Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Resisting fatal attraction: a glioma oncometabolite prevents CD8+ T cell recruitment
Liliana E. Lucca, David A. Hafler
Liliana E. Lucca, David A. Hafler
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1218-1220. https://doi.org/10.1172/JCI93565.
View: Text | PDF
Commentary

Resisting fatal attraction: a glioma oncometabolite prevents CD8+ T cell recruitment

  • Text
  • PDF
Abstract

Immunotherapy has emerged as a potent approach for treating aggressive cancers, such as non–small-cell lung tumors and metastatic melanoma. Clinical trials are now in progress for patients with malignant gliomas; however, a better understanding of how these tumors escape immune surveillance is required to enhance antitumor immune responses. With gliomas, the recruitment of CD8+ T cells to the tumor is impaired, in part preventing containment or elimination of the tumor. In this issue of the JCI, Kohanbash and colleagues present an elegant dissection of how gliomas exploit an enzymatic activity acquired through a common mutation to abrogate the migration of CD8+ T cells to the tumor. They show that the oncometabolite 2-hydroxyglutarate (2HG), generated by mutated forms of isocitrate dehydrogenase (IDH1 and IDH2), reduces the expression of STAT1, thereby limiting the production of the chemokines CXCL9 and CXCL10. As a result, IDH1-mutated tumors are less effectively infiltrated by CD8+ T cells, contributing to tumor escape. Finally, in mice harboring syngeneic gliomas, an inhibitor of 2HG synthesis complemented vaccination to ameliorate tumor control. Understanding how to increase immune infiltration of gliomas represents a key first step in achieving tumor destruction through immunotherapy.

Authors

Liliana E. Lucca, David A. Hafler

×

Figure 1

IDH mutations alter CD8+ T cell infiltration into gliomas.

Options: View larger image (or click on image) Download as PowerPoint

IDH mutations alter CD8+ T cell infiltration into gliomas.
(A) In the p...
(A) In the presence of WT IDH1/2, STAT1 expression is intact and drives the production of chemokines that attract CD8+ T cells to the tumor. (B) IDH1/2 mutation results in the generation of the oncometabolite 2HG, which in turn represses STAT1, leading to tumor escape.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts