Recently published - More

Abstract

Atherosclerosis is a chronic inflammatory disease, and developing therapies to promote its regression is an important clinical goal. We previously established that atherosclerosis regression is characterized by an overall decrease in plaque macrophages and enrichment in markers of alternatively activated M2 macrophages. We have now investigated the origin and functional requirement for M2 macrophages in regression in normolipidemic mice that received transplants of atherosclerotic aortic segments. We compared plaque regression in WT normolipidemic recipients and those deficient in chemokine receptors necessary to recruit inflammatory Ly6Chi (Ccr2–/– or Cx3cr1–/–) or patrolling Ly6Clo (Ccr5–/–) monocytes. Atherosclerotic plaques transplanted into WT or Ccr5–/– recipients showed reduced macrophage content and increased M2 markers consistent with plaque regression, whereas plaques transplanted into Ccr2–/– or Cx3cr1–/– recipients lacked this regression signature. The requirement of recipient Ly6Chi monocyte recruitment was confirmed in cell trafficking studies. Fate-mapping and single-cell RNA sequencing studies also showed that M2-like macrophages were derived from newly recruited monocytes. Furthermore, we used recipient mice deficient in STAT6 to demonstrate a requirement for this critical component of M2 polarization in atherosclerosis regression. Collectively, these results suggest that continued recruitment of Ly6Chi inflammatory monocytes and their STAT6-dependent polarization to the M2 state are required for resolution of atherosclerotic inflammation and plaque regression.

Authors

Karishma Rahman, Yuliya Vengrenyuk, Stephen A. Ramsey, Noemi Rotllan Vila, Natasha M. Girgis, Jianhua Liu, Viktoria Gusarova, Jesper Gromada, Ada Weinstock, Kathryn J. Moore, P’ng Loke, Edward A. Fisher

×

Abstract

Non-muscle–invasive bladder cancer (NMIBC) is a highly recurrent tumor despite intravesical immunotherapy instillation with the bacillus Calmette-Guérin (BCG) vaccine. In a prospective longitudinal study, we took advantage of BCG instillations, which increase local immune infiltration, to characterize immune cell populations in the urine of patients with NMIBC as a surrogate for the bladder tumor microenvironment. We observed an infiltration of neutrophils, T cells, monocytic myeloid-derived suppressor cells (M-MDSCs), and group 2 innate lymphoid cells (ILC2). Notably, patients with a T cell–to-MDSC ratio of less than 1 showed dramatically lower recurrence-free survival than did patients with a ratio of greater than 1. Analysis of early and later time points indicated that this patient dichotomy existed prior to BCG treatment. ILC2 frequency was associated with detectable IL-13 in the urine and correlated with the level of recruited M-MDSCs, which highly expressed IL-13 receptor α1. In vitro, ILC2 were increased and potently expressed IL-13 in the presence of BCG or tumor cells. IL-13 induced the preferential recruitment and suppressive function of monocytes. Thus, the T cell–to-MDSC balance, associated with a skewing toward type 2 immunity, may predict bladder tumor recurrence and influence the mortality of patients with muscle-invasive cancer. Moreover, these results underline the ILC2/IL-13 axis as a targetable pathway to curtail the M-MDSC compartment and improve bladder cancer treatment.

Authors

Mathieu F. Chevalier, Sara Trabanelli, Julien Racle, Bérengère Salomé, Valérie Cesson, Dalila Gharbi, Perrine Bohner, Sonia Domingos-Pereira, Florence Dartiguenave, Anne-Sophie Fritschi, Daniel E. Speiser, Cyrill A. Rentsch, David Gfeller, Patrice Jichlinski, Denise Nardelli-Haefliger, Camilla Jandus, Laurent Derré

×

Abstract

Programmed death-1–directed (PD-1–directed) immune checkpoint blockade results in durable antitumor activity in many advanced malignancies. Recent studies suggest that IFN-γ is a critical driver of programmed death ligand-1 (PD-L1) expression in cancer and host cells, and baseline intratumoral T cell infiltration may improve response likelihood to anti–PD-1 therapies, including pembrolizumab. However, whether quantifying T cell–inflamed microenvironment is a useful pan-tumor determinant of PD-1–directed therapy response has not been rigorously evaluated. Here, we analyzed gene expression profiles (GEPs) using RNA from baseline tumor samples of pembrolizumab-treated patients. We identified immune-related signatures correlating with clinical benefit using a learn-and-confirm paradigm based on data from different clinical studies of pembrolizumab, starting with a small pilot of 19 melanoma patients and eventually defining a pan-tumor T cell–inflamed GEP in 220 patients with 9 cancers. Predictive value was independently confirmed and compared with that of PD-L1 immunohistochemistry in 96 patients with head and neck squamous cell carcinoma. The T cell–inflamed GEP contained IFN-γ–responsive genes related to antigen presentation, chemokine expression, cytotoxic activity, and adaptive immune resistance, and these features were necessary, but not always sufficient, for clinical benefit. The T cell–inflamed GEP has been developed into a clinical-grade assay that is currently being evaluated in ongoing pembrolizumab trials.

Authors

Mark Ayers, Jared Lunceford, Michael Nebozhyn, Erin Murphy, Andrey Loboda, David R. Kaufman, Andrew Albright, Jonathan D. Cheng, S. Peter Kang, Veena Shankaran, Sarina A. Piha-Paul, Jennifer Yearley, Tanguy Y. Seiwert, Antoni Ribas, Terrill K. McClanahan

×

Abstract

An increase in hepatic glucose production (HGP) represents a key feature of type 2 diabetes. This deficiency in metabolic control of glucose production critically depends on enhanced signaling through hepatic glucagon receptors (GCGRs). Here, we have demonstrated that selective inactivation of the GPCR-associated protein β-arrestin 2 in hepatocytes of adult mice results in greatly increased hepatic GCGR signaling, leading to striking deficits in glucose homeostasis. However, hepatocyte-specific β-arrestin 2 deficiency did not affect hepatic insulin sensitivity or β-adrenergic signaling. Adult mice lacking β-arrestin 1 selectively in hepatocytes did not show any changes in glucose homeostasis. Importantly, hepatocyte-specific overexpression of β-arrestin 2 greatly reduced hepatic GCGR signaling and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Our data support the concept that strategies aimed at enhancing hepatic β-arrestin 2 activity could prove useful for suppressing HGP for therapeutic purposes.

Authors

Lu Zhu, Mario Rossi, Yinghong Cui, Regina J. Lee, Wataru Sakamoto, Nicole A. Perry, Nikhil M. Urs, Marc G. Caron, Vsevolod V. Gurevich, Grzegorz Godlewski, George Kunos, Minyong Chen, Wei Chen, Jürgen Wess

×

Abstract

In rheumatoid arthritis (RA), immunological triggers at mucosal sites, such as the gut microbiota, may promote autoimmunity that affects joints. Here, we used discovery-based proteomics to detect HLA-DR–presented peptides in synovia or peripheral blood mononuclear cells and identified 2 autoantigens, N-acetylglucosamine-6-sulfatase (GNS) and filamin A (FLNA), as targets of T and B cell responses in 52% and 56% of RA patients, respectively. Both GNS and FLNA were highly expressed in synovia. GNS appeared to be citrullinated, and GNS antibody values correlated with anti–citrullinated protein antibody (ACPA) levels. FLNA did not show the same results. The HLA-DR–presented GNS peptide has marked sequence homology with epitopes from sulfatase proteins of the Prevotella sp. and Parabacteroides sp., whereas the HLA-DR–presented FLNA peptide has homology with epitopes from proteins of the Prevotella sp. and Butyricimonas sp., another gut commensal. Patients with T cell reactivity with each self-peptide also had responses to the corresponding microbial peptides, and the levels were directly correlated. Furthermore, HLA-DR molecules encoded by shared-epitope (SE) alleles were predicted to bind these self- and microbial peptides strongly, and these responses were more common in RA patients with SE alleles. Thus, sequence homology between T cell epitopes of 2 self-proteins and a related order of gut microbes may provide a link between mucosal and joint immunity in patients with RA.

Authors

Annalisa Pianta, Sheila L. Arvikar, Klemen Strle, Elise E. Drouin, Qi Wang, Catherine E. Costello, Allen C. Steere

×

Abstract

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. It has shown promise as a cancer therapeutic in preclinical studies and early-phase clinical trials. Here, we have identified anthrax toxin receptor 1 (ANTXR1) as the receptor for SVV using genome-wide loss-of-function screens. ANTXR1 is necessary for permissivity in vitro and in vivo. However, robust SVV replication requires an additional innate immune defect. We found that SVV interacts directly and specifically with ANTXR1, that this interaction is required for SVV binding to permissive cells, and that ANTXR1 expression is necessary and sufficient for infection in cell lines with decreased expression of antiviral IFN genes at baseline. Finally, we identified the region of the SVV capsid that is responsible for receptor recognition using cryoelectron microscopy of the SVV-ANTXR1-Fc complex. These studies identify ANTXR1, a class of receptor that is shared by a mammalian virus and a bacterial toxin, as the cellular receptor for SVV.

Authors

Linde A. Miles, Laura N. Burga, Eric E. Gardner, Mihnea Bostina, John T. Poirier, Charles M. Rudin

×

Abstract

The mechanisms that promote the generation of new coronary vasculature during cardiac homeostasis and after injury remain a fundamental and clinically important area of study in the cardiovascular field. Recently, it was reported that mesenchymal-to-endothelial transition (MEndoT) contributes to substantial numbers of coronary endothelial cells after myocardial infarction. Therefore, the MEndoT has been proposed as a paradigm mediating neovascularization and is considered a promising therapeutic target in cardiac regeneration. Here, we show that preexisting endothelial cells mainly beget new coronary vessels in the adult mouse heart, with essentially no contribution from other cell sources through cell-lineage transdifferentiation. Genetic-lineage tracing revealed that cardiac fibroblasts expand substantially after injury, but do not contribute to the formation of new coronary blood vessels, indicating no contribution of MEndoT to neovascularization. Moreover, genetic-lineage tracing with a pulse-chase labeling strategy also showed that essentially all new coronary vessels in the injured heart are derived from preexisting endothelial cells, but not from other cell lineages. These data indicate that therapeutic strategies for inducing neovascularization should not be based on targeting presumptive lineage transdifferentiation such as MEndoT. Instead, preexisting endothelial cells appear more likely to be the therapeutic target for promoting neovascularization and driving heart regeneration after injury.

Authors

Lingjuan He, Xiuzhen Huang, Onur Kanisicak, Yi Li, Yue Wang, Yan Li, Wenjuan Pu, Qiaozhen Liu, Hui Zhang, Xueying Tian, Huan Zhao, Xiuxiu Liu, Shaohua Zhang, Yu Nie, Shengshou Hu, Xiang Miao, Qing-Dong Wang, Fengchao Wang, Ting Chen, Qingbo Xu, Kathy O. Lui, Jeffery D. Molkentin, Bin Zhou

×

Abstract

Coronary revascularization is an effective means of treating ischemic heart disease; however, current therapeutic revascularization strategies are limited to large caliber vessels. Because the mammalian heart scars following cardiac injury, recent work showing that cardiac fibroblasts can transdifferentiate into new coronary endothelium raises a new and exciting approach to promoting endogenous revascularization following cardiac injury. In this issue of the JCI, He et al. report on their employment of a battery of lineage-tracing tools to address the developmental origins of fibroblasts that give rise to new endothelial cells. Surprisingly, cardiac fibroblasts did not appear to contribute appreciably to regeneration of cardiac endothelium. Instead, cardiac endothelial cells were likely to proliferate and generate new endothelium following injury. As these conclusions diverge from prior findings, additional work will be required to understand the sources that generate cardiac endothelium in new blood vessels after injury. Clarification of the origins of coronary endothelial cells during cardiac repair is essential for identifying improved approaches to revascularizing damaged myocardium in patients with ischemic heart disease.

Authors

Ravi Karra, Agoston O. Walter, Sean M. Wu

×


Advertisement

June 2017

127 6 cover

June 2017 Issue

On the cover:
Coordinating apoptosis in activated neutrophils

Ebner et al. report that TTP regulates the timing of apoptosis in activated neutrophils via destabilization of the mRNA for the anti-apoptotic protein MCL-1. The cover image evokes the ephemeral nature of neutrophil engagement, depicting a neutrophil melting through an hourglass as it undergoes TTP-regulated apoptosis. Image credit: Florian Ebner.

×
Jci tm 2017 06

June 2017 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Nuclear Receptors

Series edited by Mitchell A. Lazar

Nuclear receptors are a class of intracellular proteins that sense and respond to a variety of endogenous hormones, vitamins, and xenobiotic endocrine disruptors by modulating gene expression. These proteins have well-established roles in the regulation of energy balance and the skeletal system, and they are emerging as important players in other areas of human physiology and disease. Humans have 48 nuclear receptors that all possess an N-terminal transactivation domain, a highly conserved central region DNA-binding domain, and a C-terminal ligand-binding domain. Ligand binding results in the transactivation of specific genes within a given tissue. Notably, a number of nuclear receptors do not have a known endogenous ligand and structural studies indicate that they may not bind ligands at all, but instead recruit other nuclear receptors or chromatin modifiers to control gene expression. Nuclear receptor activity can be modulated through interactions with other nuclear receptors or transcriptional coactivator or corepressor proteins, as well as through modulation by numerous growth factor and cytokine signaling cascades that induce various posttranslational modifications. Reviews in this series examine the role of nuclear receptors in metabolic syndrome, cardiovascular disease, liver function, hormone-dependent cancers, responses to common therapeutic agents, genetic disorders, the effects of vitamin D, and parasitic disease.

×