Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model
Keigo Takahashi, … , Michael Wong, Jonathan D. Cooper
Keigo Takahashi, … , Michael Wong, Jonathan D. Cooper
Published April 27, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI165908.
View: Text | PDF
Research In-Press Preview Neuroscience Therapeutics

Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model

  • Text
  • PDF
Abstract

Although a disease-modifying therapy for CLN2 disease now exists, a poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients, but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities including spontaneous seizures, providing a robust and quantifiable disease-relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord, and differs markedly from the staging seen in mouse models of other forms of NCL. Neonatal administration of adeno-associated virus 9 (AAV9)-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the lifespan of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging pre-clinical efficacy of therapeutic interventions for CLN2 disease.

Authors

Keigo Takahashi, Elizabeth M. Eultgen, Sophie H. Wang, Nicholas R. Rensing, Hemanth R. Nelvagal, Joshua T. Dearborn, Olivier Danos, Nicholas Buss, Mark S. Sands, Michael Wong, Jonathan D. Cooper

×

Full Text PDF | Download (7.21 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts