Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,544 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 54
  • 55
  • 56
  • …
  • 154
  • 155
  • Next →
Hematopoietic progenitor kinase 1 inhibits the development and progression of pancreatic intraepithelial neoplasia
Hua Wang, … , Anirban Maitra, Huamin Wang
Hua Wang, … , Anirban Maitra, Huamin Wang
Published May 4, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI163873.
View: Text | PDF

Hematopoietic progenitor kinase 1 inhibits the development and progression of pancreatic intraepithelial neoplasia

  • Text
  • PDF
Abstract

Ras plays an essential role in the development of acinar to ductal metaplasia (ADM) and pancreatic ductal adenocarcinoma (PDAC). However, mutant Kras is an inefficient driver for PDAC development. The switching mechanisms from low Ras activity to high Ras activity that is required for development and progression of pancreatic intraepithelial neoplasia (PanIN) are unclear. In this study, we found that HPK1 was upregulated during pancreatic injury and ADM. HPK1 interacted with the SH3 domain and phosphorylated Ras GTPase activating protein (RasGAP) and upregulated RasGAP activity. Using the transgenic mouse models of HPK1 or M46, a kinase-dead mutant of HPK1, we showed that HPK1 inhibited Ras activity and its downstream signaling and regulated acinar cell plasticity. M46 promoted the development of ADM and PanINs. Expression of M46 in KrasG12D;Bac mice promoted the infiltration of myeloid-derived suppressor cells and macrophages, inhibited the infiltration of T cells, and accelerated the progression of PanINs to invasive and metastatic PDAC, while HPK1 attenuated mutant Kras-driven PanIN progression. Our results showed that HPK1 plays an important role in ADM and the progression of PanINs by regulating Ras signaling. Loss of HPK1 kinase activity promotes an immunosuppressive tumor microenvironment and accelerates the progression of PanINs to PDAC.

Authors

Hua Wang, Rohan Moniruzzaman, Lei Li, Baoan Ji, Yi Liu, Xiangsheng Zuo, Reza Abbasgholizadeh, Jun Zhao, Guangchao Liu, Ruiqi Wang, Hongli Tang, Ryan Sun, Xiaoping Su, Tse-Hua Tan, Anirban Maitra, Huamin Wang

×

Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor
Chunhui Jiang, … , Chao Xing, Lu Q. Le
Chunhui Jiang, … , Chao Xing, Lu Q. Le
Published May 4, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI168227.
View: Text | PDF

Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor

  • Text
  • PDF
Abstract

Neurofibromatosis Type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes >50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development, and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall down-regulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-β1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-β1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA-sequencing, we found that immune cells including macrophages and T cells produce TGF-β1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-β1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as markers for disease diagnosis and treatment response.

Authors

Chunhui Jiang, Ashwani Kumar, Ze Yu, Tracey Shipman, Yong Wang, Renee M. McKay, Chao Xing, Lu Q. Le

×

Deficiency in the omega-3 lysolipid transporter Mfsd2a leads to aberrant oligodendrocyte lineage development and hypomyelination
Vetrivel Sengottuvel, … , Federico Torta, David L. Silver
Vetrivel Sengottuvel, … , Federico Torta, David L. Silver
Published April 27, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI164118.
View: Text | PDF

Deficiency in the omega-3 lysolipid transporter Mfsd2a leads to aberrant oligodendrocyte lineage development and hypomyelination

  • Text
  • PDF
Abstract

Patients with Autosomal Recessive Microcephaly 15 caused by deficiency in the sodium-dependent lysophosphatidylcholine (LPC) transporter Major Facilitator Superfamily Domain containing 2a (Mfsd2a) present with both microcephaly and hypomyelination, suggesting an important role of LPC uptake by oligodendrocytes in the process of myelination. Here, we demonstrate that Mfsd2a is specifically expressed in oligodendrocyte precursor cells (OPC) and is critical for oligodendrocyte development. Single cell sequencing of the oligodendrocyte lineage revealed that OPCs from OPC-specific Mfsd2a KO mice (2aOKO) underwent precocious differentiation into immature oligodendrocytes (iOLs) and impaired maturation into myelinating oligodendrocytes, correlating with postnatal brain hypomyelination. 2aOKO mice did not exhibit microcephaly, consistent with microcephaly being consequential to absence of LPC uptake at the blood-brain barrier and not from deficiency in OPCs. Lipidomic analysis showed that OPCs and iOLs from 2aOKO mice had significantly decreased phospholipids containing omega-3 fatty acids with an opposite increase in unsaturated fatty acids, that latter being products of de novo synthesis governed by Srebp-1. RNA sequencing indicated activation of the Srebp-1 pathway and defective expression of regulators of oligodendrocyte development. Taken together, these findings indicate that the transport of LPCs by Mfsd2a in OPCs is important for maintaining OPC cell state to regulate postnatal brain myelination.

Authors

Vetrivel Sengottuvel, Monalisa Hota, Jeongah Oh, Dwight L. Galam, Bernice H. Wong, Markus R. Wenk, Sujoy Ghosh, Federico Torta, David L. Silver

×

Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model
Keigo Takahashi, … , Michael Wong, Jonathan D. Cooper
Keigo Takahashi, … , Michael Wong, Jonathan D. Cooper
Published April 27, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI165908.
View: Text | PDF

Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model

  • Text
  • PDF
Abstract

Although a disease-modifying therapy for CLN2 disease now exists, a poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients, but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities including spontaneous seizures, providing a robust and quantifiable disease-relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord, and differs markedly from the staging seen in mouse models of other forms of NCL. Neonatal administration of adeno-associated virus 9 (AAV9)-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the lifespan of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging pre-clinical efficacy of therapeutic interventions for CLN2 disease.

Authors

Keigo Takahashi, Elizabeth M. Eultgen, Sophie H. Wang, Nicholas R. Rensing, Hemanth R. Nelvagal, Joshua T. Dearborn, Olivier Danos, Nicholas Buss, Mark S. Sands, Michael Wong, Jonathan D. Cooper

×

C5aR1 signaling triggers lung immunopathology in COVID-19 through neutrophil extracellular traps
Bruna M.S. Silva, … , Paul Proost, Thiago M. Cunha
Bruna M.S. Silva, … , Paul Proost, Thiago M. Cunha
Published April 27, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI163105.
View: Text | PDF

C5aR1 signaling triggers lung immunopathology in COVID-19 through neutrophil extracellular traps

  • Text
  • PDF
Abstract

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.

Authors

Bruna M.S. Silva, Giovanni F. Gomes, Flavio P. Veras, Seppe Cambier, Gabriel V.L. Silva, Andreza U. Quadros, Diego B. Caetité, Daniele C. Nascimento, Camila M.S. Silva, Juliana C. Costa Silva, Samara Damasceno, Ayda H. Schneider, Fabio Beretta, Sabrina S. Batah, Icaro M.S. Castro, Isadora M. Paiva, Tamara Rodrigues, Ana Salina, Ronaldo Martins, Guilherme C. Martelossi Cebinelli, Naira L. Bibo, Daniel Macedo de Melo Jorge, Helder I. Nakaya, Dario S. Zamboni, Luiz O. Leiria, Alexandre T. Fabro, José C. Alves-Filho, Eurico Arruda, Paulo Louzada-Junior, Renê D.R. Oliveira, Larissa D. Cunha, Pierre Van Mol, Lore Vanderbeke, Simon Feys, Els Wauters, Laura Brandolini, Andrea Aramini, Fernando Q. Cunha, Jörg Köhl, Marcello Allegretti, Diether Lambrechts, Joost Wauters, Paul Proost, Thiago M. Cunha

×

Postoperative risk of IDH mutant glioma-associated seizures and their potential management with IDH mutant inhibitors
Michael Drumm, … , Geoffrey T. Swanson, Craig Horbinski
Michael Drumm, … , Geoffrey T. Swanson, Craig Horbinski
Published April 27, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI168035.
View: Text | PDF

Postoperative risk of IDH mutant glioma-associated seizures and their potential management with IDH mutant inhibitors

  • Text
  • PDF
Abstract

Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH wild-type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contribute to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures are often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, D-2-hydroxyglutarate, rapidly synchronizes neuronal spike firing in a seizure-like manner, but only when nonneoplastic glial cells are present. In vitro and in vivo models can recapitulate IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibit seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.

Authors

Michael Drumm, Wenxia Wang, Thomas K. Sears, Kirsten Bell-Burdett, Rodrigo Javier, Kristen Y. Cotton, Brynna T. Webb, Kayla T. Byrne, Dusten Unruh, Vineeth Thirunavu, Jordain Walshon, Alicia Steffens, Kathleen McCortney, Rimas V. Lukas, Joanna J. Phillips, Esraa Mohamed, John D. Finan, Lucas Santana-Santos, Amy B. Heimberger, Colin K. Franz, Jonathan E. Kurz, Jessica W. Templer, Geoffrey T. Swanson, Craig Horbinski

×

DPP4 inhibition impairs senohemostasis to improve plaque stability in atherosclerotic mice
Allison B. Herman, … , Edward G. Lakatta, Myriam Gorospe
Allison B. Herman, … , Edward G. Lakatta, Myriam Gorospe
Published April 25, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI165933.
View: Text | PDF

DPP4 inhibition impairs senohemostasis to improve plaque stability in atherosclerotic mice

  • Text
  • PDF
Abstract

Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage, and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death. Serum samples from persons with high risk for cardiovascular disease contained high levels of DPP4-regulated complement and coagulation factors. Importantly, DPP4 inhibition reduced senescent cell burden and coagulation and improved plaque stability, while single-cell resolution of senescent VSMCs reflected the senomorphic and senolytic effects of DPP4 inhibition in murine atherosclerosis. We propose that DPP4-regulated factors could be exploited therapeutically to reduce senescent cell function, reverse senohemostasis, and improve vascular disease.

Authors

Allison B. Herman, Dimitrios Tsitsipatis, Carlos Anerillas, Krystyna Mazan-Mamczarz, Angelica E. Carr, Jordan M. Gregg, Mingyi Wang, Jing Zhang, Marc Michel, Charnae' Henry-Smith, Sophia C. Harris, Rachel Munk, Jennifer L Martindale, Yulan Piao, Jinshui Fan, Julie A. Mattison, Supriyo De, Kotb Abdelmohsen, Robert W. Maul, Toshiko Tanaka, Ann Z. Moore, Megan E. DeMouth, Simone Sidoli, Luigi Ferrucci, Yie Liu, Rafael de Cabo, Edward G. Lakatta, Myriam Gorospe

×

IRF7 and UNC93B1 variants in an infant with recurrent herpes simplex virus infection
Megan H. Tucker, … , Nikita Raje, Venkatesh Sampath
Megan H. Tucker, … , Nikita Raje, Venkatesh Sampath
Published April 25, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI154016.
View: Text | PDF

IRF7 and UNC93B1 variants in an infant with recurrent herpes simplex virus infection

  • Text
  • PDF
Abstract

Neonatal herpes simplex virus (HSV) infection is a devastating disease with substantial morbidity and mortality. The genetic basis of susceptibility to HSV in neonates remains undefined. We investigated a male infant with neonatal skin/eye/mouth (SEM) HSV1 disease who had complete recovery after acyclovir but developed HSV1 encephalitis at 1 year of age. Immune work up showed an anergic peripheral blood monocyte cytokine (PBMC) response to TLR3 stimulation but no other TLRs. Exome sequencing identified rare missense variants in IRF7 and UNC93B1. PBMC single cell RNA sequencing done during childhood revealed decreased expression of several innate immune genes and a repressed TLR3 pathway signature at baseline in several immune cell populations, including CD14 monocytes. Functional studies in fibroblasts and THP-1 showed that both variants individually suppressed TLR3-driven IRF3 promoter activity and type I interferon response in vitro. Furthermore, fibroblasts expressing the IRF7 and UNC93B1 variants had higher intracellular viral titers with blunting of the type I interferon response upon HSV1 challenge. This study reports an infant with recurrent HSV1 disease complicated by encephalitis associated with deleterious variants in IRF7 and UNC93B1 genes. Our results suggest that TLR3 pathway mutations may predispose neonates to recurrent severe HSV.

Authors

Megan H. Tucker, Wei Yu, Heather L. Menden, Sheng Xia, Carl F. Schreck, Margaret I. Gibson, Daniel A. Louiselle, Tomi Pastinen, Nikita Raje, Venkatesh Sampath

×

HSV-2 triggers upregulation of MALAT1 in CD4+ T cells and promotes HIV latency reversal
Carl A. Pierce, … , Kevan C. Herold, Betsy C. Herold
Carl A. Pierce, … , Kevan C. Herold, Betsy C. Herold
Published April 20, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI164317.
View: Text | PDF

HSV-2 triggers upregulation of MALAT1 in CD4+ T cells and promotes HIV latency reversal

  • Text
  • PDF
Abstract

HSV-2 coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well-defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2 infected and bystander 2D10 cells. Bulk and single-cell RNA sequencing studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms including upregulation of MALAT1 to release epigenetic silencing.

Authors

Carl A. Pierce, Lip Nam Loh, Holly R. Steach, Natalia Cheshenko, Paula Preston-Hurlburt, Fengrui Zhang, Stephanie Stransky, Leah Kravets, Simone Sidoli, William M. Philbrick, Michel N. Nassar, Smita Krishnaswamy, Kevan C. Herold, Betsy C. Herold

×

Transcription factor HNF4α2 promotes osteogenesis and prevents bone abnormalities in mice with renal osteodystrophy
Marta Martinez-Calle, … , Aline Martin, Valentin David
Marta Martinez-Calle, … , Aline Martin, Valentin David
Published April 20, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI159928.
View: Text | PDF

Transcription factor HNF4α2 promotes osteogenesis and prevents bone abnormalities in mice with renal osteodystrophy

  • Text
  • PDF
Abstract

Renal osteodystrophy (ROD) is a disorder of bone metabolism that affects virtually all patients with chronic kidney disease (CKD), and is associated with adverse clinical outcomes including fractures, cardiovascular events and death. In the present study, we showed that hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor mostly expressed in the liver, is also expressed in bone, and that osseous HNF4α expression was dramatically reduced in patients and mice with ROD. Osteoblast-specific deletion of Hnf4α resulted in impaired osteogenesis in cells and mice. Using multi-omics analyses of bones and cells lacking or overexpressing Hnf4α1 and Hnf4α2, we showed that HNF4α2 is the main osseous Hnf4α isoform that regulates osteogenesis, cell metabolism, and cell death. As a result, osteoblast-specific overexpression of Hnf4α2 prevented bone loss in mice with CKD. Our results showed that HNF4α2 is a transcriptional regulator of osteogenesis, implicated in the development of ROD.

Authors

Marta Martinez-Calle, Guillaume Courbon, Bridget Hunt-Tobey, Connor Francis, Jadeah J. Spindler, Xueyan Wang, Luciene M. dos Reis, Carolina Steller Wagner Martins, Isidro B. Salusky, Hartmut H. Malluche, Thomas L. Nickolas, Rosa M.A. Moyses, Aline Martin, Valentin David

×
  • ← Previous
  • 1
  • 2
  • …
  • 54
  • 55
  • 56
  • …
  • 154
  • 155
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts