Recently published - More

Abstract

Chronic Helicobacter pylori infection triggers neoplastic transformation of the gastric mucosa in a small subset of patients, but the risk factors that induce progression to gastric metaplasia have not been identified. Prior to cancer development, the oxyntic gastric glands atrophy and are replaced by metaplastic cells in response to chronic gastritis. Previously, we identified schlafen 4 (Slfn4) as a GLI1 target gene and myeloid differentiation factor that correlates with spasmolytic polypeptide-expressing metaplasia (SPEM) in mice. Here, we tested the hypothesis that migration of SLFN4-expressing cells from the bone marrow to peripheral organs predicts preneoplastic changes in the gastric microenvironment. Lineage tracing in Helicobacter-infected Slfn4 reporter mice revealed that SLFN4+ cells migrated to the stomach, where they exhibited myeloid-derived suppressor cell (MDSC) markers and acquired the ability to inhibit T cell proliferation. SLFN4+ MDSCs were not observed in infected GLI1-deficient mice. Overexpression of sonic hedgehog ligand (SHH) in infected WT mice accelerated the appearance of SLFN4+ MDSCs in the gastric corpus. Similarly, in the stomachs of H. pylori–infected patients, the human SLFN4 ortholog SLFN12L colocalized to cells that expressed MDSC surface markers CD15+CD33+HLA-DRlo. Together, these results indicate that SLFN4 marks a GLI1-dependent population of MDSCs that predict a shift in the gastric mucosa to a metaplastic phenotype.

Authors

Lin Ding, Michael M. Hayes, Amanda Photenhauer, Kathryn A. Eaton, Qian Li, Ramon Ocadiz-Ruiz, Juanita L. Merchant

×

Abstract

The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.

Authors

Saskia N. van der Crabben, Marije P. Hennus, Grant A. McGregor, Deborah I. Ritter, Sandesh C.S. Nagamani, Owen S. Wells, Magdalena Harakalova, Ivan K. Chinn, Aaron Alt, Lucie Vondrova, Ron Hochstenbach, Joris M. van Montfrans, Suzanne W. Terheggen-Lagro, Stef van Lieshout, Markus J. van Roosmalen, Ivo Renkens, Karen Duran, Isaac J. Nijman, Wigard P. Kloosterman, Eric Hennekam, Jordan S. Orange, Peter M. van Hasselt, David A. Wheeler, Jan J. Palecek, Alan R. Lehmann, Antony W. Oliver, Laurence H. Pearl, Sharon E. Plon, Johanne M. Murray, Gijs van Haaften

×

Abstract

M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment.

Authors

Gorjana Rackov, Enrique Hernández-Jiménez, Rahman Shokri, Lorena Carmona-Rodríguez, Santos Mañes, Melchor Álvarez-Mon, Eduardo López-Collazo, Carlos Martínez-A, Dimitrios Balomenos

×

Abstract

In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape.

Authors

Meenakshi Hegde, Malini Mukherjee, Zakaria Grada, Antonella Pignata, Daniel Landi, Shoba A. Navai, Amanda Wakefield, Kristen Fousek, Kevin Bielamowicz, Kevin K.H. Chow, Vita S. Brawley, Tiara T. Byrd, Simone Krebs, Stephen Gottschalk, Winfried S. Wels, Matthew L. Baker, Gianpietro Dotti, Maksim Mamonkin, Malcolm K. Brenner, Jordan S. Orange, Nabil Ahmed

×

Abstract

Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.

Authors

Minjie Zhang, Sriniwasan B. Mani, Yao He, Amber M. Hall, Lin Xu, Yefu Li, David Zurakowski, Gregory D. Jay, Matthew L. Warman

×

Abstract

Vision impairments and blindness caused by retinitis pigmentosa result from severe neurodegeneration that leads to a loss of photoreceptors, the specialized light-sensitive neurons that enable vision. Although the mammalian nervous system is unable to replace neurons lost due to degeneration, therapeutic approaches to reprogram resident glial cells to replace retinal neurons have been proposed. Here, we demonstrate that retinal Müller glia can be reprogrammed in vivo into retinal precursors that then differentiate into photoreceptors. We transplanted hematopoietic stem and progenitor cells (HSPCs) into retinas affected by photoreceptor degeneration and observed spontaneous cell fusion events between Müller glia and the transplanted cells. Activation of Wnt signaling in the transplanted HSPCs enhanced survival and proliferation of Müller-HSPC hybrids as well as their reprogramming into intermediate photoreceptor precursors. This suggests that Wnt signaling drives the reprogrammed cells toward a photoreceptor progenitor fate. Finally, Müller-HSPC hybrids differentiated into photoreceptors. Transplantation of HSPCs with activated Wnt functionally rescued the retinal degeneration phenotype in rd10 mice, a model for inherited retinitis pigmentosa. Together, these results suggest that photoreceptors can be generated by reprogramming Müller glia and that this approach may have potential as a strategy for reversing retinal degeneration.

Authors

Daniela Sanges, Giacoma Simonte, Umberto Di Vicino, Neus Romo, Isabel Pinilla, Marta Nicolás Farrés, Maria Pia Cosma

×




Advertisement

July 2016

126 7 cover

July 2016 Issue

On the cover:
Mitochondrial metabolism in asthma

The cover image is a false-colored electron micrograph showing the ultrastructure of mitochondria in bronchial epithelium from an asthmatic. On page 2465, Xu et al. describe a protective role for arginine metabolism in maintaining airway epithelial cell bioenergetics and inhibiting inflammation.

×
Jci this month 2016 07

July 2016 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Extracellular Vesicles

Series edited by Laurence Zitvogel

Cell-to-cell communication is an essential component in multicellular organisms, allowing for rapid, coordinated responses to changes within the environment. Classical signaling mediators include direct cell-cell contact as well as secreted factors, such as cytokines, metabolites, and hormones. In the past decade, extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, have emerged as important mediators of intercellular communication. EVs are double-membrane vesicles containing cargoes of multiple proteins, lipids, and nucleic acids, which are derived from their cells of origin, and EV cargoes can change depending on the status of their originating cells. Importantly, EVs are found in all body fluids and can carry their cargoes to distant sites within the body as well as neighboring cells. Reviews in this series discuss the role of EV-mediated signaling in physiological and pathophysiological conditions, including infection, host immune responses, and cancer. Additionally, these reviews cover the potential clinical use of EVs as therapeutics and diagnostic biomarkers.

×