Recently published - More

Abstract

Chromosomal translocation that results in fusion of the genes encoding RNA-binding protein EWS and transcription factor FLI1 (EWS-FLI1) is pathognomonic for Ewing sarcoma. EWS-FLI1 alters gene expression through mechanisms that are not completely understood. We performed RNA sequencing (RNAseq) analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify gene targets of this oncoprotein. We determined that long noncoding RNA-277 (Ewing sarcoma–associated transcript 1 [EWSAT1]) is upregulated by EWS-FLI1 in pMPCs. Inhibition of EWSAT1 expression diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar, whereas EWSAT1 inhibition had no effect on other cell types tested. Expression of EWS-FLI1 and EWSAT1 repressed gene expression, and a substantial fraction of targets that were repressed by EWS-FLI1 were also repressed by EWSAT1. Analysis of RNAseq data from primary human Ewing sarcoma further supported a role for EWSAT1 in mediating gene repression. We identified heterogeneous nuclear ribonucleoprotein (HNRNPK) as an RNA-binding protein that interacts with EWSAT1 and found a marked overlap in HNRNPK-repressed genes and those repressed by EWS-FLI1 and EWSAT1, suggesting that HNRNPK participates in EWSAT1-mediated gene repression. Together, our data reveal that EWSAT1 is a downstream target of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes.

Authors

Michelle Marques Howarth ... Paul Khavari, E. Alejandro Sweet-Cordero

×

Abstract

Estrogen receptor–positive (ER+) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER+ tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER+ breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER+ LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYND189Y has higher catalytic activity than WT protein. Further, LYND189Y exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYNWT. Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYND189Y overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER+ breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER+ xenografts but not LYND189Y-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER+ breast cancers.

Authors

Luis J. Schwarz ... Ingrid M. Meszoely, Carlos L. Arteaga

×

Abstract

Retinoid-storing hepatic stellate cells (HSCs) have recently been described as a liver-resident mesenchymal stem cell (MSC) population; however, it is not clear whether these cells contribute to liver regeneration or serve as a progenitor cell population with hepatobiliary characteristics. Here, we purified HSCs with retinoid-dependent fluorescence-activated cell sorting from eGFP-expressing rats and transplanted these GFP+ HSCs into wild-type (WT) rats that had undergone partial hepatectomy in the presence of 2-acetylaminofluorene (2AAF) or retrorsine, both of which are injury models that favor stem cell–based liver repair. Transplanted HSCs contributed to liver regeneration in host animals by forming mesenchymal tissue, progenitor cells, hepatocytes, and cholangiocytes and elevated direct bilirubin levels in blood sera of GUNN rats, indicating recovery from the hepatic bilirubin–handling defect in these animals. Transplanted HSCs engrafted within the bone marrow (BM) of host animals, and HSC-derived cells were isolated from BM and successfully retransplanted into new hosts with injured liver. Cultured HSCs transiently adopted an expression profile similar to that of progenitor cells during differentiation into bile acid–synthesizing and –transporting hepatocytes, suggesting that stellate cells represent a source of liver progenitor cells. This concept connects seemingly contradictory studies that favor either progenitor cells or MSCs as important players in stem cell–based liver regeneration.

Authors

Claus Kordes, Iris Sawitza, Silke Götze, Diran Herebian, Dieter Häussinger

×

Abstract

Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues.

Authors

Yassine Sassi ... Bernhard Laggerbauer, Stefan Engelhardt

×

Abstract

Patients with gastric and esophageal (GE) adenocarcinoma tumors in which the oncogene ERBB2 has been amplified are routinely treated with a combination of cytotoxic chemotherapy and the ERBB2-directed antibody trastuzumab; however, the addition of trastuzumab, even when tested in a selected biomarker-positive patient population, provides only modest survival gains. To investigate the potential reasons for the modest impact of ERBB2-directed therapies, we explored the hypothesis that secondary molecular features of ERBB2-amplified GE adenocarcinomas attenuate the impact of ERBB2 blockade. We analyzed genomic profiles of ERBB2-amplified GE adenocarcinomas and determined that the majority of ERBB2-amplified tumors harbor secondary oncogenic alterations that have the potential to be therapeutically targeted. These secondary events spanned genes involved in cell-cycle regulation as well as phosphatidylinositol-3 kinase and receptor tyrosine kinase signaling. Using ERBB2-amplified cell lines, we demonstrated that secondary oncogenic events could confer resistance to ERBB2-directed therapies. Moreover, this resistance could be overcome by targeting the secondary oncogene in conjunction with ERBB2-directed therapy. EGFR is commonly coamplified with ERBB2, and in the setting of ERBB2 amplification, higher EGFR expression appears to mark tumors with greater sensitivity to dual EGFR/ERBB2 kinase inhibitors. These data suggest that combination inhibitor strategies, guided by secondary events in ERBB2-amplified GE adenocarcinomas, should be evaluated in clinical trials.

Authors

Jihun Kim ... Jeeyun Lee, Adam J. Bass

×

Abstract

Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within a tumor are capable of metastasizing. The microRNA-200 (miR-200) family, which regulates the mesenchymal-to-epithelial transition, is enriched in the serum of patients with metastatic cancers. Ectopic expression of miR-200 can confer metastatic ability to poorly metastatic tumor cells in some settings. Here, we investigated whether metastatic capability could be transferred between metastatic and nonmetastatic cancer cells via extracellular vesicles. miR-200 was secreted in extracellular vesicles from metastatic murine and human breast cancer cell lines, and miR-200 levels were increased in sera of mice bearing metastatic tumors. In culture, murine and human metastatic breast cancer cell extracellular vesicles transferred miR-200 microRNAs to nonmetastatic cells, altering gene expression and promoting mesenchymal-to-epithelial transition. In murine cancer and human xenograft models, miR-200–expressing tumors and extracellular vesicles from these tumors promoted metastasis of otherwise weakly metastatic cells either nearby or at distant sites and conferred to these cells the ability to colonize distant tissues in a miR-200–dependent manner. Together, our results demonstrate that metastatic capability can be transferred by the uptake of extracellular vesicles.

Authors

Minh T.N. Le ... Leonora Balaj, Judy Lieberman

×

Abstract

Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis.

Authors

Martin B. Mortensen ... Anders Nykjaer, Jacob F. Bentzon

×

Abstract

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease triggered by infection with the human gliotropic JC virus (JCV). Due to the human-selective nature of the virus, there are no animal models available to investigate JCV pathogenesis. To address this issue, we developed mice with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than oligodendrocytes, and viral replication was noted primarily in human astrocytes and GPCs rather than oligodendrocytes, which instead expressed early viral T antigens and exhibited apoptotic death. Engraftment of human GPCs in normally myelinated and immunodeficient mice resulted in humanized white matter that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection. These results indicate that the principal CNS targets for JCV infection are astrocytes and GPCs and that infection is associated with progressive mutation, while demyelination is a secondary occurrence, following T antigen–triggered oligodendroglial apoptosis. More broadly, this study provides a model by which to further assess the biology and treatment of human-specific gliotropic viruses.

Authors

Yoichi Kondo ... Leonid Gorelik, Steven A. Goldman

×

Abstract

Angioplasty and stenting is the primary treatment for flow-limiting atherosclerosis; however, this strategy is limited by pathological vascular remodeling. Using a systems approach, we identified a role for the network hub gene glutathione peroxidase-1 (GPX1) in pathological remodeling following human blood vessel stenting. Constitutive deletion of Gpx1 in atherosclerotic mice recapitulated this phenotype of increased vascular smooth muscle cell (VSMC) proliferation and plaque formation. In an independent patient cohort, gene variant pair analysis identified an interaction of GPX1 with the orphan protooncogene receptor tyrosine kinase ROS1. A meta-analysis of the only genome-wide association studies of human neointima-induced in-stent stenosis confirmed the association of the ROS1 variant with pathological remodeling. Decreased GPX1 expression in atherosclerotic mice led to reductive stress via a time-dependent increase in glutathione, corresponding to phosphorylation of the ROS1 kinase activation site Y2274. Loss of GPX1 function was associated with both oxidative and reductive stress, the latter driving ROS1 activity via s-glutathiolation of critical residues of the ROS1 tyrosine phosphatase SHP-2. ROS1 inhibition with crizotinib and deglutathiolation of SHP-2 abolished GPX1-mediated increases in VSMC proliferation while leaving endothelialization intact. Our results indicate that GPX1-dependent alterations in oxido-reductive stress promote ROS1 activation and mediate vascular remodeling.

Authors

Ziad A. Ali ... Thomas Quertermous, Euan A. Ashley

×

Abstract

The liver is capable of full regeneration following several types and rounds of injury, ranging from hepatectomy to toxin-mediated damage. The source of this regenerative capacity has long been a hotly debated topic. The damage response that occurs when hepatocyte proliferation is impaired is thought to be mediated by oval/dedifferentiated progenitor cells, which replenish the hepatocyte and ductal compartments of the liver. Recently, reports have questioned whether these oval/progenitor cells truly serve as the facultative stem cell of the liver following toxin-mediated damage. In this issue of the JCI, Kordes and colleagues use lineage tracing to follow transplanted rat hepatic stellate cells, a resident liver mesenchymal cell population, in hosts that have suffered liver damage. Transplanted stellate cells repopulated the damaged rat liver by contributing to the oval cell response. These data establish yet another cell type of mesenchymal origin as the progenitor for the oval/ductular response in the rat. The lack of uniformity between different damage models, the extent of the injury to the liver parenchyma, and potential species-specific differences might be at the core of the discrepancy between different studies. Taken together, these data imply a considerable degree of plasticity in the liver, whereby several cell types can contribute to regeneration.

Authors

Christopher J. Hindley, Gianmarco Mastrogiovanni, Meritxell Huch

×

Abstract

Innate immunity to viral infection involves induction of the type I IFN response; however, dysfunctional regulation of this pathway leads to inappropriate inflammation. Here, we evaluated a nonconsanguineous family of mixed European descent, with 4 members affected by systemic inflammatory and autoimmune conditions, including lupus, with variable clinical expression. We identified a germline dominant gain-of-function mutation in TMEM173, which encodes stimulator of type I IFN gene (STING), in the affected individuals. STING is a key signaling molecule in cytosolic DNA-sensing pathways, and STING activation normally requires dimerization, which is induced by 2′3′ cyclic GMP-AMP (cGAMP) produced by the cGAMP synthase in response to cytosolic DNA. Structural modeling supported constitutive activation of the mutant STING protein based on stabilized dimerization. In agreement with the model predictions, we found that the STING mutant spontaneously localizes in the Golgi of patient fibroblasts and is constitutively active in the absence of exogenous 2′3′-cGAMP in vitro. Accordingly, we observed elevated serum IFN activity and a type I IFN signature in peripheral blood from affected family members. These findings highlight the key role of STING in activating both the innate and adaptive immune responses and implicate aberrant STING activation in features of human lupus.

Authors

Nadia Jeremiah ... Brigitte Bader-Meunier, Frédéric Rieux-Laucat

×

Abstract

JC virus (JCV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease in humans. The disease, once considered fatal, is now managed with immune reconstitution therapy; however, surviving patients remain severely debilitated. Until now, there has been no animal model to study JCV in the brain, and research into treatment has relied on cell culture systems. In this issue of the JCI, Kondo and colleagues developed a mouse model in which human glial cells are engrafted into neonatal mice that are both immunodeficient and deficient for myelin basic protein. When challenged intracerebrally with JCV, these mice exhibit some of the characteristics of PML. The establishment of this chimeric mouse model is a significant advance toward understanding the mechanism of JCV pathogenesis and the identification of drugs to treat or prevent the disease.

Authors

Sheila A. Haley, Walter J. Atwood

×

Abstract

An emerging view is that breast cancer is a systemic disease that utilizes intrinsic and extrinsic tumor cell processes to support both primary tumor growth and metastatic dissemination into distal tissue. Delineation of factors involved in these processes should facilitate a better understanding for both assessing and preventing disease relapse. In this issue of the JCI, Le et al. investigate whether intrinsic properties of metastatic breast cancer cell growth can be regulated through an extrinsic process — contact with tumor cell–derived extracellular vesicles containing microRNAs of the miR-200 family. The authors provide compelling evidence that miR-200s within extracellular vesicles secreted from highly metastatic tumor cells can be internalized by weakly metastatic cells. Thus, internalization and delivery of this metastatic “donor” cell–derived message provide plausible mechanisms by which oncogenic and regulatory factors confer the capability of tumor growth at metastatic lesions. This study provides a strong rationale for detailed assessment of the prognostic and predictive value of circulating extracellular vesicle–bound miR-200s in breast cancer progression and treatment.

Authors

David M. Epstein

×

Abstract

Restenosis after balloon angioplasty and stenting (BAS) remains an unsolved clinical dilemma for patients with coronary artery disease. A better understanding of the mechanisms that drive this phenomenon is likely to lead to more effective treatments. In this issue of the JCI, Ali et al. uncover a critical redox axis with the antioxidant enzyme glutathione peroxidase-1 (GPX1) at its hub and identify potential new therapeutic targets, such as ROS1 tyrosine kinase. This study represents a potential new approach to finding a treatment for BAS, with implications that may extend beyond BAS to other vasculopathies involving vascular remodeling.

Authors

Judy B. de Haan

×




Advertisement

November 2014


124-11-cover

November 2014 Issue

On the cover:
Coronary artery stem formation

The cover image shows an embryonic day 14.5 murine heart immunostained for PROX1 (yellow), VE-cadherin (cyan), and cTnT (red). On page 4899, Chen et al. explore the contributions of VEGF-C to coronary artery stem formation and the interaction between aortic cardiomyocytes and the developing coronary stems.

×
Jci_impact_2014_11

November 2014 Impact

JCI Impact is a digest of the research, reviews, and other features published in each month's issue of the Journal of Clinical Investigation.

×

Review Series - More

Gut Microbiome

Series edited by Martin J. Blaser

The human gastrointestinal tract harbors approximately one hundred trillion microbial cells, collectively known as the gut microbiome. We have been aware of these friendly bacteria for around a century, but we are only now beginning to appreciate their influence in multiple aspects of human physiology and disease. Our understanding of the gut microbiome is constantly evolving and is currently being aided by new technologies and approaches that combine ecological principles with biomedical techniques. These new studies take into account both the pathological and commensal aspects of the microbes that inhabit our bodies. Reviews in this series explore how perturbation of the microbiome not only contributes to disease, but also helps to reveal its function; the impact of the microbiome on the metabolism of therapeutics and dietary nutrients; the contributions of commensal bacteria to disease, including cancer and cardiovascular disease; and the role of the microbiome in the development and maintenance of the immune system.

×