Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans
Federica Buonocore, … , Annette Grüters, John C. Achermann
Federica Buonocore, … , Annette Grüters, John C. Achermann
Published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1700-1713. https://doi.org/10.1172/JCI91913.
View: Text | PDF
Research Article Endocrinology Genetics

Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans

  • Text
  • PDF
Abstract

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.

Authors

Federica Buonocore, Peter Kühnen, Jenifer P. Suntharalingham, Ignacio Del Valle, Martin Digweed, Harald Stachelscheid, Noushafarin Khajavi, Mohammed Didi, Angela F. Brady, Oliver Blankenstein, Annie M. Procter, Paul Dimitri, Jerry K.H. Wales, Paolo Ghirri, Dieter Knöbl, Brigitte Strahm, Miriam Erlacher, Marcin W. Wlodarski, Wei Chen, George K. Kokai, Glenn Anderson, Deborah Morrogh, Dale A. Moulding, Shane A. McKee, Charlotte M. Niemeyer, Annette Grüters, John C. Achermann

×

Figure 1

Mutations in SAMD9 identified in 8 patients with IUGR and a multisystem disorder.

Options: View larger image (or click on image) Download as PowerPoint
Mutations in SAMD9 identified in 8 patients with IUGR and a multisystem ...
(A) Adrenal and testis histology from patient 4. Top: Small islands of adrenal tissue (Ad) were identified in perinephric fat. Scale bar: 1 mm. Bottom: Testis showing rare Leydig cells (arrows) between seminiferous cords. Scale bar: 100 μm. (B) The location of SAMD9, SAMD9L, and HEPACAM2 on chromosome 7q21.2. (C) Mutations resulting in increased growth repression are shown in black. Acquired somatic loss-of-function mutations are shown in red. (D) Conservation of SAMD9 protein sequence in different species, with the position of mutated residues shown in red. Human SAMD9 is shown on top. Human SAMD9L is shown at the bottom.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts