Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Deficiency in the omega-3 lysolipid transporter Mfsd2a leads to aberrant oligodendrocyte lineage development and hypomyelination
Vetrivel Sengottuvel, … , Federico Torta, David L. Silver
Vetrivel Sengottuvel, … , Federico Torta, David L. Silver
Published April 27, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI164118.
View: Text | PDF
Research In-Press Preview Metabolism Neuroscience

Deficiency in the omega-3 lysolipid transporter Mfsd2a leads to aberrant oligodendrocyte lineage development and hypomyelination

  • Text
  • PDF
Abstract

Patients with Autosomal Recessive Microcephaly 15 caused by deficiency in the sodium-dependent lysophosphatidylcholine (LPC) transporter Major Facilitator Superfamily Domain containing 2a (Mfsd2a) present with both microcephaly and hypomyelination, suggesting an important role of LPC uptake by oligodendrocytes in the process of myelination. Here, we demonstrate that Mfsd2a is specifically expressed in oligodendrocyte precursor cells (OPC) and is critical for oligodendrocyte development. Single cell sequencing of the oligodendrocyte lineage revealed that OPCs from OPC-specific Mfsd2a KO mice (2aOKO) underwent precocious differentiation into immature oligodendrocytes (iOLs) and impaired maturation into myelinating oligodendrocytes, correlating with postnatal brain hypomyelination. 2aOKO mice did not exhibit microcephaly, consistent with microcephaly being consequential to absence of LPC uptake at the blood-brain barrier and not from deficiency in OPCs. Lipidomic analysis showed that OPCs and iOLs from 2aOKO mice had significantly decreased phospholipids containing omega-3 fatty acids with an opposite increase in unsaturated fatty acids, that latter being products of de novo synthesis governed by Srebp-1. RNA sequencing indicated activation of the Srebp-1 pathway and defective expression of regulators of oligodendrocyte development. Taken together, these findings indicate that the transport of LPCs by Mfsd2a in OPCs is important for maintaining OPC cell state to regulate postnatal brain myelination.

Authors

Vetrivel Sengottuvel, Monalisa Hota, Jeongah Oh, Dwight L. Galam, Bernice H. Wong, Markus R. Wenk, Sujoy Ghosh, Federico Torta, David L. Silver

×

Full Text PDF | Download (26.51 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts