Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4
Toshihiro Ito, … , Stephen W. Chensue, Steven L. Kunkel
Toshihiro Ito, … , Stephen W. Chensue, Steven L. Kunkel
Published December 15, 2008
Citation Information: J Clin Invest. 2009;119(1):33-46. https://doi.org/10.1172/JCI35647.
View: Text | PDF
Research Article Infectious disease

TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4

  • Text
  • PDF
Abstract

TLR9 activation is important for the maintenance of mycobacteria-elicited pulmonary granulomatous responses, hallmarks of protective immune responses following mycobacterial infection. However, the mechanism or mechanisms underlying this effect of TLR9 are not clear. Here, we show that Tlr9-deficient mice challenged with a Mycobacterium antigen display an altered Th17 cytokine profile, decreased accumulation of granuloma-associated myeloid DCs, and profoundly impaired delta-like 4 (dll4) Notch ligand expression. Mechanistic analysis revealed that WT bone marrow–derived DCs but not macrophages promoted the differentiation of Th17 cells from bacillus Calmette-Guérin–challenged (BCG-challenged) lung CD4+ T cells. Both lung and bone marrow DCs isolated from Tlr9-deficient mice inoculated with Mycobacterium antigen expressed lower levels of dll4 Notch ligand than the same cells isolated from WT mice. Passively immunizing WT mice with neutralizing antibodies specific for dll4 during granuloma formation resulted in larger granulomas and lower levels of Th17-related cytokines. In addition, dll4 specifically regulated Th17 activation in vitro. Together, these results suggest dll4 plays an important role in promoting Th17 effector activity during a mycobacterial challenge. Furthermore, TLR9 seems to be required for optimal dll4 expression and the regulation of Mycobacterium antigen–elicited granuloma formation in mice.

Authors

Toshihiro Ito, Matthew Schaller, Cory M. Hogaboam, Theodore J. Standiford, Matyas Sandor, Nicholas W. Lukacs, Stephen W. Chensue, Steven L. Kunkel

×

Full Text PDF

Download PDF (3.25 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts