Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism
Wenting Wang, Chenchen Li, Qian Chen, Marie-Sophie van der Goes, James Hawrot, Annie Y. Yao, Xian Gao, Congyi Lu, Ying Zang, Qiangge Zhang, Katherine Lyman, Dongqing Wang, Baolin Guo, Shengxi Wu, Charles R. Gerfen, Zhanyan Fu, Guoping Feng
Wenting Wang, Chenchen Li, Qian Chen, Marie-Sophie van der Goes, James Hawrot, Annie Y. Yao, Xian Gao, Congyi Lu, Ying Zang, Qiangge Zhang, Katherine Lyman, Dongqing Wang, Baolin Guo, Shengxi Wu, Charles R. Gerfen, Zhanyan Fu, Guoping Feng
View: Text | PDF
Research Article Neuroscience

Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

  • Text
  • PDF
Abstract

The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.

Authors

Wenting Wang, Chenchen Li, Qian Chen, Marie-Sophie van der Goes, James Hawrot, Annie Y. Yao, Xian Gao, Congyi Lu, Ying Zang, Qiangge Zhang, Katherine Lyman, Dongqing Wang, Baolin Guo, Shengxi Wu, Charles R. Gerfen, Zhanyan Fu, Guoping Feng

×

Figure 1

Differential effects of Shank3 deletion on glutamatergic synaptic transmission in D1 and D2 MSNs.

Options: View larger image (or click on image) Download as PowerPoint
Differential effects of Shank3 deletion on glutamatergic synaptic transm...
(A and B) Representative recording traces of AMPA-mediated mEPSCs of D1 MSNs (A) and D2 MSNs (B) in the presence of TTX (0.5 μM), PTX (100 μM), and DL-APV (50 μM) from acute striatal brain slices. (C and D) Summary data of mEPSC frequency (C) and peak amplitude (pA) (D) from D1 MSNs and D2 MSNs of WT and KO mice (mEPSC frequency: WT D1, n = 17, N = 4, KO D1, n = 17, N = 4, P = 0.73. WT D2, n = 13, N = 3; KO D2, n = 13, N = 3, P = 0.0039; mEPSC amplitude: WT D1 and KO D1, P = 0.053. WT D2 and KO D2, P = 0.006). (E) Representative traces and summary data of PPR of D1 MSNs from WT and KO mice. (F) Representative traces and summary data of PPR of D2 MSNs from WT and KO mice (PPR: WT D1, n = 17, N = 4, KO D1, n = 18, N = 4, P = 0.67; WT D2, n = 15, N = 4, KO D2, n = 15, N = 4, P = 0.048). An unpaired t test was used for comparisons. *P < 0.05; **P < 0.01. n, cell number; N, animal number.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts