Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,772 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 536
  • 537
  • 538
  • …
  • 2577
  • 2578
  • Next →
IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice
Stefan Haak, Andrew L. Croxford, Katharina Kreymborg, Frank L. Heppner, Sandrine Pouly, Burkhard Becher, Ari Waisman
Stefan Haak, Andrew L. Croxford, Katharina Kreymborg, Frank L. Heppner, Sandrine Pouly, Burkhard Becher, Ari Waisman
View: Text | PDF

IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice

  • Text
  • PDF
Abstract

The clear association of Th17 cells with autoimmune pathogenicity implicates Th17 cytokines as critical mediators of chronic autoimmune diseases such as EAE. To study the impact of IL-17A on CNS inflammation, we generated transgenic mice in which high levels of expression of IL-17A could be initiated after Cre-mediated recombination. Although ubiquitous overexpression of IL-17A led to skin inflammation and granulocytosis, T cell–specific IL-17A overexpression did not have a perceptible impact on the development and health of the mice. In the context of EAE, neither the T cell–driven overexpression of IL-17A nor its complete loss had a major impact on the development of clinical disease. Since IL-17F may be able to compensate for the loss of IL-17A, we also generated IL-17F–deficient mice. This strain was fully susceptible to EAE and displayed unaltered emergence and expansion of autoreactive T cells during disease. To eliminate potential compensatory effects of either cytokine, we treated IL-17F–deficient mice with antagonistic monoclonal antibodies specific for IL-17A and found again only a minimal beneficial impact on disease development. We conclude therefore that both IL-17A and IL-17F, while prominently expressed by an encephalitogenic T cell population, may only marginally contribute to the development of autoimmune CNS disease.

Authors

Stefan Haak, Andrew L. Croxford, Katharina Kreymborg, Frank L. Heppner, Sandrine Pouly, Burkhard Becher, Ari Waisman

×

A DNA-PKcs mutation in a radiosensitive T–B– SCID patient inhibits Artemis activation and nonhomologous end-joining
Mirjam van der Burg, Hanna IJspeert, Nicole S. Verkaik, Tuba Turul, Wouter W. Wiegant, Keiko Morotomi-Yano, Pierre-Olivier Mari, Ilhan Tezcan, David J. Chen, Malgorzata Z. Zdzienicka, Jacques J.M. van Dongen, Dik C. van Gent
Mirjam van der Burg, Hanna IJspeert, Nicole S. Verkaik, Tuba Turul, Wouter W. Wiegant, Keiko Morotomi-Yano, Pierre-Olivier Mari, Ilhan Tezcan, David J. Chen, Malgorzata Z. Zdzienicka, Jacques J.M. van Dongen, Dik C. van Gent
View: Text | PDF

A DNA-PKcs mutation in a radiosensitive T–B– SCID patient inhibits Artemis activation and nonhomologous end-joining

  • Text
  • PDF
Abstract

Radiosensitive T–B– severe combined immunodeficiency (RS-SCID) is caused by defects in the nonhomologous end-joining (NHEJ) DNA repair pathway, which results in failure of functional V(D)J recombination. Here we have identified the first human RS-SCID patient to our knowledge with a DNA-PKcs missense mutation (L3062R). The causative mutation did not affect the kinase activity or DNA end-binding capacity of DNA-PKcs itself; rather, the presence of long P-nucleotide stretches in the immunoglobulin coding joints indicated that it caused insufficient Artemis activation, something that is dependent on Artemis interaction with autophosphorylated DNA-PKcs. Moreover, overall end-joining activity was hampered, suggesting that Artemis-independent DNA-PKcs functions were also inhibited. This study demonstrates that the presence of DNA-PKcs kinase activity is not sufficient to rule out a defect in this gene during diagnosis and treatment of RS-SCID patients. Further, the data suggest that residual DNA-PKcs activity is indispensable in humans.

Authors

Mirjam van der Burg, Hanna IJspeert, Nicole S. Verkaik, Tuba Turul, Wouter W. Wiegant, Keiko Morotomi-Yano, Pierre-Olivier Mari, Ilhan Tezcan, David J. Chen, Malgorzata Z. Zdzienicka, Jacques J.M. van Dongen, Dik C. van Gent

×

TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4
Toshihiro Ito, Matthew Schaller, Cory M. Hogaboam, Theodore J. Standiford, Matyas Sandor, Nicholas W. Lukacs, Stephen W. Chensue, Steven L. Kunkel
Toshihiro Ito, Matthew Schaller, Cory M. Hogaboam, Theodore J. Standiford, Matyas Sandor, Nicholas W. Lukacs, Stephen W. Chensue, Steven L. Kunkel
View: Text | PDF

TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4

  • Text
  • PDF
Abstract

TLR9 activation is important for the maintenance of mycobacteria-elicited pulmonary granulomatous responses, hallmarks of protective immune responses following mycobacterial infection. However, the mechanism or mechanisms underlying this effect of TLR9 are not clear. Here, we show that Tlr9-deficient mice challenged with a Mycobacterium antigen display an altered Th17 cytokine profile, decreased accumulation of granuloma-associated myeloid DCs, and profoundly impaired delta-like 4 (dll4) Notch ligand expression. Mechanistic analysis revealed that WT bone marrow–derived DCs but not macrophages promoted the differentiation of Th17 cells from bacillus Calmette-Guérin–challenged (BCG-challenged) lung CD4+ T cells. Both lung and bone marrow DCs isolated from Tlr9-deficient mice inoculated with Mycobacterium antigen expressed lower levels of dll4 Notch ligand than the same cells isolated from WT mice. Passively immunizing WT mice with neutralizing antibodies specific for dll4 during granuloma formation resulted in larger granulomas and lower levels of Th17-related cytokines. In addition, dll4 specifically regulated Th17 activation in vitro. Together, these results suggest dll4 plays an important role in promoting Th17 effector activity during a mycobacterial challenge. Furthermore, TLR9 seems to be required for optimal dll4 expression and the regulation of Mycobacterium antigen–elicited granuloma formation in mice.

Authors

Toshihiro Ito, Matthew Schaller, Cory M. Hogaboam, Theodore J. Standiford, Matyas Sandor, Nicholas W. Lukacs, Stephen W. Chensue, Steven L. Kunkel

×

IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice
Haoli Jin, Michiko K. Oyoshi, Yi Le, Teresa Bianchi, Suresh Koduru, Clinton B. Mathias, Lalit Kumar, Séverine Le Bras, Deborah Young, Mary Collins, Michael J. Grusby, Joerg Wenzel, Thomas Bieber, Marianne Boes, Leslie E. Silberstein, Hans C. Oettgen, Raif S. Geha
Haoli Jin, Michiko K. Oyoshi, Yi Le, Teresa Bianchi, Suresh Koduru, Clinton B. Mathias, Lalit Kumar, Séverine Le Bras, Deborah Young, Mary Collins, Michael J. Grusby, Joerg Wenzel, Thomas Bieber, Marianne Boes, Leslie E. Silberstein, Hans C. Oettgen, Raif S. Geha
View: Text | PDF

IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice

  • Text
  • PDF
Abstract

Atopic dermatitis (AD) is a common allergic inflammatory skin disease caused by a combination of intense pruritus, scratching, and epicutaneous (e.c.) sensitization with allergens. To explore the roles of IL-21 and IL-21 receptor (IL-21R) in AD, we examined skin lesions from patients with AD and used a mouse model of allergic skin inflammation. IL-21 and IL-21R expression was upregulated in acute skin lesions of AD patients and in mouse skin subjected to tape stripping, a surrogate for scratching. The importance of this finding was highlighted by the fact that both Il21r–/– mice and WT mice treated with soluble IL-21R–IgG2aFc fusion protein failed to develop skin inflammation after e.c. sensitization of tape-stripped skin. Adoptively transferred OVA-specific WT CD4+ T cells accumulated poorly in draining LNs (DLNs) of e.c. sensitized Il21r–/– mice. This was likely caused by both DC-intrinsic and nonintrinsic effects, because trafficking of skin DCs to DLNs was defective in Il21r–/– mice and, to a lesser extent, in WT mice reconstituted with Il21r–/– BM. More insight into this defect was provided by the observation that skin DCs from tape-stripped WT mice, but not Il21r–/– mice, upregulated CCR7 and migrated toward CCR7 ligands. Treatment of epidermal and dermal cells with IL-21 activated MMP2, which has been implicated in trafficking of skin DCs. These results suggest an important role for IL-21R in the mobilization of skin DCs to DLNs and the subsequent allergic response to e.c. introduced antigen.

Authors

Haoli Jin, Michiko K. Oyoshi, Yi Le, Teresa Bianchi, Suresh Koduru, Clinton B. Mathias, Lalit Kumar, Séverine Le Bras, Deborah Young, Mary Collins, Michael J. Grusby, Joerg Wenzel, Thomas Bieber, Marianne Boes, Leslie E. Silberstein, Hans C. Oettgen, Raif S. Geha

×

Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans
Stefano Romeo, Wu Yin, Julia Kozlitina, Len A. Pennacchio, Eric Boerwinkle, Helen H. Hobbs, Jonathan C. Cohen
Stefano Romeo, Wu Yin, Julia Kozlitina, Len A. Pennacchio, Eric Boerwinkle, Helen H. Hobbs, Jonathan C. Cohen
View: Text | PDF

Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans

  • Text
  • PDF
Abstract

The relative activity of lipoprotein lipase (LPL) in different tissues controls the partitioning of lipoprotein-derived fatty acids between sites of fat storage (adipose tissue) and oxidation (heart and skeletal muscle). Here we used a reverse genetic strategy to test the hypothesis that 4 angiopoietin-like proteins (ANGPTL3, -4, -5, and -6) play key roles in triglyceride (TG) metabolism in humans. We re-sequenced the coding regions of the genes encoding these proteins and identified multiple rare nonsynonymous (NS) sequence variations that were associated with low plasma TG levels but not with other metabolic phenotypes. Functional studies revealed that all mutant alleles of ANGPTL3 and ANGPTL4 that were associated with low plasma TG levels interfered either with the synthesis or secretion of the protein or with the ability of the ANGPTL protein to inhibit LPL. A total of 1% of the Dallas Heart Study population and 4% of those participants with a plasma TG in the lowest quartile had a rare loss-of-function mutation in ANGPTL3, ANGPTL4, or ANGPTL5. Thus, ANGPTL3, ANGPTL4, and ANGPTL5, but not ANGPTL6, play nonredundant roles in TG metabolism, and multiple alleles at these loci cumulatively contribute to variability in plasma TG levels in humans.

Authors

Stefano Romeo, Wu Yin, Julia Kozlitina, Len A. Pennacchio, Eric Boerwinkle, Helen H. Hobbs, Jonathan C. Cohen

×

Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis
Pia Kuss, Pablo Villavicencio-Lorini, Florian Witte, Joachim Klose, Andrea N. Albrecht, Petra Seemann, Jochen Hecht, Stefan Mundlos
Pia Kuss, Pablo Villavicencio-Lorini, Florian Witte, Joachim Klose, Andrea N. Albrecht, Petra Seemann, Jochen Hecht, Stefan Mundlos
View: Text | PDF

Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis

  • Text
  • PDF
Abstract

Individuals with the birth defect synpolydactyly (SPD) have 1 or more digit duplicated and 2 or more digits fused together. One form of SPD is caused by polyalanine expansions in homeobox d13 (Hoxd13). Here we have used the naturally occurring mouse mutant that has the same mutation, the SPD homolog (Spdh) allele, and a similar phenotype, to investigate the molecular pathogenesis of SPD. A transgenic approach and crossing experiments showed that the Spdh allele is a combination of loss and gain of function. Here we identify retinaldehyde dehydrogenase 2 (Raldh2), the rate-limiting enzyme for retinoic acid (RA) synthesis in the limb, as a direct Hoxd13 target and show decreased RA production in limbs from Spdh/Spdh mice. Intrauterine treatment with RA restored pentadactyly in Spdh/Spdh mice. We further show that RA and WT Hoxd13 suppress chondrogenesis in mesenchymal progenitor cells, whereas Hoxd13 encoded by Spdh promotes cartilage formation in primary cells isolated from Spdh/Spdh limbs, and that this was associated with increased expression of Sox6/9. Increased Sox9 expression and ectopic cartilage formation in the interdigital mesenchyme of limbs from Spdh/Spdh mice suggest uncontrolled differentiation of these cells into the chondrocytic lineage. Thus, we propose that mutated Hoxd13 causes polydactyly in SPD by inducing extraneous interdigital chondrogenesis, both directly and indirectly, via a reduction in RA levels.

Authors

Pia Kuss, Pablo Villavicencio-Lorini, Florian Witte, Joachim Klose, Andrea N. Albrecht, Petra Seemann, Jochen Hecht, Stefan Mundlos

×

CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima
Young Mi Park, Maria Febbraio, Roy L. Silverstein
Young Mi Park, Maria Febbraio, Roy L. Silverstein
View: Text | PDF

CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima

  • Text
  • PDF
Abstract

The trapping of lipid-laden macrophages in the arterial intima is a critical but reversible step in atherogenesis. However, the mechanism by which this occurs is not clearly defined. Here, we tested in mice the hypothesis that CD36, a class B scavenger receptor expressed on macrophages, has a role in this process. Using both in vivo and in vitro migration assays, we found that oxidized LDL (oxLDL), but not native LDL, inhibited migration of WT mouse macrophages but not CD36-deficient cells. We further observed a crucial role for CD36 in modulating the in vitro migratory response of human peripheral blood monocyte–derived macrophages to oxLDL. oxLDL also induced rapid spreading and actin polymerization in CD36-sufficient but not CD36-deficient mouse macrophages in vitro. The underlying mechanism was dependent on oxLDL-mediated CD36 signaling, which resulted in sustained activation of focal adhesion kinase (FAK) and inactivation of Src homology 2–containing phosphotyrosine phosphatase (SHP-2). The latter was due to NADPH oxidase–mediated ROS generation, resulting in oxidative inactivation of critical cysteine residues in the SHP-2–active site. Macrophage migration in the presence of oxLDL was restored by both antioxidants and NADPH oxidase inhibitors, which restored the dynamic activation of FAK. We conclude therefore that CD36 signaling in response to oxLDL alters cytoskeletal dynamics to enhance macrophage spreading, inhibiting migration. This may induce trapping of macrophages in the arterial intima and promote atherosclerosis.

Authors

Young Mi Park, Maria Febbraio, Roy L. Silverstein

×

Deletion of the von Hippel–Lindau gene in pancreatic β cells impairs glucose homeostasis in mice
James Cantley, Colin Selman, Deepa Shukla, Andrey Y. Abramov, Frauke Forstreuter, Miguel A. Esteban, Marc Claret, Steven J. Lingard, Melanie Clements, Sarah K. Harten, Henry Asare-Anane, Rachel L. Batterham, Pedro L. Herrera, Shanta J. Persaud, Michael R. Duchen, Patrick H. Maxwell, Dominic J. Withers
James Cantley, Colin Selman, Deepa Shukla, Andrey Y. Abramov, Frauke Forstreuter, Miguel A. Esteban, Marc Claret, Steven J. Lingard, Melanie Clements, Sarah K. Harten, Henry Asare-Anane, Rachel L. Batterham, Pedro L. Herrera, Shanta J. Persaud, Michael R. Duchen, Patrick H. Maxwell, Dominic J. Withers
View: Text | PDF

Deletion of the von Hippel–Lindau gene in pancreatic β cells impairs glucose homeostasis in mice

  • Text
  • PDF
Abstract

Defective insulin secretion in response to glucose is an important component of the β cell dysfunction seen in type 2 diabetes. As mitochondrial oxidative phosphorylation plays a key role in glucose-stimulated insulin secretion (GSIS), oxygen-sensing pathways may modulate insulin release. The von Hippel–Lindau (VHL) protein controls the degradation of hypoxia-inducible factor (HIF) to coordinate cellular and organismal responses to altered oxygenation. To determine the role of this pathway in controlling glucose-stimulated insulin release from pancreatic β cells, we generated mice lacking Vhl in pancreatic β cells (βVhlKO mice) and mice lacking Vhl in the pancreas (PVhlKO mice). Both mouse strains developed glucose intolerance with impaired insulin secretion. Furthermore, deletion of Vhl in β cells or the pancreas altered expression of genes involved in β cell function, including those involved in glucose transport and glycolysis, and isolated βVhlKO and PVhlKO islets displayed impaired glucose uptake and defective glucose metabolism. The abnormal glucose homeostasis was dependent on upregulation of Hif-1α expression, and deletion of Hif1a in Vhl-deficient β cells restored GSIS. Consistent with this, expression of activated Hif-1α in a mouse β cell line impaired GSIS. These data suggest that VHL/HIF oxygen-sensing mechanisms play a critical role in glucose homeostasis and that activation of this pathway in response to decreased islet oxygenation may contribute to β cell dysfunction.

Authors

James Cantley, Colin Selman, Deepa Shukla, Andrey Y. Abramov, Frauke Forstreuter, Miguel A. Esteban, Marc Claret, Steven J. Lingard, Melanie Clements, Sarah K. Harten, Henry Asare-Anane, Rachel L. Batterham, Pedro L. Herrera, Shanta J. Persaud, Michael R. Duchen, Patrick H. Maxwell, Dominic J. Withers

×

PPARγ in the endothelium regulates metabolic responses to high-fat diet in mice
Takeshi Kanda, Jonathan D. Brown, Gabriela Orasanu, Silke Vogel, Frank J. Gonzalez, Juliano Sartoretto, Thomas Michel, Jorge Plutzky
Takeshi Kanda, Jonathan D. Brown, Gabriela Orasanu, Silke Vogel, Frank J. Gonzalez, Juliano Sartoretto, Thomas Michel, Jorge Plutzky
View: Text | PDF

PPARγ in the endothelium regulates metabolic responses to high-fat diet in mice

  • Text
  • PDF
Abstract

Although endothelial dysfunction, defined as abnormal vasoreactivity, is a common early finding in individuals with type 2 diabetes, the endothelium has not been known to regulate metabolism. As PPARγ, a transcriptional regulator of energy balance, is expressed in endothelial cells, we set out to investigate the role of endothelial cell PPARγ in metabolism using mice that lack PPARγ in the endothelium and BM (γEC/BM-KO). When γEC/BM-KO mice were fed a high-fat diet, they had decreased adiposity and increased insulin sensitivity compared with control mice, despite increased serum FFA and triglyceride (TG) levels. After fasting or olive oil gavage, γEC/BM-KO mice exhibited significant dyslipidemia and failed to respond to the FFA and TG lowering effects of the PPARγ agonist rosiglitazone. BM transplantation studies, which reconstituted hematopoietic PPARγ, established that these metabolic phenotypes were due to endothelial PPARγ deficiency. We further found that the impairment in TG-rich lipoprotein metabolism in γEC/BM-KO mice was associated with fatty acid–mediated lipoprotein lipase inhibition and changes in a PPARγ-regulated endothelial cell transcriptional program. Despite their metabolic improvements, high-fat diet–fed γEC/BM-KO mice had impaired vasoreactivity. Taken together, these data suggest that PPARγ in the endothelium integrates metabolic and vascular responses and may contribute to the effects of PPARγ agonists, thus expanding what endothelial function and dysfunction may entail.

Authors

Takeshi Kanda, Jonathan D. Brown, Gabriela Orasanu, Silke Vogel, Frank J. Gonzalez, Juliano Sartoretto, Thomas Michel, Jorge Plutzky

×

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes
Christophe A. Girard, F. Thomas Wunderlich, Kenju Shimomura, Stephan Collins, Stephan Kaizik, Peter Proks, Fernando Abdulkader, Anne Clark, Vicky Ball, Lejla Zubcevic, Liz Bentley, Rebecca Clark, Chris Church, Alison Hugill, Juris Galvanovskis, Roger Cox, Patrik Rorsman, Jens C. Brüning, Frances M. Ashcroft
Christophe A. Girard, F. Thomas Wunderlich, Kenju Shimomura, Stephan Collins, Stephan Kaizik, Peter Proks, Fernando Abdulkader, Anne Clark, Vicky Ball, Lejla Zubcevic, Liz Bentley, Rebecca Clark, Chris Church, Alison Hugill, Juris Galvanovskis, Roger Cox, Patrik Rorsman, Jens C. Brüning, Frances M. Ashcroft
View: Text | PDF

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes

  • Text
  • PDF
Abstract

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (KATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic β cells. These β-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from β-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of KATP channels in pancreatic β cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of KATP channels, closed KATP channels, elevated intracellular calcium levels, and stimulated insulin release in β-V59M β cells, indicating that events downstream of KATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic β cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. β-V59M islets also displayed a reduced percentage of β cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of β-V59M mice. Their cause requires further investigation.

Authors

Christophe A. Girard, F. Thomas Wunderlich, Kenju Shimomura, Stephan Collins, Stephan Kaizik, Peter Proks, Fernando Abdulkader, Anne Clark, Vicky Ball, Lejla Zubcevic, Liz Bentley, Rebecca Clark, Chris Church, Alison Hugill, Juris Galvanovskis, Roger Cox, Patrik Rorsman, Jens C. Brüning, Frances M. Ashcroft

×
  • ← Previous
  • 1
  • 2
  • …
  • 536
  • 537
  • 538
  • …
  • 2577
  • 2578
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts