Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency
Julien Cottineau, … , Agata Smogorzewska, Emmanuelle Jouanguy
Julien Cottineau, … , Agata Smogorzewska, Emmanuelle Jouanguy
Published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1991-2006. https://doi.org/10.1172/JCI90727.
View: Text | PDF
Research Article Immunology

Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency

  • Text
  • PDF
Abstract

Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component–encoding genes are embryonic lethal in mice. The patients’ fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients’ cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.

Authors

Julien Cottineau, Molly C. Kottemann, Francis P. Lach, Young-Hoon Kang, Frédéric Vély, Elissa K. Deenick, Tomi Lazarov, Laure Gineau, Yi Wang, Andrea Farina, Marie Chansel, Lazaro Lorenzo, Christelle Piperoglou, Cindy S. Ma, Patrick Nitschke, Aziz Belkadi, Yuval Itan, Bertrand Boisson, Fabienne Jabot-Hanin, Capucine Picard, Jacinta Bustamante, Céline Eidenschenk, Soraya Boucherit, Nathalie Aladjidi, Didier Lacombe, Pascal Barat, Waseem Qasim, Jane A. Hurst, Andrew J. Pollard, Holm H. Uhlig, Claire Fieschi, Jean Michon, Vladimir P. Bermudez, Laurent Abel, Jean-Pierre de Villartay, Frédéric Geissmann, Stuart G. Tangye, Jerard Hurwitz, Eric Vivier, Jean-Laurent Casanova, Agata Smogorzewska, Emmanuelle Jouanguy

×

Figure 1

NK cell and neutrophil deficiency.

Options: View larger image (or click on image) Download as PowerPoint
NK cell and neutrophil deficiency.
(A) Representative flow cytometry plo...
(A) Representative flow cytometry plots of peripheral total NK cells in PBMCs from a travel control and 4 patients. (B) Quantification, by flow cytometry, of peripheral total, CD56bright, and CD56dim NK cells, in the travel controls and patients (*P < 0.05, **P < 0.01, ***P < 0.001; 1-way bidirectional ANOVA). Het, heterozygote. (C) NK cell expansion upon cytokine stimulation was assessed by culture of PBMCs with complete medium supplemented or not with IL-2 (100 U/ml) or IL-15 (10 ng/ml) for 3.5 days. (D) Quantification, by flow cytometry, of peripheral total ILC and ILC1, ILC2, and ILC3 subsets in CD45+ PBMCs, MAIT (CD3+Vα7.2+CD161hi) cells and NKT (CD3+Vα24+Vβ11+) cells in the travel controls and patients. ns, not significant. (E) Neutrophil counts of 4 patients. (F) Analysis of neutrophil precursors in the bone marrow of 4 patients. Patient P5 was treated by G-CSF.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts