Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
DPP4 inhibition impairs senohemostasis to improve plaque stability in atherosclerotic mice
Allison B. Herman, … , Edward G. Lakatta, Myriam Gorospe
Allison B. Herman, … , Edward G. Lakatta, Myriam Gorospe
Published April 25, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI165933.
View: Text | PDF
Research In-Press Preview Aging Vascular biology

DPP4 inhibition impairs senohemostasis to improve plaque stability in atherosclerotic mice

  • Text
  • PDF
Abstract

Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage, and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death. Serum samples from persons with high risk for cardiovascular disease contained high levels of DPP4-regulated complement and coagulation factors. Importantly, DPP4 inhibition reduced senescent cell burden and coagulation and improved plaque stability, while single-cell resolution of senescent VSMCs reflected the senomorphic and senolytic effects of DPP4 inhibition in murine atherosclerosis. We propose that DPP4-regulated factors could be exploited therapeutically to reduce senescent cell function, reverse senohemostasis, and improve vascular disease.

Authors

Allison B. Herman, Dimitrios Tsitsipatis, Carlos Anerillas, Krystyna Mazan-Mamczarz, Angelica E. Carr, Jordan M. Gregg, Mingyi Wang, Jing Zhang, Marc Michel, Charnae' Henry-Smith, Sophia C. Harris, Rachel Munk, Jennifer L Martindale, Yulan Piao, Jinshui Fan, Julie A. Mattison, Supriyo De, Kotb Abdelmohsen, Robert W. Maul, Toshiko Tanaka, Ann Z. Moore, Megan E. DeMouth, Simone Sidoli, Luigi Ferrucci, Yie Liu, Rafael de Cabo, Edward G. Lakatta, Myriam Gorospe

×

Full Text PDF | Download (1.69 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts