib- and erlotinib-mediated inhibition of AAK1 and GAK activity as an important mechanism of antiviral action. Additionally, we revealed potential roles for additional kinase targets. These findings advance our understanding of virus-host interactions and establish a proof of principle for a repurposed, host-targeted approach to combat emerging viruses.

Authors

Elena Bekerman, Gregory Neveu, Ana Shulla, Jennifer Brannan, Szu-Yuan Pu, Stanley Wang, Fei Xiao, Rina Barouch-Bentov, Russell R. Bakken, Roberto Mateo, Jennifer Govero, Claude M. Nagamine, Michael S. Diamond, Steven De Jonghe, Piet Herdewijn, John M. Dye, Glenn Randall, Shirit Einav

×

HDAC6-mediated acetylation of lipid droplet–binding protein CIDEC regulates fat-induced lipid storage
Hui Qian, … , Weiping Jia, Peng Li
Hui Qian, … , Weiping Jia, Peng Li
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1353-1369. https://doi.org/10.1172/JCI85963.
View: Text | PDF

HDAC6-mediated acetylation of lipid droplet–binding protein CIDEC regulates fat-induced lipid storage

  • Text
  • PDF
Abstract

Obesity is characterized by aberrant fat accumulation. However, the intracellular signaling pathway that senses dietary fat and leads to fat storage remains elusive. Here, we have observed that the levels of histone deacetylase 6 (HDAC6) and the related family member HDAC10 are markedly reduced in adipose tissues of obese animals and humans. Mice with adipocyte-specific depletion of Hdac6 exhibited increased fat accumulation and reduced insulin sensitivity. In normal adipocytes, we found that reversal of P300/CBP-associated factor–induced (PCAF-induced) acetylation at K56 on cell death-inducing DFFA-like effector C (CIDEC, also known as FSP27) critically regulated lipid droplet fusion and lipid storage. Importantly, HDAC6 deacetylates CIDEC, leading to destabilization and reduced lipid droplet fusion. Accordingly, we observed elevated levels of CIDEC and its acetylated form in HDAC-deficient adipocytes as well as the adipose tissue of obese animals and humans. Fatty acids (FAs) prevented CIDEC deacetylation by promoting the dissociation of CIDEC from HDAC6, which resulted in increased association of CIDEC with PCAF on the endoplasmic reticulum. Control of CIDEC acetylation required the conversion of FAs to triacylglycerols. Thus, we have revealed a signaling axis that is involved in the coordination of nutrient availability, protein acetylation, and cellular lipid metabolic responses.

Authors

Hui Qian, Yuanying Chen, Zongqian Nian, Lu Su, Haoyong Yu, Feng-Jung Chen, Xiuqin Zhang, Wenyi Xu, Linkang Zhou, Jiaming Liu, Jinhai Yu, Luxin Yu, Yan Gao, Hongchao Zhang, Haihong Zhang, Shimin Zhao, Li Yu, Rui-Ping Xiao, Yuqian Bao, Shaocong Hou, Pingping Li, Jiada Li, Haiteng Deng, Weiping Jia, Peng Li

×

Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain
Anand Kumar Singh, … , Michael Fritz, David Engblom
Anand Kumar Singh, … , Michael Fritz, David Engblom
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1370-1374. https://doi.org/10.1172/JCI90678.
View: Text | PDF Brief Report

Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain

  • Text
  • PDF
Abstract

Pain is fundamentally unpleasant and induces a negative affective state. The affective component of pain is mediated by circuits that are distinct from those mediating the sensory-discriminative component. Here, we have investigated the role of prostaglandins in the affective dimension of pain using a rodent pain assay based on conditioned place aversion to formalin injection, an inflammatory noxious stimulus. We found that place aversion induced by inflammatory pain depends on prostaglandin E2 that is synthesized by cyclooxygenase 2 in neural cells. Further, mice lacking the prostaglandin E2 receptor EP3 selectively on serotonergic cells or selectively in the area of the dorsal raphe nucleus failed to form an aversion to formalin-induced pain, as did mice lacking the serotonin transporter. Chemogenetic manipulations revealed that EP3 receptor activation elicited conditioned place aversion to pain via inhibition of serotonergic neurons. In contrast to their role in inflammatory pain aversion, EP3 receptors on serotonergic cells were dispensable for acute nociceptive behaviors and for aversion induced by thermal pain or a κ opioid receptor agonist. Collectively, our findings show that prostaglandin-mediated modulation of serotonergic transmission controls the affective component of inflammatory pain.

Authors

Anand Kumar Singh, Joanna Zajdel, Elahe Mirrasekhian, Nader Almoosawi, Isabell Frisch, Anna M. Klawonn, Maarit Jaarola, Michael Fritz, David Engblom

×

Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue
Prashanth Vallabhajosyula, … , Michael R. Rickels, Ali Naji
Prashanth Vallabhajosyula, … , Michael R. Rickels, Ali Naji
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1375-1391. https://doi.org/10.1172/JCI87993.
View: Text | PDF

Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue

  • Text
  • PDF
Abstract

In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, we quantified islet transplant exosomes in recipient blood over long-term follow-up using anti-HLA antibody, which was detectable only in xenoislet recipients of human islets. Transplant islet exosomes were purified using anti-HLA antibody–conjugated beads, and their cargoes contained the islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to a marked decrease in transplant islet exosome signal along with distinct changes in exosomal microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet and renal transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up periods of up to 5 years. Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a noninvasive window into the conditional state of transplant tissue.

Authors

Prashanth Vallabhajosyula, Laxminarayana Korutla, Andreas Habertheuer, Ming Yu, Susan Rostami, Chao-Xing Yuan, Sanjana Reddy, Chengyang Liu, Varun Korutla, Brigitte Koeberlein, Jennifer Trofe-Clark, Michael R. Rickels, Ali Naji

×

B cells expressing the transcription factor T-bet drive lupus-like autoimmunity
Kira Rubtsova, … , John W. Kappler, Philippa Marrack
Kira Rubtsova, … , John W. Kappler, Philippa Marrack
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1392-1404. https://doi.org/10.1172/JCI91250.
View: Text | PDF

B cells expressing the transcription factor T-bet drive lupus-like autoimmunity

  • Text
  • PDF
Abstract

B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies. Here we have reported that B cells expressing the transcription factor T-bet promote the rapid appearance of autoantibodies and germinal centers in spontaneous murine models of systemic lupus erythematosus (SLE). Conditional deletion of T-bet from B cells impaired the formation of germinal centers and mitigated the development of kidney damage and rapid mortality in SLE mice. B cell–specific deletion of T-bet was also associated with lower activation of both B cells and T cells. Taken together, our results suggest that targeting T-bet–expressing B cells may be a potential target for therapy for autoimmune diseases.

Authors

Kira Rubtsova, Anatoly V. Rubtsov, Joshua M. Thurman, Johanna M. Mennona, John W. Kappler, Philippa Marrack

×

Amino acid–insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells
Demetrios Kalaitzidis, … , David M. Sabatini, David T. Scadden
Demetrios Kalaitzidis, … , David M. Sabatini, David T. Scadden
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1405-1413. https://doi.org/10.1172/JCI89452.
View: Text | PDF

Amino acid–insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells

  • Text
  • PDF
Abstract

The mTOR pathway is a critical determinant of cell persistence and growth wherein mTOR complex 1 (mTORC1) mediates a balance between growth factor stimuli and nutrient availability. Amino acids or glucose facilitates mTORC1 activation by inducing RagA GTPase recruitment of mTORC1 to the lysosomal outer surface, enabling activation of mTOR by the Ras homolog Rheb. Thereby, RagA alters mTORC1-driven growth in times of nutrient abundance or scarcity. Here, we have evaluated differential nutrient-sensing dependence through RagA and mTORC1 in hematopoietic progenitors, which dynamically drive mature cell production, and hematopoietic stem cells (HSC), which provide a quiescent cellular reserve. In nutrient-abundant conditions, RagA-deficient HSC were functionally unimpaired and upregulated mTORC1 via nutrient-insensitive mechanisms. RagA was also dispensable for HSC function under nutritional stress conditions. Similarly, hyperactivation of RagA did not affect HSC function. In contrast, RagA deficiency markedly altered progenitor population function and mature cell output. Therefore, RagA is a molecular mechanism that distinguishes the functional attributes of reactive progenitors from a reserve stem cell pool. The indifference of HSC to nutrient sensing through RagA contributes to their molecular resilience to nutritional stress, a characteristic that is relevant to organismal viability in evolution and in modern HSC transplantation approaches.

Authors

Demetrios Kalaitzidis, Dongjun Lee, Alejo Efeyan, Youmna Kfoury, Naema Nayyar, David B. Sykes, Francois E. Mercier, Ani Papazian, Ninib Baryawno, Gabriel D. Victora, Donna Neuberg, David M. Sabatini, David T. Scadden

×

Angiotensin AT1A receptors on leptin receptor–expressing cells control resting metabolism
Kristin E. Claflin, … , Kamal Rahmouni, Justin L. Grobe
Kristin E. Claflin, … , Kamal Rahmouni, Justin L. Grobe
Published March 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1414-1424. https://doi.org/10.1172/JCI88641.
View: Text | PDF

Angiotensin AT1A receptors on leptin receptor–expressing cells control resting metabolism

  • Text
  • PDF
Abstract

Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin’s actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate–salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.

Authors

Kristin E. Claflin, Jeremy A. Sandgren, Allyn M. Lambertz, Benjamin J. Weidemann, Nicole K. Littlejohn, Colin M.L. Burnett, Nicole A. Pearson, Donald A. Morgan, Katherine N. Gibson-Corley, Kamal Rahmouni, Justin L. Grobe

×

Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas
Gary Kohanbash, … , Joseph F. Costello, Hideho Okada
Gary Kohanbash, … , Joseph F. Costello, Hideho Okada
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1425-1437. https://doi.org/10.1172/JCI90644.
View: Text | PDF

Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas

  • Text
  • PDF
Abstract

Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting α-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte–associated genes and IFN-γ–inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas.

Authors

Gary Kohanbash, Diego A. Carrera, Shruti Shrivastav, Brian J. Ahn, Naznin Jahan, Tali Mazor, Zinal S. Chheda, Kira M. Downey, Payal B. Watchmaker, Casey Beppler, Rolf Warta, Nduka A. Amankulor, Christel Herold-Mende, Joseph F. Costello, Hideho Okada

×

Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease
Motomasa Tanaka, … , Miles D. Houslay, Akira Sawa
Motomasa Tanaka, … , Miles D. Houslay, Akira Sawa
Published March 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1438-1450. https://doi.org/10.1172/JCI85594.
View: Text | PDF

Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease

  • Text
  • PDF
Abstract

Huntington’s disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.

Authors

Motomasa Tanaka, Koko Ishizuka, Yoko Nekooki-Machida, Ryo Endo, Noriko Takashima, Hideyuki Sasaki, Yusuke Komi, Amy Gathercole, Elaine Huston, Kazuhiro Ishii, Kelvin Kai-Wan Hui, Masaru Kurosawa, Sun-Hong Kim, Nobuyuki Nukina, Eiki Takimoto, Miles D. Houslay, Akira Sawa

×

Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice
Raymond E. Soccio, … , David J. Steger, Mitchell A. Lazar
Raymond E. Soccio, … , David J. Steger, Mitchell A. Lazar
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1451-1462. https://doi.org/10.1172/JCI91211.
View: Text | PDF

Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice

  • Text
  • PDF
Abstract

Obesity causes insulin resistance, and PPARγ ligands such as rosiglitazone are insulin sensitizing, yet the mechanisms remain unclear. In C57BL/6 (B6) mice, obesity induced by a high-fat diet (HFD) has major effects on visceral epididymal adipose tissue (eWAT). Here, we report that HFD-induced obesity in B6 mice also altered the activity of gene regulatory elements and genome-wide occupancy of PPARγ. Rosiglitazone treatment restored insulin sensitivity in obese B6 mice, yet, surprisingly, had little effect on gene expression in eWAT. However, in subcutaneous inguinal fat (iWAT), rosiglitazone markedly induced molecular signatures of brown fat, including the key thermogenic gene Ucp1. Obesity-resistant 129S1/SvImJ mice (129 mice) displayed iWAT browning, even in the absence of rosiglitazone. The 129 Ucp1 locus had increased PPARγ binding and gene expression that were preserved in the iWAT of B6x129 F1–intercrossed mice, with an imbalance favoring the 129-derived alleles, demonstrating a cis-acting genetic difference. Thus, B6 mice have genetically defective Ucp1 expression in iWAT. However, when Ucp1 was activated by rosiglitazone, or by iWAT browning in cold-exposed or young mice, expression of the B6 version of Ucp1 was no longer defective relative to the 129 version, indicating epigenomic rescue. These results provide a framework for understanding how environmental influences like drugs can affect the epigenome and potentially rescue genetically determined disease phenotypes.

Authors

Raymond E. Soccio, Zhenghui Li, Eric R. Chen, Yee Hoon Foong, Kiara K. Benson, Joanna R. Dispirito, Shannon E. Mullican, Matthew J. Emmett, Erika R. Briggs, Lindsey C. Peed, Richard K. Dzeng, Carlos J. Medina, Jennifer F. Jolivert, Megan Kissig, Satyajit R. Rajapurkar, Manashree Damle, Hee-Woong Lim, Kyoung-Jae Won, Patrick Seale, David J. Steger, Mitchell A. Lazar

×

The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis
Maria A. Stacey, … , Paul Kellam, Ian R. Humphreys
Maria A. Stacey, … , Paul Kellam, Ian R. Humphreys
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1463-1474. https://doi.org/10.1172/JCI84889.
View: Text | PDF

The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis

  • Text
  • PDF
Abstract

The antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) inhibits cell entry of a number of viruses, and genetic diversity within IFITM3 determines susceptibility to viral disease in humans. Here, we used the murine CMV (MCMV) model of infection to determine that IFITM3 limits herpesvirus-associated pathogenesis without directly preventing virus replication. Instead, IFITM3 promoted antiviral cellular immunity through the restriction of virus-induced lymphopenia, apoptosis-independent NK cell death, and loss of T cells. Viral disease in Ifitm3–/– mice was accompanied by elevated production of cytokines, most notably IL-6. IFITM3 inhibited IL-6 production by myeloid cells in response to replicating and nonreplicating virus as well as following stimulation with the TLR ligands Poly(I:C) and CpG. Although IL-6 promoted virus-specific T cell responses, uncontrolled IL-6 expression in Ifitm3–/– mice triggered the loss of NK cells and subsequently impaired control of MCMV replication. Thus, IFITM3 represents a checkpoint regulator of antiviral immunity that controls cytokine production to restrict viral pathogenesis. These data suggest the utility of cytokine-targeting strategies in the treatment of virus-infected individuals with impaired IFITM3 activity.

Authors

Maria A. Stacey, Simon Clare, Mathew Clement, Morgan Marsden, Juneid Abdul-Karim, Leanne Kane, Katherine Harcourt, Cordelia Brandt, Ceri A. Fielding, Sarah E. Smith, Rachael S. Wash, Silvia Gimeno Brias, Gabrielle Stack, George Notley, Emma L. Cambridge, Christopher Isherwood, Anneliese O. Speak, Zoë Johnson, Walter Ferlin, Simon A. Jones, Paul Kellam, Ian R. Humphreys

×

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia
Adetutu T. Egunsola, … , Mordechai Shohat, Brendan H. Lee
Adetutu T. Egunsola, … , Mordechai Shohat, Brendan H. Lee
Published March 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1475-1484. https://doi.org/10.1172/JCI90193.
View: Text | PDF

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia

  • Text
  • PDF
Abstract

Shohat-type spondyloepimetaphyseal dysplasia (SEMD) is a skeletal dysplasia that affects cartilage development. Similar skeletal disorders, such as spondyloepiphyseal dysplasias, are linked to mutations in type II collagen (COL2A1), but the causative gene in SEMD is not known. Here, we have performed whole-exome sequencing to identify a recurrent homozygous c.408+1G>A donor splice site loss-of-function mutation in DDRGK domain containing 1 (DDRGK1) in 4 families affected by SEMD. In zebrafish, ddrgk1 deficiency disrupted craniofacial cartilage development and led to decreased levels of the chondrogenic master transcription factor sox9 and its downstream target, col2a1. Overexpression of sox9 rescued the zebrafish chondrogenic and craniofacial phenotype generated by ddrgk1 knockdown, thus identifying DDRGK1 as a regulator of SOX9. Consistent with these results, Ddrgk1–/– mice displayed delayed limb bud chondrogenic condensation, decreased SOX9 protein expression and Col2a1 transcript levels, and increased apoptosis. Furthermore, we determined that DDRGK1 can directly bind to SOX9 to inhibit its ubiquitination and proteasomal degradation. Taken together, these data indicate that loss of DDRGK1 decreases SOX9 expression and causes a human skeletal dysplasia, identifying a mechanism that regulates chondrogenesis via modulation of SOX9 ubiquitination.

Authors

Adetutu T. Egunsola, Yangjin Bae, Ming-Ming Jiang, David S. Liu, Yuqing Chen-Evenson, Terry Bertin, Shan Chen, James T. Lu, Lisette Nevarez, Nurit Magal, Annick Raas-Rothschild, Eric C. Swindell, Daniel H. Cohn, Richard A. Gibbs, Philippe M. Campeau, Mordechai Shohat, Brendan H. Lee

×

Mutations in γ-secretase subunit–encoding PSENEN underlie Dowling-Degos disease associated with acne inversa
Damian J. Ralser, … , Benjamin Odermatt, Regina C. Betz
Damian J. Ralser, … , Benjamin Odermatt, Regina C. Betz
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1485-1490. https://doi.org/10.1172/JCI90667.
View: Text | PDF Brief Report

Mutations in γ-secretase subunit–encoding PSENEN underlie Dowling-Degos disease associated with acne inversa

  • Text
  • PDF
Abstract

Dowling-Degos disease (DDD) is an autosomal-dominant disorder of skin pigmentation associated with mutations in keratin 5 (KRT5), protein O-fucosyltransferase 1 (POFUT1), or protein O-glucosyltransferase 1 (POGLUT1). Here, we have identified 6 heterozygous truncating mutations in PSENEN, encoding presenilin enhancer protein 2, in 6 unrelated patients and families with DDD in whom mutations in KRT5, POFUT1, and POGLUT1 have been excluded. Further examination revealed that the histopathologic feature of follicular hyperkeratosis distinguished these 6 patients from previously studied individuals with DDD. Knockdown of psenen in zebrafish larvae resulted in a phenotype with scattered pigmentation that mimicked human DDD. In the developing zebrafish larvae, in vivo monitoring of pigment cells suggested that disturbances in melanocyte migration and differentiation underlie the DDD pathogenesis associated with PSENEN. Six of the PSENEN mutation carriers presented with comorbid acne inversa (AI), an inflammatory hair follicle disorder, and had a history of nicotine abuse and/or obesity, which are known trigger factors for AI. Previously, PSENEN mutations were identified in familial AI, and comanifestation of DDD and AI has been reported for decades. The present work suggests that PSENEN mutations can indeed cause a comanifestation of DDD and AI that is likely triggered by predisposing factors for AI. Thus, the present report describes a DDD subphenotype in PSENEN mutation carriers that is associated with increased susceptibility to AI.

Authors

Damian J. Ralser, F. Buket Ü. Basmanav, Aylar Tafazzoli, Jade Wititsuwannakul, Sarah Delker, Sumita Danda, Holger Thiele, Sabrina Wolf, Michélle Busch, Susanne A. Pulimood, Janine Altmüller, Peter Nürnberg, Didier Lacombe, Uwe Hillen, Jörg Wenzel, Jorge Frank, Benjamin Odermatt, Regina C. Betz

×

T cells control the generation of nanomolar-affinity anti-glycan antibodies
Zinaida Polonskaya, … , M.G. Finn, Luc Teyton
Zinaida Polonskaya, … , M.G. Finn, Luc Teyton
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1491-1504. https://doi.org/10.1172/JCI91192.
View: Text | PDF

T cells control the generation of nanomolar-affinity anti-glycan antibodies

  • Text
  • PDF
Abstract

Vaccines targeting glycan structures at the surface of pathogenic microbes must overcome the inherent T cell–independent nature of immune responses against glycans. Carbohydrate conjugate vaccines achieve this by coupling bacterial polysaccharides to a carrier protein that recruits heterologous CD4 T cells to help B cell maturation. Yet they most often produce low- to medium-affinity immune responses of limited duration in immunologically fit individuals and disappointing results in the elderly and immunocompromised patients. Here, we hypothesized that these limitations result from suboptimal T cell help. To produce the next generation of more efficacious conjugate vaccines, we have explored a synthetic design aimed at focusing both B cell and T cell recognition to a single short glycan displayed at the surface of a virus-like particle. We tested and established the proof of concept of this approach for 2 serotypes of Streptococcus pneumoniae. In both cases, these vaccines elicited serotype-specific, protective, and long-lasting IgG antibodies of nanomolar affinity against the target glycans in mice. We further identified a requirement for CD4 T cells in the anti-glycan antibody response. Our findings establish the design principles for improved glycan conjugate vaccines. We surmise that the same approach can be used for any microbial glycan of interest.

Authors

Zinaida Polonskaya, Shenglou Deng, Anita Sarkar, Lisa Kain, Marta Comellas-Aragones, Craig S. McKay, Katarzyna Kaczanowska, Marie Holt, Ryan McBride, Valle Palomo, Kevin M. Self, Seth Taylor, Adriana Irimia, Sanjay R. Mehta, Jennifer M. Dan, Matthew Brigger, Shane Crotty, Stephen P. Schoenberger, James C. Paulson, Ian A. Wilson, Paul B. Savage, M.G. Finn, Luc Teyton

×

Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2
Xiaoyan Yang, … , David Gius, Hossein Ardehali
Xiaoyan Yang, … , David Gius, Hossein Ardehali
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1505-1516. https://doi.org/10.1172/JCI88574.
View: Text | PDF

Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2

  • Text
  • PDF
Abstract

SIRT2 is a cytoplasmic sirtuin that plays a role in various cellular processes, including tumorigenesis, metabolism, and inflammation. Since these processes require iron, we hypothesized that SIRT2 directly regulates cellular iron homeostasis. Here, we have demonstrated that SIRT2 depletion results in a decrease in cellular iron levels both in vitro and in vivo. Mechanistically, we determined that SIRT2 maintains cellular iron levels by binding to and deacetylating nuclear factor erythroid-derived 2–related factor 2 (NRF2) on lysines 506 and 508, leading to a reduction in total and nuclear NRF2 levels. The reduction in nuclear NRF2 leads to reduced ferroportin 1 (FPN1) expression, which in turn results in decreased cellular iron export. Finally, we observed that Sirt2 deletion reduced cell viability in response to iron deficiency. Moreover, livers from Sirt2–/– mice had decreased iron levels, while this effect was reversed in Sirt2–/– Nrf2–/– double-KO mice. Taken together, our results uncover a link between sirtuin proteins and direct control over cellular iron homeostasis via regulation of NRF2 deacetylation and stability.

Authors

Xiaoyan Yang, Seong-Hoon Park, Hsiang-Chun Chang, Jason S. Shapiro, Athanassios Vassilopoulos, Konrad T. Sawicki, Chunlei Chen, Meng Shang, Paul W. Burridge, Conrad L. Epting, Lisa D. Wilsbacher, Supak Jenkitkasemwong, Mitchell Knutson, David Gius, Hossein Ardehali

×

Autocrine lysophosphatidic acid signaling activates β-catenin and promotes lung allograft fibrosis
Pengxiu Cao, … , Eric R. Fearon, Vibha N. Lama
Pengxiu Cao, … , Eric R. Fearon, Vibha N. Lama
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1517-1530. https://doi.org/10.1172/JCI88896.
View: Text | PDF

Autocrine lysophosphatidic acid signaling activates β-catenin and promotes lung allograft fibrosis

  • Text
  • PDF
Abstract

Tissue fibrosis is the primary cause of long-term graft failure after organ transplantation. In lung allografts, progressive terminal airway fibrosis leads to an irreversible decline in lung function termed bronchiolitis obliterans syndrome (BOS). Here, we have identified an autocrine pathway linking nuclear factor of activated T cells 2 (NFAT1), autotaxin (ATX), lysophosphatidic acid (LPA), and β-catenin that contributes to progression of fibrosis in lung allografts. Mesenchymal cells (MCs) derived from fibrotic lung allografts (BOS MCs) demonstrated constitutive nuclear β-catenin expression that was dependent on autocrine ATX secretion and LPA signaling. We found that NFAT1 upstream of ATX regulated expression of ATX as well as β-catenin. Silencing NFAT1 in BOS MCs suppressed ATX expression, and sustained overexpression of NFAT1 increased ATX expression and activity in non-fibrotic MCs. LPA signaling induced NFAT1 nuclear translocation, suggesting that autocrine LPA synthesis promotes NFAT1 transcriptional activation and ATX secretion in a positive feedback loop. In an in vivo mouse orthotopic lung transplant model of BOS, antagonism of the LPA receptor (LPA1) or ATX inhibition decreased allograft fibrosis and was associated with lower active β-catenin and dephosphorylated NFAT1 expression. Lung allografts from β-catenin reporter mice demonstrated reduced β-catenin transcriptional activation in the presence of LPA1 antagonist, confirming an in vivo role for LPA signaling in β-catenin activation.

Authors

Pengxiu Cao, Yoshiro Aoki, Linda Badri, Natalie M. Walker, Casey M. Manning, Amir Lagstein, Eric R. Fearon, Vibha N. Lama

×

Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity
Emanuela Teveroni, … , Giancarlo Deidda, Fabiola Moretti
Emanuela Teveroni, … , Giancarlo Deidda, Fabiola Moretti
Published March 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1531-1545. https://doi.org/10.1172/JCI89401.
View: Text | PDF

Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity

  • Text
  • PDF
Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is characterized by extreme variability in symptoms, with females being less severely affected than males and presenting a higher proportion of asymptomatic carriers. The sex-related factors involved in the disease are not known. Here, we have utilized myoblasts isolated from FSHD patients (FSHD myoblasts) to investigate the effect of estrogens on muscle properties. Our results demonstrated that estrogens counteract the differentiation impairment of FSHD myoblasts without affecting cell proliferation or survival. Estrogen effects are mediated by estrogen receptor β (ERβ), which reduces chromatin occupancy and transcriptional activity of double homeobox 4 (DUX4), a protein whose aberrant expression has been implicated in FSHD pathogenesis. During myoblast differentiation, we observed that the levels and activity of DUX4 increased progressively and were associated with its enhanced recruitment in the nucleus. ERβ interfered with this recruitment by relocalizing DUX4 in the cytoplasm. This work identifies estrogens as a potential disease modifier that underlie sex-related differences in FSHD by protecting against myoblast differentiation impairments in this disease.

Authors

Emanuela Teveroni, Marsha Pellegrino, Sabrina Sacconi, Patrizia Calandra, Isabella Cascino, Stefano Farioli-Vecchioli, Angela Puma, Matteo Garibaldi, Roberta Morosetti, Giorgio Tasca, Enzo Ricci, Carlo Pietro Trevisan, Giuliana Galluzzi, Alfredo Pontecorvi, Marco Crescenzi, Giancarlo Deidda, Fabiola Moretti

×

Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques
Sarah R. Langley, … , Stefan Kiechl, Manuel Mayr
Sarah R. Langley, … , Stefan Kiechl, Manuel Mayr
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1546-1560. https://doi.org/10.1172/JCI86924.
View: Text | PDF Clinical Research and Public Health

Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques

  • Text
  • PDF
Abstract

BACKGROUND. The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the “vulnerable plaque,” necessitating an improved approach for predicting onset of symptoms. METHODS. We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS. Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION. The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING. UK: British Heart Foundation (BHF); King’s BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London in partnership with King’s College Hospital. Austria: Federal Ministry for Transport, Innovation and Technology (BMVIT); Federal Ministry of Science, Research and Economy (BMWFW); Wirtschaftsagentur Wien; and Standortagentur Tirol.

Authors

Sarah R. Langley, Karin Willeit, Athanasios Didangelos, Ljubica Perisic Matic, Philipp Skroblin, Javier Barallobre-Barreiro, Mariette Lengquist, Gregor Rungger, Alexander Kapustin, Ludmilla Kedenko, Chris Molenaar, Ruifang Lu, Temo Barwari, Gonca Suna, Xiaoke Yin, Bernhard Iglseder, Bernhard Paulweber, Peter Willeit, Joseph Shalhoub, Gerard Pasterkamp, Alun H. Davies, Claudia Monaco, Ulf Hedin, Catherine M. Shanahan, Johann Willeit, Stefan Kiechl, Manuel Mayr

×

Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine
Jin Xu, … , Gavril W. Pasternak, Ying-Xian Pan
Jin Xu, … , Gavril W. Pasternak, Ying-Xian Pan
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1561-1573. https://doi.org/10.1172/JCI88760.
View: Text | PDF

Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine

  • Text
  • PDF
Abstract

Extensive 3′ alternative splicing of the mu opioid receptor gene OPRM1 creates multiple C-terminal splice variants. However, their behavioral relevance remains unknown. The present study generated 3 mutant mouse models with truncated C termini in 2 different mouse strains, C57BL/6J (B6) and 129/SvEv (129). One mouse truncated all C termini downstream of Oprm1 exon 3 (mE3M mice), while the other two selectively truncated C-terminal tails encoded by either exon 4 (mE4M mice) or exon 7 (mE7M mice). Studies of these mice revealed divergent roles for the C termini in morphine-induced behaviors, highlighting the importance of C-terminal variants in complex morphine actions. In mE7M-B6 mice, the exon 7–associated truncation diminished morphine tolerance and reward without altering physical dependence, whereas the exon 4–associated truncation in mE4M-B6 mice facilitated morphine tolerance and reduced morphine dependence without affecting morphine reward. mE7M-B6 mutant mice lost morphine-induced receptor desensitization in the brain stem and hypothalamus, consistent with exon 7 involvement in morphine tolerance. In cell-based studies, exon 7–associated variants shifted the bias of several mu opioids toward β-arrestin 2 over G protein activation compared with the exon 4–associated variant, suggesting an interaction of exon 7–associated C-terminal tails with β-arrestin 2 in morphine-induced desensitization and tolerance. Together, the differential effects of C-terminal truncation illustrate the pharmacological importance of OPRM1 3′ alternative splicing.

Authors

Jin Xu, Zhigang Lu, Ankita Narayan, Valerie P. Le Rouzic, Mingming Xu, Amanda Hunkele, Taylor G. Brown, William F. Hoefer, Grace C. Rossi, Richard C. Rice, Arlene Martínez-Rivera, Anjali M. Rajadhyaksha, Luca Cartegni, Daniel L. Bassoni, Gavril W. Pasternak, Ying-Xian Pan

×

Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands
Jooho Chung, … , Sanjiv A. Luther, Ivan Maillard
Jooho Chung, … , Sanjiv A. Luther, Ivan Maillard
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1574-1588. https://doi.org/10.1172/JCI89535.
View: Text | PDF

Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands

  • Text
  • PDF
Abstract

Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity.

Authors

Jooho Chung, Christen L. Ebens, Eric Perkey, Vedran Radojcic, Ute Koch, Leonardo Scarpellino, Alexander Tong, Frederick Allen, Sherri Wood, Jiane Feng, Ann Friedman, David Granadier, Ivy T. Tran, Qian Chai, Lucas Onder, Minhong Yan, Pavan Reddy, Bruce R. Blazar, Alex Y. Huang, Todd V. Brennan, D. Keith Bishop, Burkhard Ludewig, Christian W. Siebel, Freddy Radtke, Sanjiv A. Luther, Ivan Maillard

×
Corrigendum
Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets
Kathrin Maedler, … , Philippe A. Halban, Marc Y. Donath
Kathrin Maedler, … , Philippe A. Halban, Marc Y. Donath
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1589-1589. https://doi.org/10.1172/JCI92172.
View: Text | PDF | Amended Article

Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets

  • Text
  • PDF
Abstract

Authors

Kathrin Maedler, Pavel Sergeev, Frédéric Ris, José Oberholzer, Helen I. Joller-Jemelka, Giatgen A. Spinas, Nurit Kaiser, Philippe A. Halban, Marc Y. Donath

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts