Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published March 1, 2022 Previous issue | Next issue

  • Volume 132, Issue 5
Go to section:
  • Editorial
  • Letters to the Editor
  • Viewpoint
  • Review Series
  • Review
  • Commentaries
  • Research Articles

On the cover: Lipoprotein lipase movement across capillary endothelial cells

Song et al. report that sheathing of a large basic patch on lipoprotein lipase by the acidic domain of endothelial cell protein is essential for lipoprotein lipase movement to the capillary lumen. The cover image shows colorized cross sections of heart capillaries containing an endothelial cell nucleus from WT (top 2 rows) or GPIHBP1 mutant mice (bottom 2 rows). Image credit: Anne P. Beigneux and Wenxin Song.

Editorial
Make it even better
Elizabeth M. McNally
Elizabeth M. McNally
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e158458. https://doi.org/10.1172/JCI158458.
View: Text | PDF

Make it even better

  • Text
  • PDF
Abstract

Authors

Elizabeth M. McNally

×
Letters to the Editor
Concerns over functional experiments, interpretation, and required controls
Eddie C.Y. Wang, … , Ceri A. Fielding, Richard J. Stanton
Eddie C.Y. Wang, … , Ceri A. Fielding, Richard J. Stanton
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e157369. https://doi.org/10.1172/JCI157369.
View: Text | PDF

Concerns over functional experiments, interpretation, and required controls

  • Text
  • PDF
Abstract

Authors

Eddie C.Y. Wang, Ceri A. Fielding, Richard J. Stanton

×

Concerns over functional experiments, interpretation, and required controls. Reply.
Wan-Chen Hsieh, Shih-Yu Chen
Wan-Chen Hsieh, Shih-Yu Chen
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e158155. https://doi.org/10.1172/JCI158155.
View: Text | PDF

Concerns over functional experiments, interpretation, and required controls. Reply.

  • Text
  • PDF
Abstract

Authors

Wan-Chen Hsieh, Shih-Yu Chen

×
Viewpoint
Establishing the role of the gut microbiota in susceptibility to recurrent urinary tract infections
Colin J. Worby, … , Ashlee M. Earl, Scott J. Hultgren
Colin J. Worby, … , Ashlee M. Earl, Scott J. Hultgren
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e158497. https://doi.org/10.1172/JCI158497.
View: Text | PDF

Establishing the role of the gut microbiota in susceptibility to recurrent urinary tract infections

  • Text
  • PDF
Abstract

Authors

Colin J. Worby, Benjamin S. Olson, Karen W. Dodson, Ashlee M. Earl, Scott J. Hultgren

×
Review Series
Therapeutic targets for cardiac fibrosis: from old school to next-gen
Joshua G. Travers, … , Marcello Rubino, Timothy A. McKinsey
Joshua G. Travers, … , Marcello Rubino, Timothy A. McKinsey
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e148554. https://doi.org/10.1172/JCI148554.
View: Text | PDF

Therapeutic targets for cardiac fibrosis: from old school to next-gen

  • Text
  • PDF
Abstract

Cardiovascular diseases remain the leading cause of death worldwide, with pathological fibrotic remodeling mediated by activated cardiac myofibroblasts representing a unifying theme across etiologies. Despite the profound contributions of myocardial fibrosis to cardiac dysfunction and heart failure, there currently exist limited clinical interventions that effectively target the cardiac fibroblast and its role in fibrotic tissue deposition. Exploration of novel strategies designed to mitigate or reverse myofibroblast activation and cardiac fibrosis will likely yield powerful therapeutic approaches for the treatment of multiple diseases of the heart, including heart failure with preserved or reduced ejection fraction, acute coronary syndrome, and cardiovascular disease linked to type 2 diabetes. In this Review, we provide an overview of classical regulators of cardiac fibrosis and highlight emerging, next-generation epigenetic regulatory targets that have the potential to revolutionize treatment of the expanding cardiovascular disease patient population.

Authors

Joshua G. Travers, Charles A. Tharp, Marcello Rubino, Timothy A. McKinsey

×

Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure
Sharlene M. Day, … , Jil C. Tardiff, E. Michael Ostap
Sharlene M. Day, … , Jil C. Tardiff, E. Michael Ostap
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e148557. https://doi.org/10.1172/JCI148557.
View: Text | PDF

Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure

  • Text
  • PDF
Abstract

Myosin modulators are a novel class of pharmaceutical agents that are being developed to treat patients with a range of cardiomyopathies. The therapeutic goal of these drugs is to target cardiac myosins directly to modulate contractility and cardiac power output to alleviate symptoms that lead to heart failure and arrhythmias, without altering calcium signaling. In this Review, we discuss two classes of drugs that have been developed to either activate (omecamtiv mecarbil) or inhibit (mavacamten) cardiac contractility by binding to β-cardiac myosin (MYH7). We discuss progress in understanding the mechanisms by which the drugs alter myosin mechanochemistry, and we provide an appraisal of the results from clinical trials of these drugs, with consideration for the importance of disease heterogeneity and genetic etiology for predicting treatment benefit.

Authors

Sharlene M. Day, Jil C. Tardiff, E. Michael Ostap

×
Review
Fungal microbiome in inflammatory bowel disease: a critical assessment
David M. Underhill, Jonathan Braun
David M. Underhill, Jonathan Braun
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e155786. https://doi.org/10.1172/JCI155786.
View: Text | PDF

Fungal microbiome in inflammatory bowel disease: a critical assessment

  • Text
  • PDF
Abstract

The gut microbiome is at the center of inflammatory bowel disease (IBD) pathogenesis and disease activity. While this has mainly been studied in the context of the bacterial microbiome, recent advances have provided tools for the study of host genetics and metagenomics of host-fungal interaction. Through these tools, strong evidence has emerged linking certain fungal taxa, such as Candida and Malassezia, with cellular and molecular pathways of IBD disease biology. Mouse models and human fecal microbial transplant also suggest that some disease-participatory bacteria and fungi may act not via the host directly, but via their fungal-bacterial ecologic interactions. We hope that these insights, and the study design and multi-omics strategies used to develop them, will facilitate the inclusion of the fungal community in basic and translational IBD research.

Authors

David M. Underhill, Jonathan Braun

×
Commentaries
NOTCH3 as a modulator of vascular disease: a target in elastin deficiency and arterial pathologies
Kimberly Malka, Lucy Liaw
Kimberly Malka, Lucy Liaw
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e157007. https://doi.org/10.1172/JCI157007.
View: Text | PDF

NOTCH3 as a modulator of vascular disease: a target in elastin deficiency and arterial pathologies

  • Text
  • PDF
Abstract

During blood vessel disease, vascular smooth muscle cell (VSMC) expansion and interaction with the matrix trigger changes in gene expression and phenotype. In this issue of the JCI, Dave et al. discover a signaling network that drives VSMC expansion and vascular obstruction caused by elastin insufficiency. Using a combination of gene-targeted mice, tissues and cells from patients with Williams-Beuren syndrome, and targeting of elastin in human VSMCs, the authors identified VSMC-derived NOTCH3 signaling as a critical mediator of aortic hypermuscularization and loss of vascular patency. NOTCH3-specific therapies or therapies that target downstream molecular pathways may provide opportunities to minimize VSMC growth and treat cardiovascular disease with minimal side effects.

Authors

Kimberly Malka, Lucy Liaw

×

Taking the STING out of acute myeloid leukemia through macrophage-mediated phagocytosis
William Brian Dalton, … , Gabriel Ghiaur, Linda M.S. Resar
William Brian Dalton, … , Gabriel Ghiaur, Linda M.S. Resar
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e157434. https://doi.org/10.1172/JCI157434.
View: Text | PDF

Taking the STING out of acute myeloid leukemia through macrophage-mediated phagocytosis

  • Text
  • PDF
Abstract

Macrophages within the bone marrow (BM) microenvironment take on unexpected roles in acute myeloid leukemia (AML) as reported by Moore and colleagues in this issue of the JCI. In contrast to solid tumors, where tumor-associated macrophages frequently assume an immunosuppressive phenotype that promotes tumor progression, this study revealed that BM macrophages repressed leukemia expansion in AML through a pathway called LC3-associated phagocytosis (LAP). After phagocytosis of dead and dying leukemic cells, including the mitochondria within the leukemic blasts, mitochondrial DNA activated stimulator of IFN genes (STING), leading to inflammatory signals that enhanced phagocytosis and restrained leukemic cell expansion. These findings unveil the modulation of macrophage-mediated phagocytosis via LAP as a potential therapeutic strategy directed at the BM microenvironment in AML.

Authors

William Brian Dalton, Gabriel Ghiaur, Linda M.S. Resar

×

CLN7 gene therapy: hope for an ultra-rare condition
Jon J. Brudvig, Jill M. Weimer
Jon J. Brudvig, Jill M. Weimer
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e157820. https://doi.org/10.1172/JCI157820.
View: Text | PDF

CLN7 gene therapy: hope for an ultra-rare condition

  • Text
  • PDF
Abstract

CLN7 Batten disease, also known as variant late infantile neuronal ceroid lipofuscinosis type 7 (vLINCL7), is an ultra-rare form of Batten disease that presents early in life with severe neurological symptoms, including visual deficits, motor problems, and frequent seizures. There is high unmet need for disease-modifying therapies, as no existing treatment can halt progression or prevent premature death. In this issue of the JCI, Chen et al. present an AAV gene therapy for CLN7 that shows marked benefit in a mouse model of CLN7 Batten disease, paving the way for a phase I trial. The candidate gene therapy shows benefit for histopathology, behavioral abnormalities, and survival in mice and offers an acceptable safety profile in both mice and rats. Questions remain regarding dose, scaling, and timing of administration for patients, but this work is a substantial step forward for a very challenging disease.

Authors

Jon J. Brudvig, Jill M. Weimer

×

The hematopoietic saga of clonality in sickle cell disease
Aaron J. Stonestrom, Ross L. Levine
Aaron J. Stonestrom, Ross L. Levine
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e158251. https://doi.org/10.1172/JCI158251.
View: Text | PDF

The hematopoietic saga of clonality in sickle cell disease

  • Text
  • PDF
Abstract

Sickle cell disease (SCD) is associated with an increased risk of vascular-occlusive events and of leukemia. Clonal hematopoiesis (CH) may increase both risks. In turn, physiologic abnormalities in SCD may modify the incidence and/or distribution of genetic alterations in CH. In a recent issue of the JCI, Liggett et al. found no difference in CH rate between individuals with versus without SCD. Here we contextualize this report and discuss the complex interplay between CH and SCD with particular attention to consequences for emerging gene therapies. We further consider the limitations in our current understanding of these topics that must be addressed in order to optimize therapeutic strategies for SCD.

Authors

Aaron J. Stonestrom, Ross L. Levine

×
Research Articles
Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus monocytes
Jing Wu, … , Mariana J. Kaplan, Michael N. Sack
Jing Wu, … , Mariana J. Kaplan, Michael N. Sack
Published January 13, 2022
Citation Information: J Clin Invest. 2022;132(5):e139828. https://doi.org/10.1172/JCI139828.
View: Text | PDF Clinical Research and Public Health

Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus monocytes

  • Text
  • PDF
Abstract

BACKGROUND Fasting and NAD+-boosting compounds, including NAD+ precursor nicotinamide riboside (NR), confer antiinflammatory effects. However, the underlying mechanisms and therapeutic potential are incompletely defined.METHODS We explored the underlying biology in myeloid cells from healthy volunteers following in vivo placebo or NR administration and subsequently tested the findings in vitro in monocytes extracted from patients with systemic lupus erythematosus (SLE).RESULTS RNA-Seq of unstimulated and LPS-activated monocytes implicated NR in the regulation of autophagy and type I IFN signaling. In primary monocytes, NR blunted LPS-induced IFN-β production, and genetic or pharmacological disruption of autophagy phenocopied this effect. Given that NAD+ is a coenzyme in oxidoreductive reactions, metabolomics was performed and identified that NR increased the inosine level. Inosine supplementation similarly blunted autophagy and IFN-β release. Finally, because SLE exhibits type I IFN dysregulation, we assessed the NR effect on monocytes from patients with SLE and found that NR reduced autophagy and IFN-β release.CONCLUSION We conclude that NR, in an NAD+-dependent manner and in part via inosine signaling, mediated suppression of autophagy and attenuated type I IFN in myeloid cells, and we identified NR as a potential adjunct for SLE management.TRIAL REGISTRATION ClinicalTrials.gov registration numbers NCT02812238, NCT00001846, and NCT00001372.FUNDING This work was supported by the NHLBI and NIAMS Intramural Research divisions.

Authors

Jing Wu, Komudi Singh, Amy Lin, Allison M. Meadows, Kaiyuan Wu, Vivian Shing, Maximilian Bley, Shahin Hassanzadeh, Rebecca D. Huffstutler, Mark S. Schmidt, Luz P. Blanco, Rong Tian, Charles Brenner, Mehdi Pirooznia, Mariana J. Kaplan, Michael N. Sack

×

Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity
Fiona Bartoli, … , Lee D. Roberts, David J. Beech
Fiona Bartoli, … , Lee D. Roberts, David J. Beech
Published January 13, 2022
Citation Information: J Clin Invest. 2022;132(5):e141775. https://doi.org/10.1172/JCI141775.
View: Text | PDF

Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity

  • Text
  • PDF
Abstract

Piezo1 forms mechanically activated nonselective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial cell–specific deletion of Piezo1 in adult mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an inducer of endothelial cell apoptosis, with no effect on TSP1, a related important player in muscle physiology. TSP2 was poorly expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 gene without an effect on Tsp1. In endothelial cells, Piezo1 was required for normal expression of endothelial NO synthase. The data suggest an endothelial cell–pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain capillary density and thereby maintain physical capability.

Authors

Fiona Bartoli, Marjolaine Debant, Eulashini Chuntharpursat-Bon, Elizabeth L. Evans, Katie E. Musialowski, Gregory Parsonage, Lara C. Morley, T. Simon Futers, Piruthivi Sukumar, T. Scott Bowen, Mark T. Kearney, Laeticia Lichtenstein, Lee D. Roberts, David J. Beech

×

SIRPγ-expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling
Chuan Xu, … , Xiu-Wu Bian, Hui-Kuan Lin
Chuan Xu, … , Xiu-Wu Bian, Hui-Kuan Lin
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e141797. https://doi.org/10.1172/JCI141797.
View: Text | PDF

SIRPγ-expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling

  • Text
  • PDF
Abstract

Cancer stem-like cells (CSLCs) acquire enhanced immune checkpoint responses to evade immune cell killing and promote tumor progression. Here we showed that signal regulatory protein γ (SIRPγ) determined CSLC properties and immune evasiveness in a small population of lung adenocarcinoma (LUAD) cancer cells. A SIRPγhi population displayed CSLC properties and transmitted the immune escape signal through sustaining CD47 expression in both SIRPγhi and SIRPγlo/– tumor cells. SIRPγ bridged MST1 and PP2A to facilitate MST1 dephosphorylation, resulting in Hippo/YAP activation and leading to cytokine release by CSLCs, which stimulated CD47 expression in LUAD cells and consequently inhibited tumor cell phagocytosis. SIRPγ promoted tumor growth and metastasis in vivo through YAP signaling. Notably, SIRPγ targeting with genetic SIRPγ knockdown or a SIRPγ-neutralizing antibody inhibited CSLC phenotypes and elicited phagocytosis that suppressed tumor growth in vivo. SIRPG was upregulated in human LUAD and its overexpression predicted poor survival outcome. Thus, SIRPγhi cells serve as CSLCs and tumor immune checkpoint–initiating cells, propagating the immune escape signal to the entire cancer cell population. Our study identifies Hippo/YAP signaling as the first mechanism by which SIRPγ is engaged and reveals that targeting SIRPγ represents an immune- and CSLC-targeting strategy for lung cancer therapy.

Authors

Chuan Xu, Guoxiang Jin, Hong Wu, Wei Cui, Yu-Hui Wang, Rajesh Kumar Manne, Guihua Wang, Weina Zhang, Xian Zhang, Fei Han, Zhen Cai, Bo-Syong Pan, Che-Chia Hsu, Yiqiang Liu, Anmei Zhang, Jie Long, Hongbo Zou, Shuang Wang, Xiaodan Ma, Jinling Duan, Bin Wang, Weihui Liu, Haitao Lan, Qing Xiong, Gang Xue, Zhongzhu Chen, Zhigang Xu, Mark E. Furth, Sarah Haigh Molina, Yong Lu, Dan Xie, Xiu-Wu Bian, Hui-Kuan Lin

×

JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency
Jui M. Dave, … , Kathleen A. Martin, Daniel M. Greif
Jui M. Dave, … , Kathleen A. Martin, Daniel M. Greif
Published January 6, 2022
Citation Information: J Clin Invest. 2022;132(5):e142338. https://doi.org/10.1172/JCI142338.
View: Text | PDF

JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency

  • Text
  • PDF
Abstract

Obstructive arterial diseases, including supravalvular aortic stenosis (SVAS), atherosclerosis, and restenosis, share 2 important features: an abnormal or disrupted elastic lamellae structure and excessive smooth muscle cells (SMCs). However, the relationship between these pathological features is poorly delineated. SVAS is caused by heterozygous loss-of-function, hypomorphic, or deletion mutations in the elastin gene (ELN), and SVAS patients and elastin-mutant mice display increased arterial wall cellularity and luminal obstructions. Pharmacological treatments for SVAS are lacking, as the underlying pathobiology is inadequately defined. Herein, using human aortic vascular cells, mouse models, and aortic samples and SMCs derived from induced pluripotent stem cells of ELN-deficient patients, we demonstrated that elastin insufficiency induced epigenetic changes, upregulating the NOTCH pathway in SMCs. Specifically, reduced elastin increased levels of γ-secretase, activated NOTCH3 intracellular domain, and downstream genes. Notch3 deletion or pharmacological inhibition of γ-secretase attenuated aortic hypermuscularization and stenosis in Eln–/– mutants. Eln–/– mice expressed higher levels of NOTCH ligand JAGGED1 (JAG1) in aortic SMCs and endothelial cells (ECs). Finally, Jag1 deletion in SMCs, but not ECs, mitigated the hypermuscular and stenotic phenotype in the aorta of Eln–/– mice. Our findings reveal that NOTCH3 pathway upregulation induced pathological aortic SMC accumulation during elastin insufficiency and provide potential therapeutic targets for SVAS.

Authors

Jui M. Dave, Raja Chakraborty, Aglaia Ntokou, Junichi Saito, Fatima Z. Saddouk, Zhonghui Feng, Ashish Misra, George Tellides, Robert K. Riemer, Zsolt Urban, Caroline Kinnear, James Ellis, Seema Mital, Robert Mecham, Kathleen A. Martin, Daniel M. Greif

×

Coding variants identified in patients with diabetes alter PICK1 BAR domain function in insulin granule biogenesis
Rita C. Andersen, … , Ulrik Gether, Kenneth L. Madsen
Rita C. Andersen, … , Ulrik Gether, Kenneth L. Madsen
Published January 25, 2022
Citation Information: J Clin Invest. 2022;132(5):e144904. https://doi.org/10.1172/JCI144904.
View: Text | PDF

Coding variants identified in patients with diabetes alter PICK1 BAR domain function in insulin granule biogenesis

  • Text
  • PDF
Abstract

Bin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain. All 4 coding variants failed to rescue insulin content in INS-1E cells upon knock down of endogenous PICK1. Moreover, 2 variants showed dominant-negative properties. In vitro assays addressing BAR domain function suggested that the coding variants compromised BAR domain function but increased the capacity to cause fission of liposomes. Live confocal microscopy and super-resolution microscopy further revealed that PICK1 resides transiently on ISGs before egress via vesicular budding events. Interestingly, this egress of PICK1 was accelerated in the coding variants. We propose that PICK1 assists in or complements the removal of excess membrane and generic membrane trafficking proteins, and possibly also insulin, from ISGs during the maturation process; and that the coding variants may cause premature budding, possibly explaining their dominant-negative function.

Authors

Rita C. Andersen, Jan H. Schmidt, Joscha Rombach, Matthew D. Lycas, Nikolaj R. Christensen, Viktor K. Lund, Donnie S. Stapleton, Signe S. Pedersen, Mathias A. Olsen, Mikkel Stoklund, Gith Noes-Holt, Tommas T.E. Nielsen, Mark P. Keller, Anna M. Jansen, Rasmus Herlo, Massimo Pietropaolo, Jens B. Simonsen, Ole Kjærulff, Birgitte Holst, Alan D. Attie, Ulrik Gether, Kenneth L. Madsen

×

AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease
Xin Chen, … , Joseph R. Mazzulli, Steven J. Gray
Xin Chen, … , Joseph R. Mazzulli, Steven J. Gray
Published January 13, 2022
Citation Information: J Clin Invest. 2022;132(5):e146286. https://doi.org/10.1172/JCI146286.
View: Text | PDF

AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease

  • Text
  • PDF
Abstract

Neuronal ceroid lipofuscinosis type 7 (CLN7) disease is a lysosomal storage disease caused by mutations in the facilitator superfamily domain containing 8 (MFSD8) gene, which encodes a membrane-bound lysosomal protein, MFSD8. To test the effectiveness and safety of adeno-associated viral (AAV) gene therapy, an in vitro study demonstrated that AAV2/MFSD8 dose dependently rescued lysosomal function in fibroblasts from a CLN7 patient. An in vivo efficacy study using intrathecal administration of AAV9/MFSD8 to Mfsd8– /– mice at P7–P10 or P120 with high or low dose led to clear age- and dose-dependent effects. A high dose of AAV9/MFSD8 at P7–P10 resulted in widespread MFSD8 mRNA expression, tendency of amelioration of subunit c of mitochondrial ATP synthase accumulation and glial fibrillary acidic protein immunoreactivity, normalization of impaired behaviors, doubled median life span, and extended normal body weight gain. In vivo safety studies in rodents concluded that intrathecal administration of AAV9/MFSD8 was safe and well tolerated. In summary, these results demonstrated that the AAV9/MFSD8 vector is both effective and safe in preclinical models.

Authors

Xin Chen, Thomas Dong, Yuhui Hu, Frances C. Shaffo, Nandkishore R. Belur, Joseph R. Mazzulli, Steven J. Gray

×

RECON syndrome is a genome instability disorder caused by mutations in the DNA helicase RECQL1
Bassam Abu-Libdeh, … , Robert M. Brosh Jr., Grant S. Stewart
Bassam Abu-Libdeh, … , Robert M. Brosh Jr., Grant S. Stewart
Published January 13, 2022
Citation Information: J Clin Invest. 2022;132(5):e147301. https://doi.org/10.1172/JCI147301.
View: Text | PDF

RECON syndrome is a genome instability disorder caused by mutations in the DNA helicase RECQL1

  • Text
  • PDF
Abstract

Despite being the first homolog of the bacterial RecQ helicase to be identified in humans, the function of RECQL1 remains poorly characterized. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here, we identify 2 families with a genome instability disorder that we have named RECON (RECql ONe) syndrome, caused by biallelic mutations in the RECQL gene. The affected individuals had short stature, progeroid facial features, a hypoplastic nose, xeroderma, and skin photosensitivity and were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser), located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase, and fork restoration activity, while its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.

Authors

Bassam Abu-Libdeh, Satpal S. Jhujh, Srijita Dhar, Joshua A. Sommers, Arindam Datta, Gabriel M.C. Longo, Laura J. Grange, John J. Reynolds, Sophie L. Cooke, Gavin S. McNee, Robert Hollingworth, Beth L. Woodward, Anil N. Ganesh, Stephen J. Smerdon, Claudia M. Nicolae, Karina Durlacher-Betzer, Vered Molho-Pessach, Abdulsalam Abu-Libdeh, Vardiella Meiner, George-Lucian Moldovan, Vassilis Roukos, Tamar Harel, Robert M. Brosh Jr., Grant S. Stewart

×

Single-cell analysis of somatic mutation burden in mammary epithelial cells of pathogenic BRCA1/2 mutation carriers
Shixiang Sun, … , Jan Vijg, Cristina Montagna
Shixiang Sun, … , Jan Vijg, Cristina Montagna
Published January 13, 2022
Citation Information: J Clin Invest. 2022;132(5):e148113. https://doi.org/10.1172/JCI148113.
View: Text | PDF Concise Communication

Single-cell analysis of somatic mutation burden in mammary epithelial cells of pathogenic BRCA1/2 mutation carriers

  • Text
  • PDF
Abstract

Inherited germline mutations in the breast cancer gene 1 (BRCA1) or BRCA2 genes (herein BRCA1/2) greatly increase the risk of breast and ovarian cancer, presumably by elevating somatic mutational errors as a consequence of deficient DNA repair. However, this has never been directly demonstrated by a comprehensive analysis of the somatic mutational landscape of primary, noncancer, mammary epithelial cells of women diagnosed with pathogenic BRCA1/2 germline mutations. Here, we used an accurate, single-cell whole-genome sequencing approach to first show that telomerized primary mammary epithelial cells heterozygous for a highly penetrant BRCA1 variant displayed a robustly elevated mutation frequency as compared with their isogenic control cells. We then demonstrated a small but statistically significant increase in mutation frequency in mammary epithelial cells isolated from the breast of BRCA1/2 mutation carriers as compared with those obtained from age-matched controls with no genetically increased risk for breast cancer.

Authors

Shixiang Sun, Kristina Brazhnik, Moonsook Lee, Alexander Y. Maslov, Yi Zhang, Zhenqiu Huang, Susan Klugman, Ben H. Park, Jan Vijg, Cristina Montagna

×

ATP11B inhibits breast cancer metastasis in a mouse model by suppressing externalization of nonapoptotic phosphatidylserine
Jun Xu, … , Chu-Xia Deng, Xiaoling Xu
Jun Xu, … , Chu-Xia Deng, Xiaoling Xu
Published January 13, 2022
Citation Information: J Clin Invest. 2022;132(5):e149473. https://doi.org/10.1172/JCI149473.
View: Text | PDF

ATP11B inhibits breast cancer metastasis in a mouse model by suppressing externalization of nonapoptotic phosphatidylserine

  • Text
  • PDF
Abstract

Cancer metastasis is the cause of the majority of cancer-related deaths. In this study, we demonstrated that no expression or low expression of ATP11B in conjunction with high expression of PTDSS2, which was negatively regulated by BRCA1, markedly accelerates tumor metastasis. Further analysis revealed that cells with low ATP11B expression and high PTDSS2 expression (ATP11BloPTDSS2hi cells) were associated with poor prognosis and enhanced metastasis in breast cancer patients in general. Mechanistically, an ATP11BloPTDSS2hi phenotype was associated with increased levels of nonapoptotic phosphatidylserine (PS) on the outer leaflet of the cell membrane. This PS increase serves as a global immunosuppressive signal to promote breast cancer metastasis through an enriched tumor microenvironment with the accumulation of myeloid-derived suppressor cells and reduced activity of cytotoxic T cells. The metastatic processes associated with ATP11BloPTDSS2hi cancer cells can be effectively overcome by changing the expression phenotype to ATP11BhiPTDSS2lo through a combination of anti-PS antibody with either paclitaxel or docetaxel. Thus, blocking the ATP11BloPTDSS2hi axis provides a new selective therapeutic strategy to prevent metastasis in breast cancer patients.

Authors

Jun Xu, Sek Man Su, Xin Zhang, Un In Chan, Ragini Adhav, Xiaodong Shu, Jianlin Liu, Jianjie Li, Lihua Mo, Yuqing Wang, Tingting An, Josh Haipeng Lei, Kai Miao, Chu-Xia Deng, Xiaoling Xu

×

USP25 inhibition ameliorates Alzheimer’s pathology through the regulation of APP processing and Aβ generation
Qiuyang Zheng, … , Weihong Song, Xin Wang
Qiuyang Zheng, … , Weihong Song, Xin Wang
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e152170. https://doi.org/10.1172/JCI152170.
View: Text | PDF

USP25 inhibition ameliorates Alzheimer’s pathology through the regulation of APP processing and Aβ generation

  • Text
  • PDF
Abstract

Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer’s disease (AD), implicating key roles for chromosome 21–encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene–mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted β cleavage of APP and Aβ generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.

Authors

Qiuyang Zheng, Beibei Song, Guilin Li, Fang Cai, Meiling Wu, Yingjun Zhao, LuLin Jiang, Tiantian Guo, Mingyu Shen, Huan Hou, Ying Zhou, Yini Zhao, Anjie Di, Lishan Zhang, Fanwei Zeng, Xiu-Fang Zhang, Hong Luo, Xian Zhang, Hongfeng Zhang, Zhiping Zeng, Timothy Y. Huang, Chen Dong, Hong Qing, Yun Zhang, Qing Zhang, Xu Wang, Yili Wu, Huaxi Xu, Weihong Song, Xin Wang

×

EZH2-triggered methylation of SMAD3 promotes its activation and tumor metastasis
Changsheng Huang, … , Junbo Hu, Guihua Wang
Changsheng Huang, … , Junbo Hu, Guihua Wang
Published January 27, 2022
Citation Information: J Clin Invest. 2022;132(5):e152394. https://doi.org/10.1172/JCI152394.
View: Text | PDF

EZH2-triggered methylation of SMAD3 promotes its activation and tumor metastasis

  • Text
  • PDF
Abstract

SMAD3 plays a central role in cancer metastasis, and its hyperactivation is linked to poor cancer outcomes. Thus, it is critical to understand the upstream signaling pathways that govern SMAD3 activation. Here, we report that SMAD3 underwent methylation at K53 and K333 (K53/K333) by EZH2, a process crucial for cell membrane recruitment, phosphorylation, and activation of SMAD3 upon TGFB1 stimulation. Mechanistically, EZH2-triggered SMAD3 methylation facilitated SMAD3 interaction with its cellular membrane localization molecule (SARA), which in turn sustained SMAD3 phosphorylation by the TGFB receptor. Pathologically, increased expression of EZH2 expression resulted in the accumulation of SMAD3 methylation to facilitate SMAD3 activation. EZH2-mediated SMAD3 K53/K333 methylation was upregulated and correlated with SMAD3 hyperactivation in breast cancer, promoted tumor metastasis, and was predictive of poor survival outcomes. We used 2 TAT peptides to abrogate SMAD3 methylation and therapeutically inhibit cancer metastasis. Collectively, these findings reveal the complicated layers involved in the regulation of SMAD3 activation coordinated by EZH2-mediated SMAD3 K53/K333 methylation to drive cancer metastasis.

Authors

Changsheng Huang, Fuqing Hu, Da Song, Xuling Sun, Anyi Liu, Qi Wu, Xiaowei She, Yaqi Chen, Lisheng Chen, Fayong Hu, Feng Xu, Xuelai Luo, Yongdong Feng, Xiangping Yang, Junbo Hu, Guihua Wang

×

LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation
Jamie A. Moore, … , Kristian M. Bowles, Stuart A. Rushworth
Jamie A. Moore, … , Kristian M. Bowles, Stuart A. Rushworth
Published January 6, 2022
Citation Information: J Clin Invest. 2022;132(5):e153157. https://doi.org/10.1172/JCI153157.
View: Text | PDF

LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation

  • Text
  • PDF
Abstract

The bone marrow (BM) microenvironment regulates acute myeloid leukemia (AML) initiation, proliferation, and chemotherapy resistance. Following cancer cell death, a growing body of evidence suggests an important role for remaining apoptotic debris in regulating the immunologic response to and growth of solid tumors. Here, we investigated the role of macrophage LC3–associated phagocytosis (LAP) within the BM microenvironment of AML. Depletion of BM macrophages (BMMs) increased AML growth in vivo. We show that LAP is the predominate method of BMM phagocytosis of dead and dying cells in the AML microenvironment. Targeted inhibition of LAP led to the accumulation of apoptotic cells (ACs) and apoptotic bodies (ABs), resulting in accelerated leukemia growth. Mechanistically, LAP of AML-derived ABs by BMMs resulted in stimulator of IFN genes (STING) pathway activation. We found that AML-derived mitochondrial damage–associated molecular patterns were processed by BMMs via LAP. Moreover, depletion of mitochondrial DNA (mtDNA) in AML-derived ABs showed that it was this mtDNA that was responsible for the induction of STING signaling in BMMs. Phenotypically, we found that STING activation suppressed AML growth through a mechanism related to increased phagocytosis. In summary, we report that macrophage LAP of apoptotic debris in the AML BM microenvironment suppressed tumor growth.

Authors

Jamie A. Moore, Jayna J. Mistry, Charlotte Hellmich, Rebecca H. Horton, Edyta E. Wojtowicz, Aisha Jibril, Matthew Jefferson, Thomas Wileman, Naiara Beraza, Kristian M. Bowles, Stuart A. Rushworth

×

Microbial signals, MyD88, and lymphotoxin drive TNF-independent intestinal epithelial tissue damage
Iulia Rusu, … , Averil Ma, Michael G. Kattah
Iulia Rusu, … , Averil Ma, Michael G. Kattah
Published January 25, 2022
Citation Information: J Clin Invest. 2022;132(5):e154993. https://doi.org/10.1172/JCI154993.
View: Text | PDF

Microbial signals, MyD88, and lymphotoxin drive TNF-independent intestinal epithelial tissue damage

  • Text
  • PDF
Abstract

Anti-TNF antibodies are effective for treating patients with inflammatory bowel disease (IBD), but many patients fail to respond to anti-TNF therapy, highlighting the importance of TNF-independent disease. We previously demonstrated that acute deletion of 2 IBD susceptibility genes, A20 (Tnfaip3) and Abin-1 (Tnip1), in intestinal epithelial cells (IECs) sensitized mice to both TNF-dependent and TNF-independent death. Here we show that TNF-independent IEC death after A20 and Abin-1 deletion was rescued by germ-free derivation or deletion of MyD88, while deletion of Trif provided only partial protection. Combined deletion of Ripk3 and Casp8, which inhibits both apoptotic and necroptotic death, completely protected against death after acute deletion of A20 and Abin-1 in IECs. A20- and Abin-1–deficient IECs were sensitized to TNF-independent, TNFR1-mediated death in response to lymphotoxin α (LTα) homotrimers. Blockade of LTα in vivo reduced weight loss and improved survival when combined with partial deletion of MyD88. Biopsies of inflamed colon mucosa from patients with IBD exhibited increased LTA and IL1B expression, including a subset of patients with active colitis on anti-TNF therapy. These data show that microbial signals, MyD88, and LTα all contribute to TNF-independent intestinal injury.

Authors

Iulia Rusu, Elvira Mennillo, Jared L. Bain, Zhongmei Li, Xiaofei Sun, Kimberly M. Ly, Yenny Y. Rosli, Mohammad Naser, Zunqiu Wang, Rommel Advincula, Philip Achacoso, Ling Shao, Bahram Razani, Ophir D. Klein, Alexander Marson, Jessie A. Turnbaugh, Peter J. Turnbaugh, Barbara A. Malynn, Averil Ma, Michael G. Kattah

×

Alterations in auditory brain stem response distinguish occasional and constant tinnitus
Niklas K. Edvall, … , Barbara Canlon, Christopher R. Cederroth
Niklas K. Edvall, … , Barbara Canlon, Christopher R. Cederroth
Published January 25, 2022
Citation Information: J Clin Invest. 2022;132(5):e155094. https://doi.org/10.1172/JCI155094.
View: Text | PDF Clinical Research and Public Health

Alterations in auditory brain stem response distinguish occasional and constant tinnitus

  • Text
  • PDF
Abstract

BACKGROUND The heterogeneity of tinnitus is thought to underlie the lack of objective diagnostic measures.METHODS Longitudinal data from 20,349 participants of the Swedish Longitudinal Occupational Survey of Health (SLOSH) cohort from 2008 to 2018 were used to understand the dynamics of transition between occasional and constant tinnitus. The second part of the study included electrophysiological data from 405 participants of the Swedish Tinnitus Outreach Project (STOP) cohort.RESULTS We determined that with increasing frequency of the occasional perception of self-reported tinnitus, the odds of reporting constant tinnitus after 2 years increases from 5.62 (95% CI, 4.83–6.55) for previous tinnitus (sometimes) to 29.74 (4.82–6.55) for previous tinnitus (often). When previous tinnitus was reported to be constant, the odds of reporting it as constant after 2 years rose to 603.02 (524.74–692.98), suggesting that once transitioned to constant tinnitus, the likelihood of tinnitus to persist was much greater. Auditory brain stem responses (ABRs) from subjects reporting nontinnitus (controls), occasional tinnitus, and constant tinnitus show that wave V latency increased in constant tinnitus when compared with occasional tinnitus or nontinnitus. The ABR from occasional tinnitus was indistinguishable from that of the nontinnitus controls.CONCLUSIONS Our results support the hypothesis that the transition from occasional to constant tinnitus is accompanied by neuronal changes in the midbrain leading to a persisting tinnitus, which is then less likely to remit.FUNDING This study was supported by the GENDER-Net Co-Plus Fund (GNP-182), the European Union’s Horizon 2020 grants no. 848261 (Unification of Treatments and Interventions for Tinnitus [UNITI]) and no. 722046 (European School for Interdisciplinary Tinnitus Research [ESIT]).

Authors

Niklas K. Edvall, Golbarg Mehraei, Martin Claeson, Andra Lazar, Jan Bulla, Constanze Leineweber, Inger Uhlén, Barbara Canlon, Christopher R. Cederroth

×

CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses
Bezawit A. Woldemeskel, … , Kellie N. Smith, Joel N. Blankson
Bezawit A. Woldemeskel, … , Kellie N. Smith, Joel N. Blankson
Published January 21, 2022
Citation Information: J Clin Invest. 2022;132(5):e156083. https://doi.org/10.1172/JCI156083.
View: Text | PDF

CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses

  • Text
  • PDF
Abstract

Recent studies have shown that vaccinated individuals harbor T cells that can cross-recognize SARS-CoV-2 and endemic human common cold coronaviruses. However, it is still unknown whether CD4+ T cells from vaccinated individuals recognize peptides from bat coronaviruses that may have the potential of causing future pandemics. In this study, we identified a SARS-CoV-2 spike protein epitope (S815-827) that is conserved in coronaviruses from different genera and subgenera, including SARS-CoV, MERS-CoV, multiple bat coronaviruses, and a feline coronavirus. Our results showed that S815-827 was recognized by 42% of vaccinated participants in our study who received the Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) COVID-19 vaccines. Using T cell expansion and T cell receptor sequencing assays, we demonstrated that S815-827-reactive CD4+ T cells from the majority of responders cross-recognized homologous peptides from at least 6 other diverse coronaviruses. Our results support the hypothesis that the current mRNA vaccines elicit T cell responses that can cross-recognize bat coronaviruses and thus might induce some protection against potential zoonotic outbreaks. Furthermore, our data provide important insights that inform the development of T cell–based pan-coronavirus vaccine strategies.

Authors

Bezawit A. Woldemeskel, Arbor G. Dykema, Caroline C. Garliss, Saphira Cherfils, Kellie N. Smith, Joel N. Blankson

×

Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells
Wenxin Song, … , Loren G. Fong, Stephen G. Young
Wenxin Song, … , Loren G. Fong, Stephen G. Young
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e157500. https://doi.org/10.1172/JCI157500.
View: Text | PDF

Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells

  • Text
  • PDF
Abstract

GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1’s 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1’s AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL’s basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.

Authors

Wenxin Song, Anne P. Beigneux, Anne-Marie L. Winther, Kristian K. Kristensen, Anne L. Grønnemose, Ye Yang, Yiping Tu, Priscilla Munguia, Jazmin Morales, Hyesoo Jung, Pieter J. de Jong, Cris J. Jung, Kazuya Miyashita, Takao Kimura, Katsuyuki Nakajima, Masami Murakami, Gabriel Birrane, Haibo Jiang, Peter Tontonoz, Michael Ploug, Loren G. Fong, Stephen G. Young

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts