Recently published - More

Abstract

Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis.

Authors

Takuwa Yasuda, Toshiyuki Fukada, Keigo Nishida, Manabu Nakayama, Masashi Matsuda, Ikuo Miura, Teruki Dainichi, Shinji Fukuda, Kenji Kabashima, Shinji Nakaoka, Bum-Ho Bin, Masato Kubo, Hiroshi Ohno, Takanori Hasegawa, Osamu Ohara, Haruhiko Koseki, Shigeharu Wakana, Hisahiro Yoshida

×

Abstract

The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.

Authors

Daniela Benati, Moran Galperin, Olivier Lambotte, Stéphanie Gras, Annick Lim, Madhura Mukhopadhyay, Alexandre Nouël, Kristy-Anne Campbell, Brigitte Lemercier, Mathieu Claireaux, Samia Hendou, Pierre Lechat, Pierre de Truchis, Faroudy Boufassa, Jamie Rossjohn, Jean-François Delfraissy, Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti

×

Abstract

Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation.

Authors

Kara Gross Margolis, Zhishan Li, Korey Stevanovic, Virginia Saurman, Narek Israelyan, George M. Anderson, Isaac Snyder, Jeremy Veenstra-VanderWeele, Randy D. Blakely, Michael D. Gershon

×

Abstract

IFN-γ is a critical mediator of host defense against Mycobacterium tuberculosis (Mtb) infection. Antigen-specific CD4+ T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4+ T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by Mtb antigen–independent memory CD8+ T cells and NK cells is protective during Mtb infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8+ T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ–dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability, Mtb protein 6-kDa early secretory antigenic target–mediated (ESAT-6–mediated) cytosolic contact, and activation of NLR family pyrin domain–containing protein 3 (NLRP3) inflammasomes in CD11c+ cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine–induced protection was lost in the absence of ESAT-6–dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to Mtb with critical implications for future intervention strategies against TB.

Authors

Andreas Kupz, Ulrike Zedler, Manuela Stäber, Carolina Perdomo, Anca Dorhoi, Roland Brosch, Stefan H.E. Kaufmann

×

Abstract

BACKGROUND. T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR–T cell products were prepared from unselected T cells.

METHODS. We conducted a clinical trial to evaluate CD19 CAR–T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy.

RESULTS. The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR–T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR–T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell–mediated anti-CAR transgene product immune responses developed after CAR–T cell infusion in some patients, limited CAR–T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR–T cell persistence and disease-free survival.

CONCLUSION. Immunotherapy with a CAR–T cell product of defined composition enabled identification of factors that correlated with CAR–T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR–T cell dosing strategies that mitigated toxicity and improved disease-free survival.

TRIAL REGISTRATION. ClinicalTrials.gov NCT01865617.

FUNDING. R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation.

Authors

Cameron J. Turtle, Laïla-Aïcha Hanafi, Carolina Berger, Theodore A. Gooley, Sindhu Cherian, Michael Hudecek, Daniel Sommermeyer, Katherine Melville, Barbara Pender, Tanya M. Budiarto, Emily Robinson, Natalia N. Steevens, Colette Chaney, Lorinda Soma, Xueyan Chen, Cecilia Yeung, Brent Wood, Daniel Li, Jianhong Cao, Shelly Heimfeld, Michael C. Jensen, Stanley R. Riddell, David G. Maloney

×

Abstract

A eubiotic microbiota influences many physiological processes in the metazoan host, including development and intestinal homeostasis. Here, we have shown that the intestinal microbiota modulates inflammatory responses caused by sex steroid deficiency, leading to trabecular bone loss. In murine models, sex steroid deficiency increased gut permeability, expanded Th17 cells, and upregulated the osteoclastogenic cytokines TNFα (TNF), RANKL, and IL-17 in the small intestine and the BM. In germ-free (GF) mice, sex steroid deficiency failed to increase osteoclastogenic cytokine production, stimulate bone resorption, and cause trabecular bone loss, demonstrating that the gut microbiota is central in sex steroid deficiency–induced trabecular bone loss. Furthermore, we demonstrated that twice-weekly treatment of sex steroid–deficient mice with the probiotics Lactobacillus rhamnosus GG (LGG) or the commercially available probiotic supplement VSL#3 reduces gut permeability, dampens intestinal and BM inflammation, and completely protects against bone loss. In contrast, supplementation with a nonprobiotic strain of E. coli or a mutant LGG was not protective. Together, these data highlight the role that the gut luminal microbiota and increased gut permeability play in triggering inflammatory pathways that are critical for inducing bone loss in sex steroid–deficient mice. Our data further suggest that probiotics that decrease gut permeability have potential as a therapeutic strategy for postmenopausal osteoporosis.

Authors

Jau-Yi Li, Benoit Chassaing, Abdul Malik Tyagi, Chiara Vaccaro, Tao Luo, Jonathan Adams, Trevor M. Darby, M. Neale Weitzmann, Jennifer G. Mulle, Andrew T. Gewirtz, Rheinallt M. Jones, Roberto Pacifici

×

Abstract

In this issue of the JCI, Li et al. show that germ-free mice, when chemically castrated, do not lose bone — a finding that unequivocally establishes a role of gut microbiota in mediating hypogonadal bone loss. Additionally and not unexpectedly, probiotics reversed hypogonadal osteopenia in sex steroid–deficient mice by preventing the disruption of gut barrier function and dampening cytokine-induced inflammation. The authors propose that TNFα is a key mediator; however, it is very likely that other molecules — including IL-1, IL-6, IL-17, RANKL, OPG, and CCL2 — modulate probiotic action. The results of this study highlight the potential for repurposing probiotics for the therapy of osteoporosis. Future placebo-controlled clinical trials will be required to establish safety and efficacy of probiotics in reducing fracture risk in people.

Authors

Jameel Iqbal, Tony Yuen, Li Sun, Mone Zaidi

×

Advertisement

April 2016

126 4 cover

April 2016 Issue

On the cover:
Extracellular vesicles in vascular calcification

The cover image is a density-dependent color scanning electron micrograph of a calcified human carotid artery atherosclerotic plaque, with dense, calcified areas shown in orange and less dense components of the plaque shown in green. On page 1323, Goettsch et al. report that sortilin regulates vascular calcification that is mediated by extracellular vesicle release. Image credit: Sergio Bertazzo.

×
Jci tm 2016 04

April 2016 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Extracellular Vesicles

Series edited by Laurence Zitvogel

Cell-to-cell communication is an essential component in multicellular organisms, allowing for rapid, coordinated responses to changes within the environment. Classical signaling mediators include direct cell-cell contact as well as secreted factors, such as cytokines, metabolites, and hormones. In the past decade, extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, have emerged as important mediators of intercellular communication. EVs are double-membrane vesicles containing cargoes of multiple proteins, lipids, and nucleic acids, which are derived from their cells of origin, and EV cargoes can change depending on the status of their originating cells. Importantly, EVs are found in all body fluids and can carry their cargoes to distant sites within the body as well as neighboring cells. Reviews in this series discuss the role of EV-mediated signaling in physiological and pathophysiological conditions, including infection, host immune responses, and cancer. Additionally, these reviews cover the potential clinical use of EVs as therapeutics and diagnostic biomarkers.

×