Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,772 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 123
  • 124
  • 125
  • …
  • 2577
  • 2578
  • Next →
Hematopoietic transcription factor GFI1 promotes anchorage independence by sustaining ERK activity in cancer cells
Hao Wang, Zhenzhen Lin, Zhe Nian, Wei Zhang, Wenxu Liu, Fei Yan, Zengtuan Xiao, Xia Wang, Zhenfa Zhang, Zhenyi Ma, Zhe Liu
Hao Wang, Zhenzhen Lin, Zhe Nian, Wei Zhang, Wenxu Liu, Fei Yan, Zengtuan Xiao, Xia Wang, Zhenfa Zhang, Zhenyi Ma, Zhe Liu
View: Text | PDF

Hematopoietic transcription factor GFI1 promotes anchorage independence by sustaining ERK activity in cancer cells

  • Text
  • PDF
Abstract

The switch from anchorage-dependent to anchorage-independent growth is essential for epithelial metastasis. The underlying mechanism, however, is not fully understood. In this study, we identified growth factor independent-1 (GFI1), a transcription factor that drives the transition from adherent endothelial cells to suspended hematopoietic cells during hematopoiesis, as a critical regulator of anchorage independence in lung cancer cells. GFI1 elevated the numbers of circulating and lung-infiltrating tumor cells in xenograft models and predicted poor prognosis of patients with lung cancer. Mechanistically, GFI1 inhibited the expression of multiple adhesion molecules and facilitated substrate detachment. Concomitantly, GFI1 reconfigured the chromatin structure of the RASGRP2 gene and increased its expression, causing Rap1 activation and subsequent sustained ERK activation upon detachment, and this led to ERK signaling dependency in tumor cells. Our studies unveiled a mechanism by which carcinoma cells hijacked a hematopoietic factor to gain anchorage independence and suggested that the intervention of ERK signaling may suppress metastasis and improve the therapeutic outcome of patients with GFI1-positive lung cancer.

Authors

Hao Wang, Zhenzhen Lin, Zhe Nian, Wei Zhang, Wenxu Liu, Fei Yan, Zengtuan Xiao, Xia Wang, Zhenfa Zhang, Zhenyi Ma, Zhe Liu

×

The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development
Michael J. Grey, Heidi De Luca, Doyle V. Ward, Irini A.M. Kreulen, Katlynn Bugda Gwilt, Sage E. Foley, Jay R. Thiagarajah, Beth A. McCormick, Jerrold R. Turner, Wayne I. Lencer
Michael J. Grey, Heidi De Luca, Doyle V. Ward, Irini A.M. Kreulen, Katlynn Bugda Gwilt, Sage E. Foley, Jay R. Thiagarajah, Beth A. McCormick, Jerrold R. Turner, Wayne I. Lencer
View: Text | PDF

The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development

  • Text
  • PDF
Abstract

Epithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1β, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor, ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2–/– mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon. This occurred only after colonization of the alimentary tract with normal gut microflora, which induced Ern2 expression. ERN2 acted by splicing Xbp1 mRNA to expand ER function and prevent ER stress in goblet cells. Although ERN1 can also splice Xbp1 mRNA, it did not act redundantly to ERN2 in this context. By regulating assembly of the colon mucus layer, ERN2 further shaped the composition of the gut microbiota. Mice lacking Ern2 had a dysbiotic microbial community that failed to induce goblet cell development and increased susceptibility to colitis when transferred into germ-free WT mice. These results show that ERN2 evolved at mucosal surfaces to mediate crosstalk between gut microbes and the colonic epithelium required for normal homeostasis and host defense.

Authors

Michael J. Grey, Heidi De Luca, Doyle V. Ward, Irini A.M. Kreulen, Katlynn Bugda Gwilt, Sage E. Foley, Jay R. Thiagarajah, Beth A. McCormick, Jerrold R. Turner, Wayne I. Lencer

×

Longitudinal analysis reveals age-related changes in the T cell receptor repertoire of human T cell subsets
Xiaoping Sun, Thomas Nguyen, Achouak Achour, Annette Ko, Jeffrey Cifello, Chen Ling, Jay Sharma, Toyoko Hiroi, Yongqing Zhang, Chee W. Chia, William Wood III, Wells W. Wu, Linda Zukley, Je-Nie Phue, Kevin G. Becker, Rong-Fong Shen, Luigi Ferrucci, Nan-ping Weng
Xiaoping Sun, Thomas Nguyen, Achouak Achour, Annette Ko, Jeffrey Cifello, Chen Ling, Jay Sharma, Toyoko Hiroi, Yongqing Zhang, Chee W. Chia, William Wood III, Wells W. Wu, Linda Zukley, Je-Nie Phue, Kevin G. Becker, Rong-Fong Shen, Luigi Ferrucci, Nan-ping Weng
View: Text | PDF

Longitudinal analysis reveals age-related changes in the T cell receptor repertoire of human T cell subsets

  • Text
  • PDF
Abstract

A diverse T cell receptor (TCR) repertoire is essential for protection against a variety of pathogens, and TCR repertoire size is believed to decline with age. However, the precise size of human TCR repertoires, in both total and subsets of T cells, as well as their changes with age, are not fully characterized. We conducted a longitudinal analysis of the human blood TCRα and TCRβ repertoire of CD4+ and CD8+ T cell subsets using a unique molecular identifier–based (UMI-based) RNA-seq method. Thorough analysis of 1.9 × 108 T cells yielded the lower estimate of TCR repertoire richness in an adult at 3.8 × 108. Alterations of the TCR repertoire with age were observed in all 4 subsets of T cells. The greatest reduction was observed in naive CD8+ T cells, while the greatest clonal expansion was in memory CD8+ T cells, and the highest increased retention of TCR sequences was in memory CD8+ T cells. Our results demonstrated that age-related TCR repertoire attrition is subset specific and more profound for CD8+ than CD4+ T cells, suggesting that aging has a more profound effect on cytotoxic as opposed to helper T cell functions. This may explain the increased susceptibility of older adults to novel infections.

Authors

Xiaoping Sun, Thomas Nguyen, Achouak Achour, Annette Ko, Jeffrey Cifello, Chen Ling, Jay Sharma, Toyoko Hiroi, Yongqing Zhang, Chee W. Chia, William Wood III, Wells W. Wu, Linda Zukley, Je-Nie Phue, Kevin G. Becker, Rong-Fong Shen, Luigi Ferrucci, Nan-ping Weng

×

Human β-defensin-3 attenuates atopic dermatitis–like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway
Ge Peng, Saya Tsukamoto, Risa Ikutama, Hai Le Thanh Nguyen, Yoshie Umehara, Juan V. Trujillo-Paez, Hainan Yue, Miho Takahashi, Takasuke Ogawa, Ryoma Kishi, Mitsutoshi Tominaga, Kenji Takamori, Jiro Kitaura, Shun Kageyama, Masaaki Komatsu, Ko Okumura, Hideoki Ogawa, Shigaku Ikeda, François Niyonsaba
Ge Peng, Saya Tsukamoto, Risa Ikutama, Hai Le Thanh Nguyen, Yoshie Umehara, Juan V. Trujillo-Paez, Hainan Yue, Miho Takahashi, Takasuke Ogawa, Ryoma Kishi, Mitsutoshi Tominaga, Kenji Takamori, Jiro Kitaura, Shun Kageyama, Masaaki Komatsu, Ko Okumura, Hideoki Ogawa, Shigaku Ikeda, François Niyonsaba
View: Text | PDF

Human β-defensin-3 attenuates atopic dermatitis–like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway

  • Text
  • PDF
Abstract

Human β-defensin-3 (hBD-3) exhibits antimicrobial and immunomodulatory activities; however, its contribution to autophagy regulation remains unclear, and the role of autophagy in the regulation of the epidermal barrier in atopic dermatitis (AD) is poorly understood. Here, keratinocyte autophagy was restrained in the skin lesions of patients with AD and murine models of AD. Interestingly, hBD-3 alleviated the IL-4– and IL-13–mediated impairment of the tight junction (TJ) barrier through keratinocyte autophagy activation, which involved aryl hydrocarbon receptor (AhR) signaling. While autophagy deficiency impaired the epidermal barrier and exacerbated inflammation, hBD-3 attenuated skin inflammation and enhanced the TJ barrier in AD. Importantly, hBD-3–mediated improvement of the TJ barrier was abolished in autophagy-deficient AD mice and in AhR-suppressed AD mice, suggesting a role for hBD-3–mediated autophagy in the regulation of the epidermal barrier and inflammation in AD. Thus, autophagy contributes to the pathogenesis of AD, and hBD-3 could be used for therapeutic purposes.

Authors

Ge Peng, Saya Tsukamoto, Risa Ikutama, Hai Le Thanh Nguyen, Yoshie Umehara, Juan V. Trujillo-Paez, Hainan Yue, Miho Takahashi, Takasuke Ogawa, Ryoma Kishi, Mitsutoshi Tominaga, Kenji Takamori, Jiro Kitaura, Shun Kageyama, Masaaki Komatsu, Ko Okumura, Hideoki Ogawa, Shigaku Ikeda, François Niyonsaba

×

FcγRIIB regulates autoantibody responses by limiting marginal zone B cell activation
Ashley N. Barlev, Susan Malkiel, Izumi Kurata-Sato, Annemarie L. Dorjée, Jolien Suurmond, Betty Diamond
Ashley N. Barlev, Susan Malkiel, Izumi Kurata-Sato, Annemarie L. Dorjée, Jolien Suurmond, Betty Diamond
View: Text | PDF

FcγRIIB regulates autoantibody responses by limiting marginal zone B cell activation

  • Text
  • PDF
Abstract

FcγRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell (PC) differentiation. Here, we analyzed the effect of B cell–intrinsic FcγRIIB expression on B cell activation and PC differentiation. Loss of FcγRIIB on B cells in Fcgr2b–conditional KO (Fcgr2b-cKO) mice led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcγRIIB in both mice and humans. This high expression of FcγRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium flux in the absence of FcγRIIB triggering. We observed a marked increase in IgG3+ PCs and B cells during extrafollicular PC responses in Fcgr2b-cKO mice. The increased IgG3 response following immunization of Fcgr2b-cKO mice was lost in MZ-deficient Notch2 Fcgr2b–double KO mice. Importantly, patients with systemic lupus erythematosus (SLE) had a decrease in FcγRIIB expression that was strongest in MZ B cells. Thus, we present a model in which high FcγRIIB expression in MZ B cells prevented their hyperactivation and ensuing autoimmunity.

Authors

Ashley N. Barlev, Susan Malkiel, Izumi Kurata-Sato, Annemarie L. Dorjée, Jolien Suurmond, Betty Diamond

×

Tetracycline-induced mitohormesis mediates disease tolerance against influenza
Adrienne Mottis, Terytty Y. Li, Gaby El Alam, Alexis Rapin, Elena Katsyuba, David Liaskos, Davide D’Amico, Nicola L. Harris, Mark C. Grier, Laurent Mouchiroud, Mark L. Nelson, Johan Auwerx
Adrienne Mottis, Terytty Y. Li, Gaby El Alam, Alexis Rapin, Elena Katsyuba, David Liaskos, Davide D’Amico, Nicola L. Harris, Mark C. Grier, Laurent Mouchiroud, Mark L. Nelson, Johan Auwerx
View: Text | PDF

Tetracycline-induced mitohormesis mediates disease tolerance against influenza

  • Text
  • PDF
Abstract

Mitohormesis defines the increase in fitness mediated by adaptive responses to mild mitochondrial stress. Tetracyclines inhibit not only bacterial but also mitochondrial translation, thus imposing a low level of mitochondrial stress on eukaryotic cells. We demonstrate in cell and germ-free mouse models that tetracyclines induce a mild adaptive mitochondrial stress response (MSR), involving both the ATF4-mediated integrative stress response and type I interferon (IFN) signaling. To overcome the interferences of tetracyclines with the host microbiome, we identify tetracycline derivatives that have minimal antimicrobial activity, yet retain full capacity to induce the MSR, such as the lead compound, 9-tert-butyl doxycycline (9-TB). The MSR induced by doxycycline (Dox) and 9-TB improves survival and disease tolerance against lethal influenza virus (IFV) infection when given preventively. 9-TB, unlike Dox, did not affect the gut microbiome and also showed encouraging results against IFV when given in a therapeutic setting. Tolerance to IFV infection is associated with the induction of genes involved in lung epithelial cell and cilia function, and with downregulation of inflammatory and immune gene sets in lungs, liver, and kidneys. Mitohormesis induced by non-antimicrobial tetracyclines and the ensuing IFN response may dampen excessive inflammation and tissue damage during viral infections, opening innovative therapeutic avenues.

Authors

Adrienne Mottis, Terytty Y. Li, Gaby El Alam, Alexis Rapin, Elena Katsyuba, David Liaskos, Davide D’Amico, Nicola L. Harris, Mark C. Grier, Laurent Mouchiroud, Mark L. Nelson, Johan Auwerx

×

Frequent detection but lack of infectivity of SARS-CoV-2 RNA in presymptomatic, infected blood donor plasma
Paula Saá, Rebecca V. Fink, Sonia Bakkour, Jing Jin, Graham Simmons, Marcus O. Muench, Hina Dawar, Clara Di Germanio, Alvin J. Hui, David J. Wright, David E. Krysztof, Steven H. Kleinman, Angela Cheung, Theresa Nester, Debra A. Kessler, Rebecca L. Townsend, Bryan R. Spencer, Hany Kamel, Jacquelyn M. Vannoy, Honey Dave, Michael P. Busch, Susan L. Stramer, Mars Stone, Rachael P. Jackman, Philip J. Norris, for the NHLBI Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P)
Paula Saá, Rebecca V. Fink, Sonia Bakkour, Jing Jin, Graham Simmons, Marcus O. Muench, Hina Dawar, Clara Di Germanio, Alvin J. Hui, David J. Wright, David E. Krysztof, Steven H. Kleinman, Angela Cheung, Theresa Nester, Debra A. Kessler, Rebecca L. Townsend, Bryan R. Spencer, Hany Kamel, Jacquelyn M. Vannoy, Honey Dave, Michael P. Busch, Susan L. Stramer, Mars Stone, Rachael P. Jackman, Philip J. Norris, for the NHLBI Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P)
View: Text | PDF

Frequent detection but lack of infectivity of SARS-CoV-2 RNA in presymptomatic, infected blood donor plasma

  • Text
  • PDF
Abstract

Respiratory viruses such as influenza do not typically cause viremia; however, SARS-CoV-2 has been detected in the blood of COVID-19 patients with mild and severe symptoms. Detection of SARS-CoV-2 in blood raises questions about its role in pathogenesis as well as transfusion safety concerns. Blood donor reports of symptoms or a diagnosis of COVID-19 after donation (post-donation information, PDI) preceded or coincided with increased general population COVID-19 mortality. Plasma samples from 2,250 blood donors who reported possible COVID-19–related PDI were tested for the presence of SARS-CoV-2 RNA. Detection of RNAemia peaked at 9%–15% of PDI donors in late 2020 to early 2021 and fell to approximately 4% after implementation of widespread vaccination in the population. RNAemic donors were 1.2- to 1.4-fold more likely to report cough or shortness of breath and 1.8-fold more likely to report change in taste or smell compared with infected donors without detectable RNAemia. No infectious virus was detected in plasma from RNAemic donors; inoculation of permissive cell lines produced less than 0.7–7 plaque-forming units (PFU)/mL and in susceptible mice less than 100 PFU/mL in RNA-positive plasma based on limits of detection in these models. These findings suggest that blood transfusions are highly unlikely to transmit SARS-CoV-2 infection.

Authors

Paula Saá, Rebecca V. Fink, Sonia Bakkour, Jing Jin, Graham Simmons, Marcus O. Muench, Hina Dawar, Clara Di Germanio, Alvin J. Hui, David J. Wright, David E. Krysztof, Steven H. Kleinman, Angela Cheung, Theresa Nester, Debra A. Kessler, Rebecca L. Townsend, Bryan R. Spencer, Hany Kamel, Jacquelyn M. Vannoy, Honey Dave, Michael P. Busch, Susan L. Stramer, Mars Stone, Rachael P. Jackman, Philip J. Norris, for the NHLBI Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P)

×

Genome-wide DNA hypermethylation opposes healing in patients with chronic wounds by impairing epithelial-mesenchymal transition
Kanhaiya Singh, Yashika Rustagi, Ahmed S. Abouhashem, Saba Tabasum, Priyanka Verma, Edward Hernandez, Durba Pal, Dolly K. Khona, Sujit K. Mohanty, Manishekhar Kumar, Rajneesh Srivastava, Poornachander R. Guda, Sumit S. Verma, Sanskruti Mahajan, Jackson A. Killian, Logan A. Walker, Subhadip Ghatak, Shomita S. Mathew-Steiner, Kristen E. Wanczyk, Sheng Liu, Jun Wan, Pearlly Yan, Ralf Bundschuh, Savita Khanna, Gayle M. Gordillo, Michael P. Murphy, Sashwati Roy, Chandan K. Sen
Kanhaiya Singh, Yashika Rustagi, Ahmed S. Abouhashem, Saba Tabasum, Priyanka Verma, Edward Hernandez, Durba Pal, Dolly K. Khona, Sujit K. Mohanty, Manishekhar Kumar, Rajneesh Srivastava, Poornachander R. Guda, Sumit S. Verma, Sanskruti Mahajan, Jackson A. Killian, Logan A. Walker, Subhadip Ghatak, Shomita S. Mathew-Steiner, Kristen E. Wanczyk, Sheng Liu, Jun Wan, Pearlly Yan, Ralf Bundschuh, Savita Khanna, Gayle M. Gordillo, Michael P. Murphy, Sashwati Roy, Chandan K. Sen
View: Text | PDF

Genome-wide DNA hypermethylation opposes healing in patients with chronic wounds by impairing epithelial-mesenchymal transition

  • Text
  • PDF
Abstract

An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5′-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.

Authors

Kanhaiya Singh, Yashika Rustagi, Ahmed S. Abouhashem, Saba Tabasum, Priyanka Verma, Edward Hernandez, Durba Pal, Dolly K. Khona, Sujit K. Mohanty, Manishekhar Kumar, Rajneesh Srivastava, Poornachander R. Guda, Sumit S. Verma, Sanskruti Mahajan, Jackson A. Killian, Logan A. Walker, Subhadip Ghatak, Shomita S. Mathew-Steiner, Kristen E. Wanczyk, Sheng Liu, Jun Wan, Pearlly Yan, Ralf Bundschuh, Savita Khanna, Gayle M. Gordillo, Michael P. Murphy, Sashwati Roy, Chandan K. Sen

×

IFN-α with dasatinib broadens the immune repertoire in patients with chronic-phase chronic myeloid leukemia
Jani Huuhtanen, Mette Ilander, Bhagwan Yadav, Olli M.J. Dufva, Hanna Lähteenmäki, Tiina Kasanen, Jay Klievink, Ulla Olsson-Strömberg, Jesper Stentoft, Johan Richter, Perttu Koskenvesa, Martin Höglund, Stina Söderlund, Arta Dreimane, Kimmo Porkka, Tobias Gedde-Dahl, Björn T. Gjertsen, Leif Stenke, Kristina Myhr-Eriksson, Berit Markevärn, Anna Lübking, Andreja Dimitrijevic, Lene Udby, Ole Weis Bjerrum, Henrik Hjorth-Hansen, Satu Mustjoki
Jani Huuhtanen, Mette Ilander, Bhagwan Yadav, Olli M.J. Dufva, Hanna Lähteenmäki, Tiina Kasanen, Jay Klievink, Ulla Olsson-Strömberg, Jesper Stentoft, Johan Richter, Perttu Koskenvesa, Martin Höglund, Stina Söderlund, Arta Dreimane, Kimmo Porkka, Tobias Gedde-Dahl, Björn T. Gjertsen, Leif Stenke, Kristina Myhr-Eriksson, Berit Markevärn, Anna Lübking, Andreja Dimitrijevic, Lene Udby, Ole Weis Bjerrum, Henrik Hjorth-Hansen, Satu Mustjoki
View: Text | PDF

IFN-α with dasatinib broadens the immune repertoire in patients with chronic-phase chronic myeloid leukemia

  • Text
  • PDF
Abstract

In chronic myeloid leukemia (CML), combination therapies with tyrosine kinase inhibitors (TKIs) aim to improve the achievement of deep molecular remission that would allow therapy discontinuation. IFN-α is one promising candidate, as it has long-lasting effects on both malignant and immune cells. In connection with a multicenter clinical trial combining dasatinib with IFN-α in 40 patients with chronic-phase CML (NordCML007, NCT01725204), we performed immune monitoring with single-cell RNA and T cell receptor (TCR) sequencing (n = 4, 12 samples), bulk TCRβ sequencing (n = 13, 26 samples), flow cytometry (n = 40, 106 samples), cytokine analyses (n = 17, 80 samples), and ex vivo functional studies (n = 39, 80 samples). Dasatinib drove the immune repertoire toward terminally differentiated NK and CD8+ T cells with dampened functional capabilities. Patients with dasatinib-associated pleural effusions had increased numbers of CD8+ recently activated effector memory T (Temra) cells. In vitro, dasatinib prevented CD3-induced cell death by blocking TCR signaling. The addition of IFN-α reversed the terminally differentiated phenotypes and increased the number of costimulatory intercellular interactions and the number of unique putative epitope-specific TCR clusters. In vitro IFN-α had costimulatory effects on TCR signaling. Our work supports the combination of IFN-α with TKI therapy, as IFN-α broadens the immune repertoire and restores immunological function.

Authors

Jani Huuhtanen, Mette Ilander, Bhagwan Yadav, Olli M.J. Dufva, Hanna Lähteenmäki, Tiina Kasanen, Jay Klievink, Ulla Olsson-Strömberg, Jesper Stentoft, Johan Richter, Perttu Koskenvesa, Martin Höglund, Stina Söderlund, Arta Dreimane, Kimmo Porkka, Tobias Gedde-Dahl, Björn T. Gjertsen, Leif Stenke, Kristina Myhr-Eriksson, Berit Markevärn, Anna Lübking, Andreja Dimitrijevic, Lene Udby, Ole Weis Bjerrum, Henrik Hjorth-Hansen, Satu Mustjoki

×

Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection
Eleanor C. Semmes, Itzayana G. Miller, Courtney E. Wimberly, Caroline T. Phan, Jennifer A. Jenks, Melissa J. Harnois, Stella J. Berendam, Helen Webster, Jillian H. Hurst, Joanne Kurtzberg, Genevieve G. Fouda, Kyle M. Walsh, Sallie R. Permar
Eleanor C. Semmes, Itzayana G. Miller, Courtney E. Wimberly, Caroline T. Phan, Jennifer A. Jenks, Melissa J. Harnois, Stella J. Berendam, Helen Webster, Jillian H. Hurst, Joanne Kurtzberg, Genevieve G. Fouda, Kyle M. Walsh, Sallie R. Permar
View: Text | PDF

Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection

  • Text
  • PDF
Abstract

Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.

Authors

Eleanor C. Semmes, Itzayana G. Miller, Courtney E. Wimberly, Caroline T. Phan, Jennifer A. Jenks, Melissa J. Harnois, Stella J. Berendam, Helen Webster, Jillian H. Hurst, Joanne Kurtzberg, Genevieve G. Fouda, Kyle M. Walsh, Sallie R. Permar

×
  • ← Previous
  • 1
  • 2
  • …
  • 123
  • 124
  • 125
  • …
  • 2577
  • 2578
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts