Zheng, et al. identify metabolic biomarkers in the circulation that accurately diagnose fumarate hydratase–deficient renal cell carcinoma, the most aggressive form of kidney cancer. These succinate-modified metabolites are produced via a unique enzymatic cascade that is initiated in response to the high concentration of fumarate in these tumors. Image credit: Liang Zheng and Kirsteen Liu.
Lutfiyya N. Muhammad
Exercise confers numerous salutary effects that extend beyond individual organ systems to provide systemic health benefits. Here, we discuss the role of exercise in cardiovascular health. We summarize major findings from human exercise studies in cardiometabolic disease. We next describe our current understanding of cardiac-specific substrate metabolism that occurs with acute exercise and in response to exercise training. We subsequently focus on exercise-stimulated circulating biochemicals (“exerkines”) as a paradigm for understanding the global health circuitry of exercise, and discuss important concepts in this emerging field before highlighting exerkines relevant in cardiovascular health and disease. Finally, this Review identifies gaps that remain in the field of exercise science and opportunities that exist to translate biologic insights into human health improvement.
Jeremy M. Robbins, Robert E. Gerszten
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Sarah H. Berth, Thomas E. Lloyd
There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach. Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing therapeutics against both existing and emerging viral threats that complement DAAs.
Marwah Karim, Chieh-Wen Lo, Shirit Einav
Laura J. Rasmussen-Torvik
The cytokine IL-6 has well-known proinflammatory roles in aging and ischemic heart disease. In this issue of the JCI, Alter and colleagues used mouse experiments and human tissue to investigate the source of IL-6 following myocardial infarction. The authors showed that cardiac fibroblasts produced IL-6 after coronary ligation in mice and proposed the existence of a pathway involving adenosine signaling via the adenosine A2b receptor. The findings underscore the complexity of IL-6 biology in ischemic heart disease and identify an adenosine/IL-6 pathway that warrants consideration for targeting as a modulator of cardiovascular risk.
Tetsushi Nakao, Peter Libby
Fumarate hydratase–deficient (FH-deficient) renal cell carcinoma (RCC) represents a particularly aggressive form of kidney cancer. FH-deficient RCC arises in the setting of germline, or solely somatic, mutations in the FH gene, a two-hit tumor suppressor gene. Early detection can be curative, but there are no biomarkers, and in the sporadic setting, establishing a diagnosis of FH-deficient RCC is challenging. In this issue of the JCI, Zheng, Zhu, and co-authors report untargeted plasma metabolomic analyses to identify putative biomarkers. They discovered two plasma metabolites directly linked to fumarate overproduction by tumor cells, succinyl-adenosine and succinic-cysteine, which correlate with tumor burden. The identification of circulating biomarkers of FH-deficient RCC may aid in the diagnosis of FH-deficient RCC and provide a means for longitudinal follow-up.
Divya Bezwada, James Brugarolas
Endothelial cells form a constitutively anticoagulant surface under homeostasis. While loss of this anticoagulant property is a hallmark of many cardiovascular diseases, the molecular mechanisms underlying the procoagulant transition remain incompletely understood. In this issue of the JCI, Schmaier et al. identify the phospholipid scramblases TMEM16E and TMEM16F, which support endothelial procoagulant activity through phosphatidylserine (PS) externalization. Genetic deletion of TMEM16E or TMEM16F or treatment with TMEM16 inhibitors prevented PS externalization and reduced fibrin formation in the vessel wall independently of platelets in a murine laser-injury model of thrombosis. These findings reveal a role for endothelial TMEM16E in thrombosis and identify TMEM16E as a potential therapeutic target for preventing thrombus formation.
János G. Filep
Deficiencies in homologous recombination (HR) repair lead to an accumulation of DNA damage and can predispose individuals to cancer. Polymerase theta (Pol θ, encoded by POLQ) is overexpressed by HR-deficient cancers and promotes cancer cell survival by mediating error-prone double-stranded break (DSB) repair and facilitating resistance against poly-ADP ribose polymerase inhibitor treatment. In this issue of the JCI, Oh, Wang, et al. report on the impact of Pol θ inhibition on activation of antitumor immunity. The authors used pancreatic ductal adenocarcinoma (PDAC) cell and mouse models characterized by HR-associated gene alterations and POLQ overexpression. POLQ knockdown showed synthetic lethality in combination with gene mutations involving DNA repair, including BRCA1, BRCA2, and ATM. Notably, Pol θ deficiency or inhibition suppressed tumor growth, increased the accumulation of unrepaired DNA damage, and enhanced T cell infiltration via the cGAS/STING pathway. These findings suggest a broader scope for Pol θ inhibition in HR-deficient cancers.
Chelsea M. Smith, Gaorav P. Gupta
Kara N. Thomas, Nimisha Srikanth, Sanat S. Bhadsavle, Kelly R. Thomas, Katherine N. Zimmel, Alison Basel, Alexis N. Roach, Nicole A. Mehta, Yudhishtar S. Bedi, Michael C. Golding
Neonatal herpes simplex virus (HSV) infection is a devastating disease with substantial morbidity and mortality. The genetic basis of susceptibility to HSV in neonates remains undefined. We evaluated a male infant with neonatal skin/eye/mouth (SEM) HSV-1 disease, who had complete recovery after acyclovir but developed HSV-1 encephalitis at 1 year of age. An immune workup showed an anergic PBMC cytokine response to TLR3 stimulation but no other TLRs. Exome sequencing identified rare missense variants in IFN-regulatory factor 7 (IRF7) and UNC-93 homolog B1 (UNC93B1). PBMC single-cell RNA-Seq done during childhood revealed decreased expression of several innate immune genes and a repressed TLR3 pathway signature at baseline in several immune cell populations, including CD14 monocytes. Functional studies in fibroblasts and human leukemia monocytic THP1 cells showed that both variants individually suppressed TLR3-driven IRF3 transcriptional activity and the type I IFN response in vitro. Furthermore, fibroblasts expressing the IRF7 and UNC93B1 variants had higher intracellular viral titers with blunting of the type I IFN response upon HSV-1 challenge. This study reports an infant with recurrent HSV-1 disease complicated by encephalitis associated with deleterious variants in the IRF7 and UNC93B1 genes. Our results suggest that TLR3 pathway mutations may predispose neonates to recurrent, severe HSV.
Megan H. Tucker, Wei Yu, Heather Menden, Sheng Xia, Carl F. Schreck, Margaret Gibson, Daniel Louiselle, Tomi Pastinen, Nikita Raje, Venkatesh Sampath
Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/Cas9–mediated α-galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified α-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.
Fabian Braun, Ahmed Abed, Dominik Sellung, Manuel Rogg, Mathias Woidy, Oysten Eikrem, Nicola Wanner, Jessica Gambardella, Sandra D. Laufer, Fabian Haas, Milagros N. Wong, Bernhard Dumoulin, Paula Rischke, Anne Mühlig, Wiebke Sachs, Katharina von Cossel, Kristina Schulz, Nicole Muschol, Sören W. Gersting, Ania C. Muntau, Oliver Kretz, Oliver Hahn, Markus M. Rinschen, Michael Mauer, Tillmann Bork, Florian Grahammer, Wei Liang, Thorsten Eierhoff, Winfried Römer, Arne Hansen, Catherine Meyer-Schwesinger, Guido Iaccarino, Camilla Tøndel, Hans-Peter Marti, Behzad Najafian, Victor G. Puelles, Christoph Schell, Tobias B. Huber
Renal osteodystrophy (ROD) is a disorder of bone metabolism that affects virtually all patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes including fractures, cardiovascular events, and death. In this study, we showed that hepatocyte nuclear factor 4α (HNF4α), a transcription factor mostly expressed in the liver, is also expressed in bone, and that osseous HNF4α expression was dramatically reduced in patients and mice with ROD. Osteoblast-specific deletion of Hnf4α resulted in impaired osteogenesis in cells and mice. Using multi-omics analyses of bones and cells lacking or overexpressing Hnf4α1 and Hnf4α2, we showed that HNF4α2 is the main osseous Hnf4α isoform that regulates osteogenesis, cell metabolism, and cell death. As a result, osteoblast-specific overexpression of Hnf4α2 prevented bone loss in mice with CKD. Our results showed that HNF4α2 is a transcriptional regulator of osteogenesis, implicated in the development of ROD.
Marta Martinez-Calle, Guillaume Courbon, Bridget Hunt-Tobey, Connor Francis, Jadeah Spindler, Xueyan Wang, Luciene M. dos Reis, Carolina S.W. Martins, Isidro B. Salusky, Hartmut Malluche, Thomas L. Nickolas, Rosa M.A. Moyses, Aline Martin, Valentin David
Programmed cell death ligand 1 (PD-L1) is an immune checkpoint protein frequently expressed in human cancers that contributes to immune evasion through its binding to PD-1 on activated T cells. Unveiling the mechanisms underlying PD-L1 expression is essential for understanding the impact of the immunosuppressive microenvironment and is also crucial for the purpose of reboosting antitumor immunity. However, how PD-L1 is regulated, particularly at translational levels, remains largely unknown. Here, we discovered that a long noncoding RNA (lncRNA), HIF-1α inhibitor at translation level (HITT), was transactivated by E2F transcription factor 1 (E2F1) under IFN-γ stimulation. It coordinated with regulator of G protein signaling 2 (RGS2) in binding to the 5′ UTR of PD-L1, resulting in reduced PD-L1 translation. HITT expression enhanced T cell–mediated cytotoxicity both in vitro and in vivo in a PD-L1–dependent manner. The clinical correlation between HITT/PD-L1 and RGS2/PD-L1 expression was also detected in breast cancer tissues. Together, these findings demonstrate the role of HITT in antitumor T cell immunity, highlighting activation of HITT as a potential therapeutic strategy for enhancing cancer immunotherapy.
Qingyu Lin, Tong Liu, Xingwen Wang, Guixue Hou, Zhiyuan Xiang, Wenxin Zhang, Shanliang Zheng, Dong Zhao, Qibin Leng, Xiaoshi Zhang, Minqiao Lu, Tianqi Guan, Hao Liu, Ying Hu
Many patients with hepatocellular carcinoma (HCC) do not respond to the first-line immune checkpoint inhibitor treatment. Immunization with effective cancer vaccines is an attractive alternative approach to immunotherapy. However, its efficacy remains insufficiently evaluated in preclinical studies. Here, we investigated HCC-associated self/tumor antigen, α-fetoprotein–based (AFP-based) vaccine immunization for treating AFP (+) HCC mouse models. We found that AFP immunization effectively induced AFP-specific CD8+ T cells in vivo. However, these CD8+ T cells expressed exhaustion markers, including PD1, LAG3, and Tim3. Furthermore, the AFP vaccine effectively prevented c-MYC/Mcl1 HCC initiation when administered before tumor formation, while it was ineffective against full-blown c-MYC/Mcl1 tumors. Similarly, anti-PD1 and anti–PD-L1 monotherapy showed no efficacy in this murine HCC model. In striking contrast, AFP immunization combined with anti–PD-L1 treatment triggered significant inhibition of HCC progression in most liver tumor nodules, while in combination with anti-PD1, it induced slower tumor progression. Mechanistically, we demonstrated that HCC-intrinsic PD-L1 expression was the primary target of anti–PD-L1 in this combination therapy. Notably, the combination therapy had a similar therapeutic effect in the cMet/β-catenin mouse HCC model. These findings suggest that combining the AFP vaccine and immune checkpoint inhibitors may be effective for AFP (+) HCC treatment.
Xinjun Lu, Shanshan Deng, Jiejie Xu, Benjamin L. Green, Honghua Zhang, Guofei Cui, Yi Zhou, Yi Zhang, Hongwei Xu, Fapeng Zhang, Rui Mao, Sheng Zhong, Thorsten Cramer, Matthias Evert, Diego F. Calvisi, Yukai He, Chao Liu, Xin Chen
Plasma IL-6 is elevated after myocardial infarction (MI) and is associated with increased morbidity and mortality. Which cardiac cell type preferentially contributes to IL-6 expression and how its production is regulated are largely unknown. Here, we studied the cellular source and purinergic regulation of IL-6 formation in a murine MI model. We found that IL-6, measured in various cell types in post-MI hearts at the protein level and by quantitative PCR and RNAscope, was preferentially formed by cardiac fibroblasts (CFs). Single-cell RNA-Seq (scRNA-Seq) in infarcted mouse and human hearts confirmed this finding. We found that adenosine stimulated fibroblast IL-6 formation via the adenosine receptor A2bR in a Gq-dependent manner. CFs highly expressed Adora2b and rapidly degraded extracellular ATP to AMP but lacked CD73. In mice and humans, scRNA-Seq revealed that Adora2B was also mainly expressed by fibroblasts. We assessed global IL-6 production in isolated hearts from mice lacking CD73 on T cells (CD4-CD73–/–), a condition known to be associated with adverse cardiac remodeling. The ischemia-induced release of IL-6 was strongly attenuated in CD4-CD73–/– mice, suggesting adenosine-mediated modulation. Together, these findings demonstrate that post-MI IL-6 was mainly derived from activated CFs and was controlled by T cell–derived adenosine. We show that purinergic metabolic cooperation between CFs and T cells is a mechanism that modulates IL-6 formation by the heart and has therapeutic potential.
Christina Alter, Anne-Sophie Henseler, Christoph Owenier, Julia Hesse, Zhaoping Ding, Tobias Lautwein, Jasmin Bahr, Sikander Hayat, Rafael Kramann, Eva Kostenis, Jürgen Scheller, Jürgen Schrader
Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS). PS can be rapidly externalized to the outer cell membrane leaflet by phospholipid “scramblases,” such as TMEM16F. TMEM16F-dependent PS externalization is well characterized in platelets. In contrast, how ECs externalize phospholipids to support coagulation is not understood. We employed a focused genetic screen to evaluate the contribution of transmembrane phospholipid transport on EC procoagulant activity. We identified 2 TMEM16 family members, TMEM16F and its closest paralog, TMEM16E, which were both required to support coagulation on ECs via PS externalization. Applying an intravital laser-injury model of thrombosis, we observed, unexpectedly, that PS externalization was concentrated at the vessel wall, not on platelets. TMEM16E-null mice demonstrated reduced vessel-wall–dependent fibrin formation. The TMEM16 inhibitor benzbromarone prevented PS externalization and EC procoagulant activity and protected mice from thrombosis without increasing bleeding following tail transection. These findings indicate the activated endothelial surface is a source of procoagulant phospholipid contributing to thrombus formation. TMEM16 phospholipid scramblases may be a therapeutic target for thrombotic cardiovascular disease.
Alec A. Schmaier, Papa F. Anderson, Siyu M. Chen, Emale El-Darzi, Ivan Aivasovsky, Milan P. Kaushik, Kelsey D. Sack, H. Criss Hartzell, Samir M. Parikh, Robert Flaumenhaft, Sol Schulman
Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIP-associated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.
Santhosh Kumar Pasupuleti, Baskar Ramdas, Sarah S. Burns, Lakshmi Reddy Palam, Rahul Kanumuri, Ramesh Kumar, Taruni Reddy Pandhiri, Utpal P. Dave, Nanda Kumar Yellapu, Xinyu Zhou, Chi Zhang, George E. Sandusky, Zhi Yu, Michael C. Honigberg, Alexander G. Bick, Gabriel K. Griffin, Abhishek Niroula, Benjamin L. Ebert, Sophie Paczesny, Pradeep Natarajan, Reuben Kapur
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) in response to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs (CVOs) of the brain focus on mechanosensitive membrane proteins. The present study demonstrated that intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuron-specific conditional KO (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction–induced AVP release. Wnk1 cKO also blunted mannitol-induced AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
Xin Jin, Jian Xie, Chia-Wei Yeh, Jen-Chi Chen, Chih-Jen Cheng, Cheng-Chang Lien, Chou-Long Huang
Herpes simplex virus type 2 (HSV-2) coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2–infected and bystander 2D10 cells. Bulk and single-cell RNA-Seq studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2–infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms, including upregulation of MALAT1 to release epigenetic silencing.
Carl A. Pierce, Lip Nam Loh, Holly R. Steach, Natalia Cheshenko, Paula Preston-Hurlburt, Fengrui Zhang, Stephanie Stransky, Leah Kravets, Simone Sidoli, William Philbrick, Michel Nassar, Smita Krishnaswamy, Kevan C. Herold, Betsy C. Herold
Neuropathic pain remains poorly managed by current therapies, highlighting the need to improve our knowledge of chronic pain mechanisms. In neuropathic pain models, dorsal root ganglia (DRG) nociceptive neurons transfer miR-21 packaged in extracellular vesicles to macrophages that promote a proinflammatory phenotype and contribute to allodynia. Here we show that miR-21 conditional deletion in DRG neurons was coupled with lack of upregulation of chemokine CCL2 after nerve injury and reduced accumulation of CCR2-expressing macrophages, which showed TGF-β–related pathway activation and acquired an M2-like antinociceptive phenotype. Indeed, neuropathic allodynia was attenuated after conditional knockout of miR-21 and restored by TGF-βR inhibitor (SB431542) administration. Since TGF-βR2 and TGF-β1 are known miR-21 targets, we suggest that miR-21 transfer from injured neurons to macrophages maintains a proinflammatory phenotype via suppression of such an antiinflammatory pathway. These data support miR-21 inhibition as a possible approach to maintain polarization of DRG macrophages at an M2-like state and attenuate neuropathic pain.
Lynda Zeboudj, George Sideris-Lampretsas, Rita Silva, Sabeha Al-Mudaris, Francesca Picco, Sarah Fox, David Chambers, Marzia Malcangio
Germline or somatic loss-of-function mutations of fumarate hydratase (FH) predispose patients to an aggressive form of renal cell carcinoma (RCC). Since other than tumor resection there is no effective therapy for metastatic FH-deficient RCC, an accurate method for early diagnosis is needed. Although MRI or CT scans are offered, they cannot differentiate FH-deficient tumors from other RCCs. Therefore, finding noninvasive plasma biomarkers suitable for rapid diagnosis, screening, and surveillance would improve clinical outcomes. Taking advantage of the robust metabolic rewiring that occurs in FH-deficient cells, we performed plasma metabolomics analysis and identified 2 tumor-derived metabolites, succinyl-adenosine and succinic-cysteine, as excellent plasma biomarkers for early diagnosis. These 2 molecules reliably reflected the FH mutation status and tumor mass. We further identified the enzymatic cooperativity by which these biomarkers are produced within the tumor microenvironment. Longitudinal monitoring of patients demonstrated that these circulating biomarkers can be used for reporting on treatment efficacy and identifying recurrent or metastatic tumors.
Liang Zheng, Zi-Ran Zhu, Tal Sneh, Wei-Tuo Zhang, Zao-Yu Wang, Guang-Yu Wu, Wei He, Hong-Gang Qi, Hang Wang, Xiao-Yu Wu, Jonatan Fernández-García, Ifat Abramovich, Yun-Ze Xu, Jin Zhang, Eyal Gottlieb
Excessive erythrocytosis (EE) is a major hallmark of patients suffering from chronic mountain sickness (CMS, also known as Monge’s disease) and is responsible for major morbidity and even mortality in early adulthood. We took advantage of unique populations, one living at high altitude (Peru) showing EE, with another population, at the same altitude and region, showing no evidence of EE (non-CMS). Through RNA-Seq, we identified and validated the function of a group of long noncoding RNAs (lncRNAs) that regulate erythropoiesis in Monge’s disease, but not in the non-CMS population. Among these lncRNAs is hypoxia induced kinase-mediated erythropoietic regulator (HIKER)/LINC02228, which we showed plays a critical role in erythropoiesis in CMS cells. Under hypoxia, HIKER modulated CSNK2B (the regulatory subunit of casein kinase 2). A downregulation of HIKER downregulated CSNK2B, remarkably reducing erythropoiesis; furthermore, an upregulation of CSNK2B on the background of HIKER downregulation rescued erythropoiesis defects. Pharmacologic inhibition of CSNK2B drastically reduced erythroid colonies, and knockdown of CSNK2B in zebrafish led to a defect in hemoglobinization. We conclude that HIKER regulates erythropoiesis in Monge’s disease and acts through at least one specific target, CSNK2B, a casein kinase.
Priti Azad, Dan Zhou, Hung-Chi Tu, Francisco C. Villafuerte, David Traver, Tariq M. Rana, Gabriel G. Haddad
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination–repair (HR-repair) proteins in 20%–25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.
Grace Oh, Annie Wang, Lidong Wang, Jiufeng Li, Gregor Werba, Daniel Weissinger, Ende Zhao, Surajit Dhara, Rosmel E. Hernandez, Amanda Ackermann, Sarina Porcella, Despoina Kalfakakou, Igor Dolgalev, Emily Kawaler, Talia Golan, Theodore H. Welling, Agnel Sfeir, Diane M. Simeone
BACKGROUND Circadian rhythms are evident in basic immune processes, but it is unclear if rhythms exist in clinical endpoints like vaccine protection. Here, we examined associations between COVID-19 vaccination timing and effectiveness.METHODS We retrospectively analyzed a large Israeli cohort with timestamped COVID-19 vaccinations (n = 1,515,754 patients over 12 years old, 99.2% receiving BNT162b2). Endpoints included COVID-19 breakthrough infection and COVID-19–associated emergency department visits and hospitalizations. Our main comparison was among patients vaccinated during morning (800–1159 hours), afternoon (1200–1559 hours), or evening hours (1600–1959 hours). We employed Cox regression to adjust for differences in age, sex, and comorbidities.RESULTS Breakthrough infections differed based on vaccination time, with lowest the rates associated with late morning to early afternoon and highest rates associated with evening vaccination. Vaccination timing remained significant after adjustment for patient age, sex, and comorbidities. Results were consistent in patients who received the basic 2-dose series and who received booster doses. The relationship between COVID-19 immunization time and breakthrough infections was sinusoidal, consistent with a biological rhythm that modifies vaccine effectiveness by 8.6%–25%. The benefits of daytime vaccination were concentrated in younger (<20 years old) and older patients (>50 years old). COVID-19–related hospitalizations varied significantly with the timing of the second booster dose, an intervention reserved for older and immunosuppressed patients (HR = 0.64, morning vs. evening; 95% CI, 0.43–0.97; P = 0.038).CONCLUSION We report a significant association between the time of COVID-19 vaccination and its effectiveness. This has implications for mass vaccination programs.FUNDING NIH.
Guy Hazan, Or A. Duek, Hillel Alapi, Huram Mok, Alex Ganninger, Elaine Ostendorf, Carrie Gierasch, Gabriel Chodick, David Greenberg, Jeffrey A. Haspel
The deadliest anaplastic thyroid cancer (ATC) often transforms from indolent differentiated thyroid cancer (DTC); however, the complex intratumor transformation process is poorly understood. We investigated an anaplastic transformation model by dissecting both cell lineage and cell fate transitions using single-cell transcriptomic and genetic alteration data from patients with different subtypes of thyroid cancer. The resulting spectrum of ATC transformation included stress-responsive DTC cells, inflammatory ATC cells (iATCs), and mitotic-defective ATC cells and extended all the way to mesenchymal ATC cells (mATCs). Furthermore, our analysis identified 2 important milestones: (a) a diploid stage, in which iATC cells were diploids with inflammatory phenotypes and (b) an aneuploid stage, in which mATCs gained aneuploid genomes and mesenchymal phenotypes, producing excessive amounts of collagen and collagen-interacting receptors. In parallel, cancer-associated fibroblasts showed strong interactions among mesenchymal cell types, macrophages shifted from M1 to M2 states, and T cells reprogrammed from cytotoxic to exhausted states, highlighting new therapeutic opportunities for the treatment of ATC.
Lina Lu, Jennifer Rui Wang, Ying C. Henderson, Shanshan Bai, Jie Yang, Min Hu, Cheng-Kai Shiau, Timothy Pan, Yuanqing Yan, Tuan M. Tran, Jianzhuo Li, Rachel Kieser, Xiao Zhao, Jiping Wang, Roza Nurieva, Michelle D. Williams, Maria E. Cabanillas, Ramona Dadu, Naifa Lamki Busaidy, Mark Zafereo, Nicholas Navin, Stephen Y. Lai, Ruli Gao
Jason M. Redman, Jay Friedman, Yvette Robbins, Cem Sievers, Xinping Yang, Wiem Lassoued, Andrew Sinkoe, Antonios Papanicolau-Sengos, Chyi-Chia Lee, Jennifer L. Marte, Evrim Turkbey, Wojtek Mydlarz, Arjun Joshi, Nyall R. London Jr., Matthew Pierce, Rodney Taylor, Steven Hong, Andy Nguyen, Patrick Soon-Shiong, Jeffrey Schlom, James L. Gulley, Clint T. Allen