Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published May 1, 2017 Previous issue | Next issue

  • Volume 127, Issue 5
Go to section:
  • Reviews
  • Hindsight
  • Commentaries
  • Research Articles

On the cover: Revisiting salt and water balance

Rakova et al. and Kitada et al. report that glucocorticoid-driven responses to changes in salt alter sodium and water handling and metabolism in mice and in cosmonauts participating in long-term space-flight simulations. The cover shows an image of autophagy in murine skeletal muscle overlaid on an outer space–inspired background. Image credit: Dominic Doyle.

Reviews
Risks associated with viral infections during pregnancy
Karen Racicot, Gil Mor
Karen Racicot, Gil Mor
Published May 1, 2017
Citation Information: J Clin Invest. 2017;127(5):1591-1599. https://doi.org/10.1172/JCI87490.
View: Text | PDF

Risks associated with viral infections during pregnancy

  • Text
  • PDF
Abstract

Despite the prevalence of viral infections in the American population, we still have a limited understanding of how they affect pregnancy and fetal development. Viruses can gain access to the decidua and placenta by ascending from the lower reproductive tract or via hematogenous transmission. Viral tropism for the decidua and placenta is then dependent on viral entry receptor expression in these tissues as well as on the maternal immune response to the virus. These factors vary by cell type and gestational age and can be affected by changes to the in utero environment and maternal immunity. Some viruses can directly infect the fetus at specific times during gestation, while some only infect the placenta. Both scenarios can result in severe birth defects or pregnancy loss. Systemic maternal viral infections can also affect the pregnancy, and these can be especially dangerous, because pregnant women suffer higher virus-associated morbidity and mortality than do nonpregnant counterparts. In this Review, we discuss the potential contributions of maternal, placental, and fetal viral infection to pregnancy outcome, fetal development, and maternal well-being.

Authors

Karen Racicot, Gil Mor

×

The extracellular matrix in myocardial injury, repair, and remodeling
Nikolaos G. Frangogiannis
Nikolaos G. Frangogiannis
Published May 1, 2017
Citation Information: J Clin Invest. 2017;127(5):1600-1612. https://doi.org/10.1172/JCI87491.
View: Text | PDF

The extracellular matrix in myocardial injury, repair, and remodeling

  • Text
  • PDF
Abstract

The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.

Authors

Nikolaos G. Frangogiannis

×
Hindsight
Blood endothelial cells: utility from ambiguity
Robert P. Hebbel
Robert P. Hebbel
Published May 1, 2017
Citation Information: J Clin Invest. 2017;127(5):1613-1615. https://doi.org/10.1172/JCI93649.
View: Text | PDF

Blood endothelial cells: utility from ambiguity

  • Text
  • PDF
Abstract

In the mid-1990s, my research group began to devise a method to establish endothelial cell cultures from human peripheral blood, with an ultimate goal of examining interindividual heterogeneity of endothelial biology. The initial work, published in the JCI in 2000, described the method enabling successful attainment of blood outgrowth endothelial cells (BOEC). Truly endothelial, BOEC are progeny of a transplantable cell that originates in bone marrow, a putative endothelial progenitor. Our subsequent experimental work focused upon practical applications of BOEC: their use for gene therapy, tissue engineering, assessment of mutant gene effect, and discovery of heterogeneity in endothelial biology.

Authors

Robert P. Hebbel

×
Commentaries
Defects in DNA replication hit NK cells and neutrophils
Klaus Ley
Klaus Ley
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1616-1617. https://doi.org/10.1172/JCI93835.
View: Text | PDF

Defects in DNA replication hit NK cells and neutrophils

  • Text
  • PDF
Abstract

Patients who present with unique immunological phenotypes provide an opportunity to better understand defect-driving mutations. In this issue of the JCI, Cottineau and colleagues characterize 5 individuals who exhibited growth restriction, facial deformities, and a history of bacterial and viral infection. Further characterization revealed that these patients were neutropenic and NK cell deficient. These phenotypes were unexpectedly linked to mutations in the gene encoding a subunit of the Go-Ichi-Ni-San (GINS) complex, which is essential for DNA replication prior to cell division. Together, the results of this study lay the groundwork for future studies to explore the role of DNA replication in immune cell generation and function.

Authors

Klaus Ley

×

An indirect route to repetitive actions
David M. Lovinger
David M. Lovinger
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1618-1621. https://doi.org/10.1172/JCI93918.
View: Text | PDF

An indirect route to repetitive actions

  • Text
  • PDF
Abstract

It is increasingly evident that there is a genetic contribution to autism spectrum disorders (ASDs) and other neural disorders involving excessive repetition of action sequences. Among the implicated genes in these disorders are those encoding postsynaptic scaffolding proteins with roles in synaptic transmission and plasticity. Several mouse models harboring synonymous mutations have shown alterations in synaptic transmission within the striatum, which has key roles in controlling actions and action sequences. In this issue of the JCI, Wang and coworkers show that glutamatergic synaptic transmission onto striatal projection neurons is weakened in mutant mice lacking the SH3 and multiple ankyrin repeat domains 3 (SHANK3B) scaffolding protein, defective expression of which has been implicated in ASDs. This synaptic alteration gives rise to stronger activity in the indirect pathway accompanied by decreased dendritic spines on the indirect pathway medium spiny projection neuron, indicative of decreased numbers of glutamatergic synapses. Selectively enhancing activity in this pathway reduced excessive repetitive grooming in the mutant mice. Changes in glutamatergic input to striatal projection neurons have been observed in several other murine ASD models and associated disorders. Thus, manipulation of the function of the striatal indirect pathway may be a useful therapeutic target for treating disorders characterized by excessive repetitive behaviors.

Authors

David M. Lovinger

×

Access granted: iRGD helps silicasome-encased drugs breach the tumor barrier
Erkki Ruoslahti
Erkki Ruoslahti
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1622-1624. https://doi.org/10.1172/JCI93955.
View: Text | PDF

Access granted: iRGD helps silicasome-encased drugs breach the tumor barrier

  • Text
  • PDF
Abstract

In this issue of the JCI, Liu et al. use irinotecan-loaded nanoparticles to treat pancreatic adenocarcinomas in mice. Encapsulating drugs into nanoparticles has distinct advantages: it can improve the pharmacokinetics of the drug, enhance efficacy, and reduce unwanted side effects. A drawback is that the large size of nanoparticles restricts their access to the tumor interior. Liu and colleagues show that the cyclic tumor-penetrating peptide iRGD, reported to be capable of enhancing tumor penetration by drugs, can overcome this limitation to a substantial degree when administered together with the nanoparticles. Pancreatic adenocarcinoma is a challenging malignancy to treat and in desperate need for improved treatments; therefore, advances like this are most welcome.

Authors

Erkki Ruoslahti

×

Salt and water: not so simple
Mark L. Zeidel
Mark L. Zeidel
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1625-1626. https://doi.org/10.1172/JCI94004.
View: Text | PDF

Salt and water: not so simple

  • Text
  • PDF
Abstract

It has long been viewed that the maintenance of osmotic balance in response to high salt intake is a passive process that is mediated largely by increased water consumption to balance the salt load. Two studies in this issue of the JCI challenge this notion and demonstrate that osmotic balance in response to high salt intake involves a complex regulatory process that is influenced by hormone fluctuation, metabolism, food consumption, water intake, and renal salt and water excretion. Rakova et al. report the unexpected observation that long-term high salt intake did not increase water consumption in humans but instead increased water retention. Moreover, salt and water balance was influenced by glucocorticoid and mineralocorticoid fluctuations. Kitada et al. extend upon these findings in mouse models and determined that increased urea and a corresponding increase in urea transporters in the renal medulla as the result of increased protein intake promote the water retention that is needed to achieve osmotic homeostasis. Together, the results of these two studies lay the groundwork for future studies to determine how, in the face of chronic changes in salt intake, humans maintain volume and osmotic homeostasis.

Authors

Mark L. Zeidel

×

PD-L1 serves as a double agent in separating GVL from GVHD
Todd V. Brennan, Yiping Yang
Todd V. Brennan, Yiping Yang
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1627-1630. https://doi.org/10.1172/JCI94196.
View: Text | PDF

PD-L1 serves as a double agent in separating GVL from GVHD

  • Text
  • PDF
Abstract

Allogeneic hematopoietic cell transplantation (HCT) represents a potentially curative treatment for a variety of hematologic malignancies due to the well-recognized graft-versus-leukemia/lymphoma (GVL) effect that is mediated by donor-derived alloreactive T cells. However, graft-versus-host disease (GVHD) is mediated by the same T cells and remains a significant clinical problem associated with substantial morbidity and mortality. In this issue of the JCI, Ni and colleagues used several murine models of GVHD to evaluate the effect of CD4+ T cell depletion on GVL versus GVHD and revealed that depletion of CD4+ T cells leads to the upregulation of PD-L1 by recipient tissues and donor CD8+ T cells. Interaction of PD-L1 with PD-1 in GVHD-targeted tissues resulted in CD8+ T cell exhaustion and apoptosis, thereby preventing GVHD, whereas PD-L1 interactions with CD80 in lymphoid tissue promoted CD8+ T cell survival and expansion, thereby enhancing the GVL response. By separating these seemingly similar alloreactive T cell responses based on the context of interaction, the results of this study may lay the groundwork for the development of effective clinical strategies to enhance GVL while minimizing GVHD following allogeneic HCT.

Authors

Todd V. Brennan, Yiping Yang

×
Research Articles
Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers
Arimichi Okazaki, … , Lee Zou, Othon Iliopoulos
Arimichi Okazaki, … , Lee Zou, Othon Iliopoulos
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1631-1645. https://doi.org/10.1172/JCI87800.
View: Text | PDF

Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers

  • Text
  • PDF
Abstract

Many cancer-associated mutations that deregulate cellular metabolic responses to hypoxia also reprogram carbon metabolism to promote utilization of glutamine. In renal cell carcinoma (RCC), cells deficient in the von Hippel–Lindau (VHL) tumor suppressor gene use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate (αKG). Glutamine can also generate aspartate, the carbon source for pyrimidine biosynthesis, and glutathione for redox balance. Here we have shown that VHL–/– RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine biosynthesis. Glutaminase 1 (GLS1) inhibitors depleted pyrimidines and increased ROS in VHL–/– cells but not in VHL+/+ cells, which utilized glucose oxidation for glutamate and aspartate production. GLS1 inhibitor–induced nucleoside depletion and ROS enhancement led to DNA replication stress and activation of an intra–S phase checkpoint, and suppressed the growth of VHL–/– RCC cells. These effects were rescued by administration of glutamate, αKG, or nucleobases with N-acetylcysteine. Further, we observed that the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib synergizes with GLS1 inhibitors to suppress the growth of VHL–/– cells in vitro and in vivo. This work describes a mechanism that explains the sensitivity of RCC tumor growth to GLS1 inhibitors and supports the development of therapeutic strategies for targeting VHL-deficient RCC.

Authors

Arimichi Okazaki, Paulo A. Gameiro, Danos Christodoulou, Laura Laviollette, Meike Schneider, Frances Chaves, Anat Stemmer-Rachamimov, Stephanie A. Yazinski, Richard Lee, Gregory Stephanopoulos, Lee Zou, Othon Iliopoulos

×

Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice
Gabrielle L. Sell, … , Thomas B. Schaffer, Seth S. Margolis
Gabrielle L. Sell, … , Thomas B. Schaffer, Seth S. Margolis
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1646-1650. https://doi.org/10.1172/JCI85504.
View: Text | PDF Concise Communication

Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice

  • Text
  • PDF
Abstract

Accumulation of amyloid-β (Aβ) protein may cause synapse degeneration and cognitive impairment in Alzheimer’s disease (AD) by reactivating expression of the developmental synapse repressor protein Ephexin5 (also known as ARHGEF15). Here, we have reported that Aβ is sufficient to acutely promote the production of Ephexin5 in mature hippocampal neurons and in mice expressing human amyloid precursor protein (hAPP mice), a model for familial AD that produces high brain levels of Aβ. Ephexin5 expression was highly elevated in the hippocampi of human AD patients, indicating its potential relevance to AD. We also observed elevated Ephexin5 expression in the hippocampi of hAPP mice. Removal of Ephexin5 expression eliminated hippocampal dendritic spine loss and rescued AD-associated behavioral deficits in the hAPP mice. Furthermore, selective reduction of Ephexin5 expression using shRNA in the dentate gyrus of presymptomatic adolescent hAPP mice was sufficient to protect these mice from developing cognitive impairment. Thus, pathological elevation of Ephexin5 expression critically drives Aβ-induced memory impairment, and strategies aimed at reducing Ephexin5 levels may represent an effective approach to treating AD.

Authors

Gabrielle L. Sell, Thomas B. Schaffer, Seth S. Margolis

×

A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens
Vishal J. Sindhava, … , Ann Marshak-Rothstein, Michael P. Cancro
Vishal J. Sindhava, … , Ann Marshak-Rothstein, Michael P. Cancro
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1651-1663. https://doi.org/10.1172/JCI89931.
View: Text | PDF

A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens

  • Text
  • PDF
Abstract

Mature B cell pools retain a substantial proportion of polyreactive and self-reactive clonotypes, suggesting that activation checkpoints exist to reduce the initiation of autoreactive B cell responses. Here, we have described a relationship among the B cell receptor (BCR), TLR9, and cytokine signals that regulate B cell responses to DNA-containing antigens. In both mouse and human B cells, BCR ligands that deliver a TLR9 agonist induce an initial proliferative burst that is followed by apoptotic death. The latter mechanism involves p38-dependent G1 cell-cycle arrest and subsequent intrinsic mitochondrial apoptosis and is shared by all preimmune murine B cell subsets and CD27– human B cells. Survival or costimulatory signals rescue B cells from this fate, but the outcome varies depending on the signals involved. B lymphocyte stimulator (BLyS) engenders survival and antibody secretion, whereas CD40 costimulation with IL-21 or IFN-γ promotes a T-bet+ B cell phenotype. Finally, in vivo immunization studies revealed that when protein antigens are conjugated with DNA, the humoral immune response is blunted and acquires features associated with T-bet+ B cell differentiation. We propose that this mechanism integrating BCR, TLR9, and cytokine signals provides a peripheral checkpoint for DNA-containing antigens that, if circumvented by survival and differentiative cues, yields B cells with the autoimmune-associated T-bet+ phenotype.

Authors

Vishal J. Sindhava, Michael A. Oropallo, Krishna Moody, Martin Naradikian, Lauren E. Higdon, Lin Zhou, Arpita Myles, Nathaniel Green, Kerstin Nündel, William Stohl, Amanda M. Schmidt, Wei Cao, Stephanie Dorta-Estremera, Taku Kambayashi, Ann Marshak-Rothstein, Michael P. Cancro

×

Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome
Alicia A. Nugent, … , Long Cheng, Elizabeth C. Engle
Alicia A. Nugent, … , Long Cheng, Elizabeth C. Engle
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1664-1682. https://doi.org/10.1172/JCI88502.
View: Text | PDF

Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome

  • Text
  • PDF
Abstract

Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.

Authors

Alicia A. Nugent, Jong G. Park, Yan Wei, Alan P. Tenney, Nicole M. Gilette, Michelle M. DeLisle, Wai-Man Chan, Long Cheng, Elizabeth C. Engle

×

Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency
Christina V. Theodoris, … , Helen M. Blau, Deepak Srivastava
Christina V. Theodoris, … , Helen M. Blau, Deepak Srivastava
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1683-1688. https://doi.org/10.1172/JCI90338.
View: Text | PDF Brief Report

Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency

  • Text
  • PDF
Abstract

Diseases caused by gene haploinsufficiency in humans commonly lack a phenotype in mice that are heterozygous for the orthologous factor, impeding the study of complex phenotypes and critically limiting the discovery of therapeutics. Laboratory mice have longer telomeres relative to humans, potentially protecting against age-related disease caused by haploinsufficiency. Here, we demonstrate that telomere shortening in NOTCH1-haploinsufficient mice is sufficient to elicit age-dependent cardiovascular disease involving premature calcification of the aortic valve, a phenotype that closely mimics human disease caused by NOTCH1 haploinsufficiency. Furthermore, progressive telomere shortening correlated with severity of disease, causing cardiac valve and septal disease in the neonate that was similar to the range of valve disease observed within human families. Genes that were dysregulated due to NOTCH1 haploinsufficiency in mice with shortened telomeres were concordant with proosteoblast and proinflammatory gene network alterations in human NOTCH1 heterozygous endothelial cells. These dysregulated genes were enriched for telomere-contacting promoters, suggesting a potential mechanism for telomere-dependent regulation of homeostatic gene expression. These findings reveal a critical role for telomere length in a mouse model of age-dependent human disease and provide an in vivo model in which to test therapeutic candidates targeting the progression of aortic valve disease.

Authors

Christina V. Theodoris, Foteini Mourkioti, Yu Huang, Sanjeev S. Ranade, Lei Liu, Helen M. Blau, Deepak Srivastava

×

Clinical efficacy of gene-modified stem cells in adenosine deaminase–deficient immunodeficiency
Kit L. Shaw, … , Fabio Candotti, Donald B. Kohn
Kit L. Shaw, … , Fabio Candotti, Donald B. Kohn
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1689-1699. https://doi.org/10.1172/JCI90367.
View: Text | PDF Clinical Research and Public Health

Clinical efficacy of gene-modified stem cells in adenosine deaminase–deficient immunodeficiency

  • Text
  • PDF
Abstract

BACKGROUND. Autologous hematopoietic stem cell transplantation (HSCT) of gene-modified cells is an alternative to enzyme replacement therapy (ERT) and allogeneic HSCT that has shown clinical benefit for adenosine deaminase–deficient (ADA-deficient) SCID when combined with reduced intensity conditioning (RIC) and ERT cessation. Clinical safety and therapeutic efficacy were evaluated in a phase II study.

METHODS. Ten subjects with confirmed ADA-deficient SCID and no available matched sibling or family donor were enrolled between 2009 and 2012 and received transplantation with autologous hematopoietic CD34+ cells that were modified with the human ADA cDNA (MND-ADA) γ-retroviral vector after conditioning with busulfan (90 mg/m2) and ERT cessation. Subjects were followed from 33 to 84 months at the time of data analysis. Safety of the procedure was assessed by recording the number of adverse events. Efficacy was assessed by measuring engraftment of gene-modified hematopoietic stem/progenitor cells, ADA gene expression, and immune reconstitution.

RESULTS. With the exception of the oldest subject (15 years old at enrollment), all subjects remained off ERT with normalized peripheral blood mononuclear cell (PBMC) ADA activity, improved lymphocyte numbers, and normal proliferative responses to mitogens. Three of nine subjects were able to discontinue intravenous immunoglobulin replacement therapy. The MND-ADA vector was persistently detected in PBMCs (vector copy number [VCN] = 0.1–2.6) and granulocytes (VCN = 0.01–0.3) through the most recent visits at the time of this writing. No patient has developed a leukoproliferative disorder or other vector-related clinical complication since transplant.

CONCLUSION. These results demonstrate clinical therapeutic efficacy from gene therapy for ADA-deficient SCID, with an excellent clinical safety profile.

TRIAL REGISTRATION. ClinicalTrials.gov NCT00794508.

FUNDING. Food and Drug Administration Office of Orphan Product Development award, RO1 FD003005; NHLBI awards, PO1 HL73104 and Z01 HG000122; UCLA Clinical and Translational Science Institute awards, UL1RR033176 and UL1TR000124.

Authors

Kit L. Shaw, Elizabeth Garabedian, Suparna Mishra, Provaboti Barman, Alejandra Davila, Denise Carbonaro, Sally Shupien, Christopher Silvin, Sabine Geiger, Barbara Nowicki, E. Monika Smogorzewska, Berkley Brown, Xiaoyan Wang, Satiro de Oliveira, Yeong Choi, Alan Ikeda, Dayna Terrazas, Pei-Yu Fu, Allen Yu, Beatriz Campo Fernandez, Aaron R. Cooper, Barbara Engel, Greg Podsakoff, Arumugam Balamurugan, Stacie Anderson, Linda Muul, G. Jayashree Jagadeesh, Neena Kapoor, John Tse, Theodore B. Moore, Ken Purdy, Radha Rishi, Kathey Mohan, Suzanne Skoda-Smith, David Buchbinder, Roshini S. Abraham, Andrew Scharenberg, Otto O. Yang, Kenneth Cornetta, David Gjertson, Michael Hershfield, Rob Sokolic, Fabio Candotti, Donald B. Kohn

×

Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans
Federica Buonocore, … , Annette Grüters, John C. Achermann
Federica Buonocore, … , Annette Grüters, John C. Achermann
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1700-1713. https://doi.org/10.1172/JCI91913.
View: Text | PDF

Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans

  • Text
  • PDF
Abstract

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.

Authors

Federica Buonocore, Peter Kühnen, Jenifer P. Suntharalingham, Ignacio Del Valle, Martin Digweed, Harald Stachelscheid, Noushafarin Khajavi, Mohammed Didi, Angela F. Brady, Oliver Blankenstein, Annie M. Procter, Paul Dimitri, Jerry K.H. Wales, Paolo Ghirri, Dieter Knöbl, Brigitte Strahm, Miriam Erlacher, Marcin W. Wlodarski, Wei Chen, George K. Kokai, Glenn Anderson, Deborah Morrogh, Dale A. Moulding, Shane A. McKee, Charlotte M. Niemeyer, Annette Grüters, John C. Achermann

×

Megakaryocytes compensate for Kit insufficiency in murine arthritis
Pierre Cunin, … , Eric Boilard, Peter A. Nigrovic
Pierre Cunin, … , Eric Boilard, Peter A. Nigrovic
Published April 4, 2017
Citation Information: J Clin Invest. 2017;127(5):1714-1724. https://doi.org/10.1172/JCI84598.
View: Text | PDF

Megakaryocytes compensate for Kit insufficiency in murine arthritis

  • Text
  • PDF
Abstract

The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell–deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1–dependent manner. Transfer of WT but not IL-1–deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1–driven systemic inflammatory disease.

Authors

Pierre Cunin, Loka R. Penke, Jonathan N. Thon, Paul A. Monach, Tatiana Jones, Margaret H. Chang, Mary M. Chen, Imene Melki, Steve Lacroix, Yoichiro Iwakura, Jerry Ware, Michael F. Gurish, Joseph E. Italiano, Eric Boilard, Peter A. Nigrovic

×

CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling
Zhe Ying, … , Jun Li, Mengfeng Li
Zhe Ying, … , Jun Li, Mengfeng Li
Published April 4, 2017
Citation Information: J Clin Invest. 2017;127(5):1725-1740. https://doi.org/10.1172/JCI90439.
View: Text | PDF

CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling

  • Text
  • PDF
Abstract

Paradoxically, during early tumor development in many cancer types, TGF-β acts as a tumor suppressor, whereas in the advanced stages of these cancers, increased TGF-β expression is linked to high metastasis and poor prognosis. These findings suggest that unidentified mechanisms may function to rewire TGF-β signaling toward its prometastatic role in cancer cells. Our current study using non–small-cell lung carcinoma (NSCLC) cell lines, animal models, and clinical specimens demonstrates that suppression of SMAD2, with SMAD3 function intact, switches TGF-β–induced transcriptional responses to a prometastatic state. Importantly, we identified chaperonin containing TCP1 subunit 6A (CCT6A) as an inhibitor and direct binding protein of SMAD2 and found that CCT6A suppresses SMAD2 function in NSCLC cells and promotes metastasis. Furthermore, selective inhibition of SMAD3 or CCT6A efficiently suppresses TGF-β–mediated metastasis. Our findings provide a mechanism that directs TGF-β signaling toward its prometastatic arm and may contribute to the development of therapeutic strategies targeting TGF-β for NSCLC.

Authors

Zhe Ying, Han Tian, Yun Li, Rong Lian, Wei Li, Shanshan Wu, Hui-Zhong Zhang, Jueheng Wu, Lei Liu, Junwei Song, Hongyu Guan, Junchao Cai, Xun Zhu, Jun Li, Mengfeng Li

×

Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission
Xiaona Du, … , Hailin Zhang, Nikita Gamper
Xiaona Du, … , Hailin Zhang, Nikita Gamper
Published April 4, 2017
Citation Information: J Clin Invest. 2017;127(5):1741-1756. https://doi.org/10.1172/JCI86812.
View: Text | PDF

Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission

  • Text
  • PDF
Abstract

The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention.

Authors

Xiaona Du, Han Hao, Yuehui Yang, Sha Huang, Caixue Wang, Sylvain Gigout, Rosmaliza Ramli, Xinmeng Li, Ewa Jaworska, Ian Edwards, Jim Deuchars, Yuchio Yanagawa, Jinlong Qi, Bingcai Guan, David B. Jaffe, Hailin Zhang, Nikita Gamper

×

ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity
Xinyun Bi, … , Xiaoxi Li, Allan Zijian Zhao
Xinyun Bi, … , Xiaoxi Li, Allan Zijian Zhao
Published April 4, 2017
Citation Information: J Clin Invest. 2017;127(5):1757-1771. https://doi.org/10.1172/JCI87388.
View: Text | PDF

ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity

  • Text
  • PDF
Abstract

Despite the benefit of insulin, blockade of autoimmune attack and regeneration of pancreatic islets are ultimate goals for the complete cure of type 1 diabetes (T1D). Long-term consumption of ω-3 polyunsaturated fatty acids (PUFAs) is known to suppress inflammatory processes, making these fatty acids candidates for the prevention and amelioration of autoimmune diseases. Here, we explored the preventative and therapeutic effects of ω-3 PUFAs on T1D. In NOD mice, dietary intervention with ω-3 PUFAs sharply reduced the incidence of T1D, modulated the differentiation of Th cells and Tregs, and decreased the levels of IFN-γ, IL-17, IL-6, and TNF-α. ω-3 PUFAs exerted similar effects on the differentiation of CD4+ T cells isolated from human peripheral blood mononuclear cells. The regulation of CD4+ T cell differentiation was mediated at least in part through ω-3 PUFA eicosanoid derivatives and by mTOR complex 1 (mTORC1) inhibition. Importantly, therapeutic intervention in NOD mice through nutritional supplementation or lentivirus-mediated expression of an ω-3 fatty acid desaturase, mfat-1, normalized blood glucose and insulin levels for at least 182 days, blocked the development of autoimmunity, prevented lymphocyte infiltration into regenerated islets, and sharply elevated the expression of the β cell markers pancreatic and duodenal homeobox 1 (Pdx1) and paired box 4 (Pax4). The findings suggest that ω-3 PUFAs could potentially serve as a therapeutic modality for T1D.

Authors

Xinyun Bi, Fanghong Li, Shanshan Liu, Yan Jin, Xin Zhang, Tao Yang, Yifan Dai, Xiaoxi Li, Allan Zijian Zhao

×

Isolated polycystic liver disease genes define effectors of polycystin-1 function
Whitney Besse, … , Vicente E. Torres, Stefan Somlo
Whitney Besse, … , Vicente E. Torres, Stefan Somlo
Published April 4, 2017
Citation Information: J Clin Invest. 2017;127(5):1772-1785. https://doi.org/10.1172/JCI90129.
View: Text | PDF | Corrigendum

Isolated polycystic liver disease genes define effectors of polycystin-1 function

  • Text
  • PDF
Abstract

Dominantly inherited isolated polycystic liver disease (PCLD) consists of liver cysts that are radiologically and pathologically identical to those seen in autosomal dominant polycystic kidney disease, but without clinically relevant kidney cysts. The causative genes are known for fewer than 40% of PCLD index cases. Here, we have used whole exome sequencing in a discovery cohort of 102 unrelated patients who were excluded for mutations in the 2 most common PCLD genes, PRKCSH and SEC63, to identify heterozygous loss-of-function mutations in 3 additional genes, ALG8, GANAB, and SEC61B. Similarly to PRKCSH and SEC63, these genes encode proteins that are integral to the protein biogenesis pathway in the endoplasmic reticulum. We inactivated these candidate genes in cell line models to show that loss of function of each results in defective maturation and trafficking of polycystin-1, the central determinant of cyst pathogenesis. Despite acting in a common pathway, each PCLD gene product demonstrated distinct effects on polycystin-1 biogenesis. We also found enrichment on a genome-wide basis of heterozygous mutations in the autosomal recessive polycystic kidney disease gene PKHD1, indicating that adult PKHD1 carriers can present with clinical PCLD. These findings define genetic and biochemical modulators of polycystin-1 function and provide a more complete definition of the spectrum of dominant human polycystic diseases.

Authors

Whitney Besse, Ke Dong, Jungmin Choi, Sohan Punia, Sorin V. Fedeles, Murim Choi, Anna-Rachel Gallagher, Emily B. Huang, Ashima Gulati, James Knight, Shrikant Mane, Esa Tahvanainen, Pia Tahvanainen, Simone Sanna-Cherchi, Richard P. Lifton, Terry Watnick, York P. Pei, Vicente E. Torres, Stefan Somlo

×

PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis
Moon-Suhn Ryu, … , Minoo Shakoury-Elizeh, Caroline C. Philpott
Moon-Suhn Ryu, … , Minoo Shakoury-Elizeh, Caroline C. Philpott
Published April 4, 2017
Citation Information: J Clin Invest. 2017;127(5):1786-1797. https://doi.org/10.1172/JCI90519.
View: Text | PDF

PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis

  • Text
  • PDF
Abstract

Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC–binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.

Authors

Moon-Suhn Ryu, Deliang Zhang, Olga Protchenko, Minoo Shakoury-Elizeh, Caroline C. Philpott

×

Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function
Philipp S. Wild, … , Ramachandran S. Vasan, Marcus Dörr
Philipp S. Wild, … , Ramachandran S. Vasan, Marcus Dörr
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1798-1812. https://doi.org/10.1172/JCI84840.
View: Text | PDF Clinical Research and Public Health

Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

  • Text
  • PDF
Abstract

BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function.

METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function.

RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue.

CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies.

FUNDING. For detailed information per study, see Acknowledgments.

Authors

Philipp S. Wild, Janine F. Felix, Arne Schillert, Alexander Teumer, Ming-Huei Chen, Maarten J.G. Leening, Uwe Völker, Vera Großmann, Jennifer A. Brody, Marguerite R. Irvin, Sanjiv J. Shah, Setia Pramana, Wolfgang Lieb, Reinhold Schmidt, Alice V. Stanton, Dörthe Malzahn, Albert Vernon Smith, Johan Sundström, Cosetta Minelli, Daniela Ruggiero, Leo-Pekka Lyytikäinen, Daniel Tiller, J. Gustav Smith, Claire Monnereau, Marco R. Di Tullio, Solomon K. Musani, Alanna C. Morrison, Tune H. Pers, Michael Morley, Marcus E. Kleber, AortaGen Consortium, Jayashri Aragam, Emelia J. Benjamin, Joshua C. Bis, Egbert Bisping, Ulrich Broeckel, CHARGE-Heart Failure Consortium, Susan Cheng, Jaap W. Deckers, Fabiola Del Greco M, Frank Edelmann, Myriam Fornage, Lude Franke, Nele Friedrich, Tamara B. Harris, Edith Hofer, Albert Hofman, Jie Huang, Alun D. Hughes, Mika Kähönen, KNHI investigators, Jochen Kruppa, Karl J. Lackner, Lars Lannfelt, Rafael Laskowski, Lenore J. Launer, Margrét Leosdottir, Honghuang Lin, Cecilia M. Lindgren, Christina Loley, Calum A. MacRae, Deborah Mascalzoni, Jamil Mayet, Daniel Medenwald, Andrew P. Morris, Christian Müller, Martina Müller-Nurasyid, Stefania Nappo, Peter M. Nilsson, Sebastian Nuding, Teresa Nutile, Annette Peters, Arne Pfeufer, Diana Pietzner, Peter P. Pramstaller, Olli T. Raitakari, Kenneth M. Rice, Fernando Rivadeneira, Jerome I. Rotter, Saku T. Ruohonen, Ralph L. Sacco, Tandaw E. Samdarshi, Helena Schmidt, Andrew S.P. Sharp, Denis C. Shields, Rossella Sorice, Nona Sotoodehnia, Bruno H. Stricker, Praveen Surendran, Simon Thom, Anna M. Töglhofer, André G. Uitterlinden, Rolf Wachter, Henry Völzke, Andreas Ziegler, Thomas Münzel, Winfried März, Thomas P. Cappola, Joel N. Hirschhorn, Gary F. Mitchell, Nicholas L. Smith, Ervin R. Fox, Nicole D. Dueker, Vincent W.V. Jaddoe, Olle Melander, Martin Russ, Terho Lehtimäki, Marina Ciullo, Andrew A. Hicks, Lars Lind, Vilmundur Gudnason, Burkert Pieske, Anthony J. Barron, Robert Zweiker, Heribert Schunkert, Erik Ingelsson, Kiang Liu, Donna K. Arnett, Bruce M. Psaty, Stefan Blankenberg, Martin G. Larson, Stephan B. Felix, Oscar H. Franco, Tanja Zeller, Ramachandran S. Vasan, Marcus Dörr

×

Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease
Danny W. Bruce, … , James M. Coghill, Jonathan S. Serody
Danny W. Bruce, … , James M. Coghill, Jonathan S. Serody
Published April 4, 2017
Citation Information: J Clin Invest. 2017;127(5):1813-1825. https://doi.org/10.1172/JCI91816.
View: Text | PDF

Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease

  • Text
  • PDF
Abstract

Acute graft-versus-host disease (aGVHD) is the most common complication for patients undergoing allogeneic stem cell transplantation. Despite extremely aggressive therapy targeting donor T cells, patients with grade III or greater aGVHD of the lower GI tract, who do not respond to therapy with corticosteroids, have a dismal prognosis. Thus, efforts to improve understanding of the function of local immune and non-immune cells in regulating the inflammatory process in the GI tract during aGVHD are needed. Here, we demonstrate, using murine models of allogeneic BMT, that type 2 innate lymphoid cells (ILC2s) in the lower GI tract are sensitive to conditioning therapy and show very limited ability to repopulate from donor bone marrow. Infusion of donor ILC2s was effective in reducing the lethality of aGVHD and in treating lower GI tract disease. ILC2 infusion was associated with reduced donor proinflammatory Th1 and Th17 cells, accumulation of donor myeloid-derived suppressor cells (MDSCs) mediated by ILC2 production of IL-13, improved GI tract barrier function, and a preserved graft-versus-leukemia (GVL) response. Collectively, these findings suggest that infusion of donor ILC2s to restore gastrointestinal tract homeostasis may improve treatment of severe lower GI tract aGVHD.

Authors

Danny W. Bruce, Heather E. Stefanski, Benjamin G. Vincent, Trisha A. Dant, Shannon Reisdorf, Hemamalini Bommiasamy, David A. Serody, Justin E. Wilson, Karen P. McKinnon, Warren D. Shlomchik, Paul M. Armistead, Jenny P.Y. Ting, John T. Woosley, Bruce R. Blazar, Dietmar M.W. Zaiss, Andrew N.J. McKenzie, James M. Coghill, Jonathan S. Serody

×

A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma
Yujie Huang, … , David Lyden, Jeffrey Greenfield
Yujie Huang, … , David Lyden, Jeffrey Greenfield
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1826-1838. https://doi.org/10.1172/JCI86443.
View: Text | PDF

A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma

  • Text
  • PDF
Abstract

Tumors are capable of coopting hematopoietic cells to create a suitable microenvironment to support malignant growth. Here, we have demonstrated that upregulation of kinase insert domain receptor (KDR), also known as VEGFR2, in a myeloid cell sublineage is necessary for malignant progression of gliomas in transgenic murine models and is associated with high-grade tumors in patients. KDR expression increased in myeloid cells as myeloid-derived suppressor cells (MDSCs) accumulated, which was associated with the transformation and progression of low-grade fibrillary astrocytoma to high-grade anaplastic gliomas. KDR deficiency in murine BM-derived cells (BMDCs) suppressed the differentiation of myeloid lineages and reduced granulocytic/monocytic populations. The depletion of myeloid-derived KDR compromised its proangiogenic function, which inhibited the angiogenic switch necessary for malignant progression of low-grade to high-grade tumors. We also identified inhibitor of DNA binding protein 2 (ID2) as a key upstream regulator of KDR activation during myeloid differentiation. Deficiency of ID2 in BMDCs led to downregulation of KDR, suppression of proangiogenic myeloid cells, and prevention of low-grade to high-grade transition. Tumor-secreted TGF-β and granulocyte-macrophage CSF (GM-CSF) enhanced the KDR/ID2 signaling axis in BMDCs. Our results suggest that modulation of KDR/ID2 signaling may restrict tumor-associated myeloid cells and could potentially be a therapeutic strategy for preventing transformation of premalignant gliomas.

Authors

Yujie Huang, Prajwal Rajappa, Wenhuo Hu, Caitlin Hoffman, Babacar Cisse, Joon-Hyung Kim, Emilie Gorge, Rachel Yanowitch, William Cope, Emma Vartanian, Raymond Xu, Tuo Zhang, David Pisapia, Jenny Xiang, Jason Huse, Irina Matei, Hector Peinado, Jacqueline Bromberg, Eric Holland, Bi-sen Ding, Shahin Rafii, David Lyden, Jeffrey Greenfield

×

Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication
Shilpa Singh, … , Sumitra Deb, Swati Palit Deb
Shilpa Singh, … , Sumitra Deb, Swati Palit Deb
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1839-1855. https://doi.org/10.1172/JCI87724.
View: Text | PDF

Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication

  • Text
  • PDF
Abstract

Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles.

Authors

Shilpa Singh, Catherine A. Vaughan, Rebecca A. Frum, Steven R. Grossman, Sumitra Deb, Swati Palit Deb

×

Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma
Derek Lee, … , Irene Oi-Lin Ng, Carmen Chak-Lui Wong
Derek Lee, … , Irene Oi-Lin Ng, Carmen Chak-Lui Wong
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1856-1872. https://doi.org/10.1172/JCI90253.
View: Text | PDF

Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma

  • Text
  • PDF
Abstract

Cancer cells preferentially utilize glucose and glutamine, which provide macromolecules and antioxidants that sustain rapid cell division. Metabolic reprogramming in cancer drives an increased glycolytic rate that supports maximal production of these nutrients. The folate cycle, through transfer of a carbon unit between tetrahydrofolate and its derivatives in the cytoplasmic and mitochondrial compartments, produces other metabolites that are essential for cell growth, including nucleotides, methionine, and the antioxidant NADPH. Here, using hepatocellular carcinoma (HCC) as a cancer model, we have observed a reduction in growth rate upon withdrawal of folate. We found that an enzyme in the folate cycle, methylenetetrahydrofolate dehydrogenase 1–like (MTHFD1L), plays an essential role in support of cancer growth. We determined that MTHFD1L is transcriptionally activated by NRF2, a master regulator of redox homeostasis. Our observations further suggest that MTHFD1L contributes to the production and accumulation of NADPH to levels that are sufficient to combat oxidative stress in cancer cells. The elevation of oxidative stress through MTHFD1L knockdown or the use of methotrexate, an antifolate drug, sensitizes cancer cells to sorafenib, a targeted therapy for HCC. Taken together, our study identifies MTHFD1L in the folate cycle as an important metabolic pathway in cancer cells with the potential for therapeutic targeting.

Authors

Derek Lee, Iris Ming-Jing Xu, David Kung-Chun Chiu, Robin Kit-Ho Lai, Aki Pui-Wah Tse, Lynna Lan Li, Cheuk-Ting Law, Felice Ho-Ching Tsang, Larry Lai Wei, Cerise Yuen-Ki Chan, Chun-Ming Wong, Irene Oi-Lin Ng, Carmen Chak-Lui Wong

×

Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription
Cecilia Patitucci, … , Mario Pende, Ganna Panasyuk
Cecilia Patitucci, … , Mario Pende, Ganna Panasyuk
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1873-1888. https://doi.org/10.1172/JCI90327.
View: Text | PDF

Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription

  • Text
  • PDF
Abstract

Worldwide epidemics of metabolic diseases, including liver steatosis, are associated with an increased frequency of malignancies, showing the highest positive correlation for liver cancer. The heterogeneity of liver cancer represents a clinical challenge. In liver, the transcription factor PPARγ promotes metabolic adaptations of lipogenesis and aerobic glycolysis under the control of Akt2 activity, but the role of PPARγ in liver tumorigenesis is unknown. Here we have combined preclinical mouse models of liver cancer and genetic studies of a human liver biopsy atlas with the aim of identifying putative therapeutic targets in the context of liver steatosis and cancer. We have revealed a protumoral interaction of Akt2 signaling with hepatocyte nuclear factor 1α (HNF1α) and PPARγ, transcription factors that are master regulators of hepatocyte and adipocyte differentiation, respectively. Akt2 phosphorylates and inhibits HNF1α, thus relieving the suppression of hepatic PPARγ expression and promoting tumorigenesis. Finally, we observed that pharmacological inhibition of PPARγ is therapeutically effective in a preclinical murine model of steatosis-associated liver cancer. Taken together, our studies in humans and mice reveal that Akt2 controls hepatic tumorigenesis through crosstalk between HNF1α and PPARγ.

Authors

Cecilia Patitucci, Gabrielle Couchy, Alessia Bagattin, Tatiana Cañeque, Aurélien de Reyniès, Jean-Yves Scoazec, Raphaël Rodriguez, Marco Pontoglio, Jessica Zucman-Rossi, Mario Pende, Ganna Panasyuk

×

Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome–like phenotypes
Janine M. Lamonica, … , Sigrid Veasey, Zhaolan Zhou
Janine M. Lamonica, … , Sigrid Veasey, Zhaolan Zhou
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1889-1904. https://doi.org/10.1172/JCI90967.
View: Text | PDF

Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome–like phenotypes

  • Text
  • PDF
Abstract

Mutations in the X-linked gene encoding methyl-CpG–binding protein 2 (MeCP2) cause Rett syndrome (RTT), a neurological disorder affecting cognitive development, respiration, and motor function. Genetic restoration of MeCP2 expression reverses RTT-like phenotypes in mice, highlighting the need to search for therapeutic approaches. Here, we have developed knockin mice recapitulating the most common RTT-associated missense mutation, MeCP2 T158M. We found that the T158M mutation impaired MECP2 binding to methylated DNA and destabilized MeCP2 protein in an age-dependent manner, leading to the development of RTT-like phenotypes in these mice. Genetic elevation of MeCP2 T158M expression ameliorated multiple RTT-like features, including motor dysfunction and breathing irregularities, in both male and female mice. These improvements were accompanied by increased binding of MeCP2 T158M to DNA. Further, we found that the ubiquitin/proteasome pathway was responsible for MeCP2 T158M degradation and that proteasome inhibition increased MeCP2 T158M levels. Together, these findings demonstrate that increasing MeCP2 T158M protein expression is sufficient to mitigate RTT-like phenotypes and support the targeting of MeCP2 T158M expression or stability as an alternative therapeutic approach.

Authors

Janine M. Lamonica, Deborah Y. Kwon, Darren Goffin, Polina Fenik, Brian S. Johnson, Yue Cui, Hengyi Guo, Sigrid Veasey, Zhaolan Zhou

×

Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation
Ha-Na Lee, … , John E. Coligan, Konrad Krzewski
Ha-Na Lee, … , John E. Coligan, Konrad Krzewski
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1905-1917. https://doi.org/10.1172/JCI89531.
View: Text | PDF

Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation

  • Text
  • PDF
Abstract

Proinflammatory cytokine overproduction and excessive cell death, coupled with impaired clearance of apoptotic cells, have been implicated as causes of failure to resolve gut inflammation in inflammatory bowel diseases. Here we have found that dendritic cells expressing the apoptotic cell–recognizing receptor CD300f play a crucial role in regulating gut inflammatory responses in a murine model of colonic inflammation. CD300f-deficient mice failed to resolve dextran sulfate sodium–induced colonic inflammation as a result of defects in dendritic cell function that were associated with abnormal accumulation of apoptotic cells in the gut. CD300f-deficient dendritic cells displayed hyperactive phagocytosis of apoptotic cells, which stimulated excessive TNF-α secretion predominantly from dendritic cells. This, in turn, induced secondary IFN-γ overproduction by colonic T cells, leading to prolonged gut inflammation. Our data highlight a previously unappreciated role for dendritic cells in controlling gut homeostasis and show that CD300f-dependent regulation of apoptotic cell uptake is essential for suppressing overactive dendritic cell–mediated inflammatory responses, thereby controlling the development of chronic gut inflammation.

Authors

Ha-Na Lee, Linjie Tian, Nicolas Bouladoux, Jacquice Davis, Mariam Quinones, Yasmine Belkaid, John E. Coligan, Konrad Krzewski

×

Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia
Hiroshi Okuda, … , Akifumi Takaori-Kondo, Akihiko Yokoyama
Hiroshi Okuda, … , Akifumi Takaori-Kondo, Akihiko Yokoyama
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1918-1931. https://doi.org/10.1172/JCI91406.
View: Text | PDF

Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia

  • Text
  • PDF
Abstract

The eleven-nineteen leukemia (ENL) protein family, composed of ENL and AF9, is a common component of 3 transcriptional modulators: AF4–ENL–P-TEFb complex (AEP), DOT1L-AF10-ENL complex (referred to as the DOT1L complex) and polycomb-repressive complex 1 (PRC1). Each complex associates with chromatin via distinct mechanisms, conferring different transcriptional properties including activation, maintenance, and repression. The mixed-lineage leukemia (MLL) gene often fuses with ENL and AF10 family genes in leukemia. However, the functional interrelationship among those 3 complexes in leukemic transformation remains largely elusive. Here, we have shown that MLL-ENL and MLL-AF10 constitutively activate transcription by aberrantly inducing both AEP-dependent transcriptional activation and DOT1L-dependent transcriptional maintenance, mostly in the absence of PRC1, to fully transform hematopoietic progenitors. These results reveal a cooperative transcriptional activation mechanism of AEP and DOT1L and suggest a molecular rationale for the simultaneous inhibition of the MLL fusion–AF4 complex and DOT1L for more effective treatment of MLL-rearranged leukemia.

Authors

Hiroshi Okuda, Boban Stanojevic, Akinori Kanai, Takeshi Kawamura, Satoshi Takahashi, Hirotaka Matsui, Akifumi Takaori-Kondo, Akihiko Yokoyama

×

Increased salt consumption induces body water conservation and decreases fluid intake
Natalia Rakova, … , Friedrich C. Luft, Jens Titze
Natalia Rakova, … , Friedrich C. Luft, Jens Titze
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1932-1943. https://doi.org/10.1172/JCI88530.
View: Text | PDF Clinical Research and Public Health

Increased salt consumption induces body water conservation and decreases fluid intake

  • Text
  • PDF
Abstract

BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions.

METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance.

RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion.

CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion.

FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever.

Authors

Natalia Rakova, Kento Kitada, Kathrin Lerchl, Anke Dahlmann, Anna Birukov, Steffen Daub, Christoph Kopp, Tetyana Pedchenko, Yahua Zhang, Luis Beck, Bernd Johannes, Adriana Marton, Dominik N. Müller, Manfred Rauh, Friedrich C. Luft, Jens Titze

×

High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation
Kento Kitada, … , Jeff M. Sands, Jens Titze
Kento Kitada, … , Jeff M. Sands, Jens Titze
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1944-1959. https://doi.org/10.1172/JCI88532.
View: Text | PDF

High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation

  • Text
  • PDF
Abstract

Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter–driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.

Authors

Kento Kitada, Steffen Daub, Yahua Zhang, Janet D. Klein, Daisuke Nakano, Tetyana Pedchenko, Louise Lantier, Lauren M. LaRocque, Adriana Marton, Patrick Neubert, Agnes Schröder, Natalia Rakova, Jonathan Jantsch, Anna E. Dikalova, Sergey I. Dikalov, David G. Harrison, Dominik N. Müller, Akira Nishiyama, Manfred Rauh, Raymond C. Harris, Friedrich C. Luft, David H. Wasserman, Jeff M. Sands, Jens Titze

×

PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells
Xiong Ni, … , Jianmin Wang, Defu Zeng
Xiong Ni, … , Jianmin Wang, Defu Zeng
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1960-1977. https://doi.org/10.1172/JCI91138.
View: Text | PDF

PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells

  • Text
  • PDF
Abstract

Programmed death ligand-1 (PD-L1) interacts with programmed death-1 (PD-1) and the immunostimulatory molecule CD80 and functions as a checkpoint to regulate immune responses. The interaction of PD-L1 with CD80 alone has been shown to exacerbate the severity of graft-versus-host disease (GVHD), whereas costimulation of CD80 and PD-1 ameliorates GVHD. Here we have demonstrated that temporary depletion of donor CD4+ T cells early after hematopoietic cell transplantation effectively prevents GVHD while preserving strong graft-versus-leukemia (GVL) effects in allogeneic and xenogeneic murine GVHD models. Depletion of donor CD4+ T cells increased serum IFN-γ but reduced IL-2 concentrations, leading to upregulation of PD-L1 expression by recipient tissues and donor CD8+ T cells. In GVHD target tissues, the interactions of PD-L1 with PD-1 on donor CD8+ T cells cause anergy, exhaustion, and apoptosis, thereby preventing GVHD. In lymphoid tissues, the interactions of PD-L1 with CD80 augment CD8+ T cell expansion without increasing anergy, exhaustion, or apoptosis, resulting in strong GVL effects. These results indicate that the outcome of PD-L1–mediated signaling in CD8+ T cells depends on the presence or absence of CD4+ T cells, the nature of the interacting receptor expressed by CD8+ T cells, and the tissue environment in which the signaling occurs.

Authors

Xiong Ni, Qingxiao Song, Kaniel Cassady, Ruishu Deng, Hua Jin, Mingfeng Zhang, Haidong Dong, Stephen Forman, Paul J. Martin, Yuan-Zhong Chen, Jianmin Wang, Defu Zeng

×

Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism
Wenting Wang, … , Zhanyan Fu, Guoping Feng
Wenting Wang, … , Zhanyan Fu, Guoping Feng
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1978-1990. https://doi.org/10.1172/JCI87997.
View: Text | PDF

Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

  • Text
  • PDF
Abstract

The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.

Authors

Wenting Wang, Chenchen Li, Qian Chen, Marie-Sophie van der Goes, James Hawrot, Annie Y. Yao, Xian Gao, Congyi Lu, Ying Zang, Qiangge Zhang, Katherine Lyman, Dongqing Wang, Baolin Guo, Shengxi Wu, Charles R. Gerfen, Zhanyan Fu, Guoping Feng

×

Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency
Julien Cottineau, … , Agata Smogorzewska, Emmanuelle Jouanguy
Julien Cottineau, … , Agata Smogorzewska, Emmanuelle Jouanguy
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1991-2006. https://doi.org/10.1172/JCI90727.
View: Text | PDF

Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency

  • Text
  • PDF
Abstract

Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component–encoding genes are embryonic lethal in mice. The patients’ fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients’ cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.

Authors

Julien Cottineau, Molly C. Kottemann, Francis P. Lach, Young-Hoon Kang, Frédéric Vély, Elissa K. Deenick, Tomi Lazarov, Laure Gineau, Yi Wang, Andrea Farina, Marie Chansel, Lazaro Lorenzo, Christelle Piperoglou, Cindy S. Ma, Patrick Nitschke, Aziz Belkadi, Yuval Itan, Bertrand Boisson, Fabienne Jabot-Hanin, Capucine Picard, Jacinta Bustamante, Céline Eidenschenk, Soraya Boucherit, Nathalie Aladjidi, Didier Lacombe, Pascal Barat, Waseem Qasim, Jane A. Hurst, Andrew J. Pollard, Holm H. Uhlig, Claire Fieschi, Jean Michon, Vladimir P. Bermudez, Laurent Abel, Jean-Pierre de Villartay, Frédéric Geissmann, Stuart G. Tangye, Jerard Hurwitz, Eric Vivier, Jean-Laurent Casanova, Agata Smogorzewska, Emmanuelle Jouanguy

×

Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer
Xiangsheng Liu, … , Andre E. Nel, Huan Meng
Xiangsheng Liu, … , Andre E. Nel, Huan Meng
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):2007-2018. https://doi.org/10.1172/JCI92284.
View: Text | PDF

Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is almost uniformly fatal; however, some improvement in overall survival has been achieved with the introduction of nanocarriers that deliver irinotecan or paclitaxel. Although it is generally assumed that nanocarriers rely principally on abnormal leaky vasculature for tumor access, a transcytosis transport pathway that is regulated by neuropilin-1 (NRP-1) has recently been reported. NRP-1–mediated transport can be triggered by the cyclic tumor-penetrating peptide iRGD. In a KRAS-induced orthotopic PDAC model, coadministration of iRGD enhanced the uptake of an irinotecan-loaded silicasome carrier that comprises lipid bilayer–coated mesoporous silica nanoparticles (MSNPs); this uptake resulted in enhanced survival and markedly reduced metastasis. Further, ultrastructural imaging of the treated tumors revealed that iRGD coadministration induced a vesicular transport pathway that carried Au-labeled silicacomes from the blood vessel lumen to a perinuclear site within cancer cells. iRGD-mediated enhancement of silicasome uptake was also observed in patient-derived xenografts, commensurate with the level of NRP-1 expression on tumor blood vessels. These results demonstrate that iRGD enhances the efficacy of irinotecan-loaded silicasome–based therapy and may be a suitable adjuvant in nanoparticle-based treatments for PDAC.

Authors

Xiangsheng Liu, Paulina Lin, Ian Perrett, Joshua Lin, Yu-Pei Liao, Chong Hyun Chang, Jinhong Jiang, Nanping Wu, Timothy Donahue, Zev Wainberg, Andre E. Nel, Huan Meng

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts