Recently published - More

Abstract

Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.

Authors

Jan Kazenwadel ... Hamish S. Scott, Natasha L. Harvey

×

Abstract

Inflammasome activation and caspase-1–dependent (CASP1-dependent) processing and secretion of IL-1β and IL-18 are critical events at the interface of the bacterial pathogen Helicobacter pylori with its host. Whereas IL-1β promotes Th1 and Th17 responses and gastric immunopathology, IL-18 is required for Treg differentiation, H. pylori persistence, and protection against allergic asthma, which is a hallmark of H. pylori–infected mice and humans. Here, we show that inflammasome activation in DCs requires the cytoplasmic sensor NLRP3 as well as induction of TLR2 signaling by H. pylori. Screening of an H. pylori transposon mutant library revealed that pro–IL-1β expression is induced by LPS from H. pylori, while the urease B subunit (UreB) is required for NLRP3 inflammasome licensing. UreB activates the TLR2-dependent expression of NLRP3, which represents a rate-limiting step in NLRP3 inflammasome assembly. ureB-deficient H. pylori mutants were defective for CASP1 activation in murine bone marrow–derived DCs, splenic DCs, and human blood-derived DCs. Despite colonizing the murine stomach, ureB mutants failed to induce IL-1β and IL-18 secretion and to promote Treg responses. Unlike WT H. pylori, ureB mutants were incapable of conferring protection against allergen-induced asthma in murine models. Together, these results indicate that the TLR2/NLRP3/CASP1/IL-18 axis is critical to H. pylori–specific immune regulation.

Authors

Katrin N. Koch ... Christian Taube, Anne Müller

×

Abstract

Fluid shear forces have established roles in blood vascular development and function, but whether such forces similarly influence the low-flow lymphatic system is unknown. It has been difficult to test the contribution of fluid forces in vivo because mechanical or genetic perturbations that alter flow often have direct effects on vessel growth. Here, we investigated the functional role of flow in lymphatic vessel development using mice deficient for the platelet-specific receptor C-type lectin–like receptor 2 (CLEC2) as blood backfills the lymphatic network and blocks lymph flow in these animals. CLEC2-deficient animals exhibited normal growth of the primary mesenteric lymphatic plexus but failed to form valves in these vessels or remodel them into a structured, hierarchical network. Smooth muscle cell coverage (SMC coverage) of CLEC2-deficient lymphatic vessels was both premature and excessive, a phenotype identical to that observed with loss of the lymphatic endothelial transcription factor FOXC2. In vitro evaluation of lymphatic endothelial cells (LECs) revealed that low, reversing shear stress is sufficient to induce expression of genes required for lymphatic valve development and identified GATA2 as an upstream transcriptional regulator of FOXC2 and the lymphatic valve genetic program. These studies reveal that lymph flow initiates and regulates many of the key steps in collecting lymphatic vessel maturation and development.

Authors

Daniel T. Sweet ... Peter F. Davies, Mark L. Kahn

×

Abstract

Bone formation during fracture repair inevitably initiates within or around extravascular deposits of a fibrin-rich matrix. In addition to a central role in hemostasis, fibrin is thought to enhance bone repair by supporting inflammatory and mesenchymal progenitor egress into the zone of injury. However, given that a failure of efficient fibrin clearance can impede normal wound repair, the precise contribution of fibrin to bone fracture repair, whether supportive or detrimental, is unknown. Here, we employed mice with genetically and pharmacologically imposed deficits in the fibrin precursor fibrinogen and fibrin-degrading plasminogen to explore the hypothesis that fibrin is vital to the initiation of fracture repair, but impaired fibrin clearance results in derangements in bone fracture repair. In contrast to our hypothesis, fibrin was entirely dispensable for long-bone fracture repair, as healing fractures in fibrinogen-deficient mice were indistinguishable from those in control animals. However, failure to clear fibrin from the fracture site in plasminogen-deficient mice severely impaired fracture vascularization, precluded bone union, and resulted in robust heterotopic ossification. Pharmacological fibrinogen depletion in plasminogen-deficient animals restored a normal pattern of fracture repair and substantially limited heterotopic ossification. Fibrin is therefore not essential for fracture repair, but inefficient fibrinolysis decreases endochondral angiogenesis and ossification, thereby inhibiting fracture repair.

Authors

Masato Yuasa ... Justin M.M. Cates, Jonathan G. Schoenecker

×

Abstract

The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG–binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2–/y) mice and improved behavior in female heterozygous (Mecp2–/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs.

Authors

Navasona Krishnan ... Stephen D. Shea, Nicholas K. Tonks

×

Abstract

Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning. Here, we used an in vivo rat model of ischemia/reperfusion (IR) injury–induced MI and in vitro coculture assays to investigate how CDCs protect stressed cardiomyocytes. Compared with control animals, animals that received CDCs 20 minutes after IR had reduced infarct size when measured at 48 hours. CDCs modified the myocardial leukocyte population after ischemic injury. Specifically, introduction of CDCs reduced the number of CD68+ macrophages, and these CDCs secreted factors that polarized macrophages toward a distinctive cardioprotective phenotype that was not M1 or M2. Systemic depletion of macrophages with clodronate abolished CDC-mediated cardioprotection. Using both in vitro coculture assays and a rat model of adoptive transfer after IR, we determined that CDC-conditioned macrophages attenuated cardiomyocyte apoptosis and reduced infarct size, thereby recapitulating the beneficial effects of CDC therapy. Together, our data indicate that CDCs limit acute injury by polarizing an effector macrophage population within the heart.

Authors

Geoffrey de Couto ... Moshe Arditi, Eduardo Marbán

×

Abstract

Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow–associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remains largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.

Authors

Tsutomu Kume

×

Abstract

The mammalian heart contains a population of resident macrophages that expands in response to myocardial infarction through the recruitment of monocytes. Infarct macrophages exhibit high phenotypic diversity and respond to microenvironmental cues by altering their functional properties and secretory profile. In this issue of the JCI, de Couto and colleagues demonstrate that infiltrating macrophages can be primed to acquire a cardioprotective phenotype in ischemic heart and exert this proactive effect through activation of an antiapoptotic program in cardiomyocytes. This study supports the growing body of evidence that suggests that macrophage subpopulations can be modulated to mediate cytoprotective, reparative, and even regenerative functions in the infarcted heart. The cellular mechanisms and molecular signals driving these macrophage phenotypes are yet unknown; however, harnessing the remarkable potential of the macrophage in regulating cell survival and tissue regeneration may hold therapeutic promise for myocardial infarction.

Authors

Nikolaos G. Frangogiannis

×

Abstract

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is characterized by successive loss of acquired cognitive, social, and motor skills and development of autistic behavior. RTT affects approximately 1 in 10,000 live female births and is the second most common cause of severe mental retardation in females after Down syndrome. Currently, there is no cure or effective therapy for RTT. Approved treatment regimens are presently limited to supportive management of specific physical and mental disabilities. In this issue, Krishnan and colleagues reveal that the protein tyrosine phosphatase PTP1B is upregulated in patients with RTT and in murine models and provide strong evidence that targeting PTP1B has potential as a viable therapeutic strategy for the treatment of RTT.

Authors

Lutz Tautz

×




Advertisement

July 2015


125 7 cover

July 2015 Issue

On the cover:
Separating pulmonary and systemic circulation

The cover image shows an embryonic day-13.5 mouse heart immunostained for endothelial surfaces (endomucin, red) and nonendothelial cells (false-colored in cyan). On page 2661, Plein et al. report a mechanism by which cardiac neural crest cells signal to the vascular endothelium to orchestrate remodeling of the cardiac outflow tract.

×
Jci impact 2015 07

July 2015 Impact

JCI Impact is a digest of the research, reviews, and other features published in each month's issue of the Journal of Clinical Investigation.

×

Review Series - More

Autoimmunity

Series edited by Antonio La Cava

Autoimmune disease encompasses a diverse group of over 80 chronic disorders. Each of these diseases has distinct clinical manifestations that are due to the differences in the cells and organ systems involved; however, these diseases are universally characterized by a loss of self-tolerance, resulting in autoreactive immune cells, autoantibodies, and elevated levels of inflammatory cytokines. Reviews in this series examine mechanisms underlying autoimmunity, including failure of B cell tolerance checkpoints, the generation of autoantibodies, cytokine dysregulation, aberrant T cell signaling, and the loss of immune suppressive cells and functions. They also explore the influence of genetic background, environment, microRNAs, and sex-specific factors on the loss of immune homeostasis.

×