Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published January 5, 2009 Previous issue | Next issue

  • Volume 119, Issue 1
Go to section:
  • In this issue
  • Book Reviews
  • News
  • Commentaries
  • Research Articles

On the cover: Molecular pathogenesis of polydactyly

Limb malformations such as polydactyly can be due to mutations in sonic hedgehog or some Hox genes. Kuss and colleagues use a mouse mutant to show that polydactyly can be caused by increased interdigital chondrogenesis due to reduced retinoic acid levels and the prochondrogenic effect of Hoxd13.
In this issue
In This Issue
/articles/view/38132
Published January 5, 2009
Citation Information: J Clin Invest. 2009;119(1):1-1. https://doi.org/10.1172/JCI38132.
View: Text | PDF

In This Issue

  • Text
  • PDF
Abstract

Authors

×
Book Reviews
Motherhood, the elephant in the laboratory: Women scientists speak out
Christine Milcarek
Christine Milcarek
Published January 5, 2009
Citation Information: J Clin Invest. 2009;119(1):3-3. https://doi.org/10.1172/JCI37955.
View: Text | PDF

Motherhood, the elephant in the laboratory: Women scientists speak out

  • Text
  • PDF
Abstract

Authors

Christine Milcarek

×

Bending science: How special interests corrupt public health research
David Rosner
David Rosner
Published January 5, 2009
Citation Information: J Clin Invest. 2009;119(1):4-4. https://doi.org/10.1172/JCI37831.
View: Text | PDF

Bending science: How special interests corrupt public health research

  • Text
  • PDF
Abstract

Authors

David Rosner

×
News
Work on preeclampsia rewarded by the ASN
Karen Honey
Karen Honey
Published January 5, 2009
Citation Information: J Clin Invest. 2009;119(1):2-2. https://doi.org/10.1172/JCI38144.
View: Text | PDF

Work on preeclampsia rewarded by the ASN

  • Text
  • PDF
Abstract

Authors

Karen Honey

×
Commentaries
Predicting response to hepatitis C therapy
Thomas S. Oh, Charles M. Rice
Thomas S. Oh, Charles M. Rice
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):5-7. https://doi.org/10.1172/JCI38069.
View: Text | PDF

Predicting response to hepatitis C therapy

  • Text
  • PDF
Abstract

Current treatment for chronic hepatitis C is expensive, is often accompanied by burdensome side effects, and, sadly, fails in almost half of cases. The ability to predict such failures prior to treatment could save a great deal of pain and expense for the patient with HCV. In this issue of the JCI, Aurora and colleagues describe the development of genetic markers predictive of treatment response based on a study of viral sequence variation (see the related article beginning on page 225). Genome-wide covariation analyses of pretreatment virus sequences from 94 patients showed distinct patterns of mutations strongly associated with the ultimate success or failure of treatment. Such analyses suggest markers predictive of response to therapy and may lead to new insights into the underlying biology of hepatitis C.

Authors

Thomas S. Oh, Charles M. Rice

×

Role for α3 integrin in EMT and pulmonary fibrosis
Zea Borok
Zea Borok
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):7-10. https://doi.org/10.1172/JCI38084.
View: Text | PDF

Role for α3 integrin in EMT and pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive (myo)fibroblast accumulation and collagen deposition. One possible source of (myo)fibroblasts is epithelial cells that undergo epithelial-mesenchymal transition (EMT), a process frequently mediated by TGF-β. In this issue of the JCI, Kim et al. report that epithelial cell–specific deletion of α3 integrin prevents EMT in mice, thereby protecting against bleomycin-induced fibrosis (see the related article beginning on page 213). The authors propose a novel mechanism linking TGF-β and β-catenin signaling in EMT through integrin-dependent association of tyrosine-phosphorylated β-catenin and pSmad2 and suggest targeted disruption of this interaction as a potential therapeutic approach.

Authors

Zea Borok

×

Revisiting Notch in remyelination of multiple sclerosis lesions
Celia F. Brosnan, Gareth R. John
Celia F. Brosnan, Gareth R. John
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):10-13. https://doi.org/10.1172/JCI37786.
View: Text | PDF

Revisiting Notch in remyelination of multiple sclerosis lesions

  • Text
  • PDF
Abstract

MS results from destruction of the protective myelin sheath surrounding axons, which prevents the transmission of nerve impulses. Precursors of oligodendrocytes, the cells capable of myelinating axons, are preserved in demyelinating lesions; however, why these precursors do not differentiate into mature oligodendrocytes and remyelinate axons is unknown. Contactin is a noncanonical Notch receptor ligand that mediates oligodendrocyte differentiation. In this issue of the JCI, Nakahara et al. show that Contactin is abundantly expressed on demyelinated axons in human chronic MS lesions and that Notch1 is activated in oligodendrocyte precursor cells (see the related article beginning on page 169). However, Notch1 intracellular domain coassociates with the nuclear transporter Importin β but fails to show evidence of nuclear translocation. These cytoplasmic aggregates also contain TAT-interacting protein 30 kDa (TIP30), a proapoptotic factor, which inhibits nuclear transport and, consequently, Notch1-mediated oligodendrocyte differentiation and remyelination. These data target TIP30 as a new pathogenic factor in MS.

Authors

Celia F. Brosnan, Gareth R. John

×

CD4+ T cells mediate cytotoxicity in neurodegenerative diseases
Stanley H. Appel
Stanley H. Appel
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):13-15. https://doi.org/10.1172/JCI38096.
View: Text | PDF

CD4+ T cells mediate cytotoxicity in neurodegenerative diseases

  • Text
  • PDF
Abstract

Neuroinflammation, characterized by activated microglia and infiltrating T cells, is a prominent pathological feature in neurodegenerative diseases. However, whether this inflammation contributes to neuronal injury or is a late consequence of neuronal injury is unclear. In this issue of the JCI, Brochard et al. report that CD4+ T cells are cytotoxic in a mouse model of Parkinson disease (PD) (see the related article beginning on page 182). Specifically, invading T lymphocytes contributed to neuronal cell death via the Fas/FasL pathway. The results implicate the adaptive immune system in the pathogenesis of Parkinson neurodegeneration and provide a meaningful rationale for immune-based therapies for PD.

Authors

Stanley H. Appel

×

Deciphering migraine
Takahiro Takano, Maiken Nedergaard
Takahiro Takano, Maiken Nedergaard
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):16-19. https://doi.org/10.1172/JCI38051.
View: Text | PDF

Deciphering migraine

  • Text
  • PDF
Abstract

Migraine is an episodic headache disorder affecting as many as 10% of people worldwide. Familial hemiplegic migraine (FHM) is an autosomal dominant subtype of severe migraine accompanied by visual disturbances known as aura. Migrainous aura is caused by cortical spreading depression (CSD) — a slowly advancing wave of tissue depolarization in the cortex. More than half of FHM cases are caused by mutations in the CACNA1A gene, which encodes a neuronal Cav2.1 Ca2+ channel, resulting in increased Ca2+ flow into dendrites and excessive release of the excitatory neurotransmitter glutamate. In this issue of the JCI, Eikermann-Haerter et al. show that transgenic mice with FHM-associated mutations inCacna1a have increased susceptibility to CSD compared with wild-type animals, likely due to augmentation of excitatory neurotransmission (see the related article beginning on page 99). Additional as-yet-undefined channel mutations may similarly render the migraine brain more susceptible to the initiation of CSD, with implications not only for the genesis of migraine but also for the hypoxic injury that accompanies its worst manifestation, complicated migraine.

Authors

Takahiro Takano, Maiken Nedergaard

×
Research Articles
Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin
Irini Bournazou, … , Adriano G. Rossi, Christopher D. Gregory
Irini Bournazou, … , Adriano G. Rossi, Christopher D. Gregory
Published December 1, 2008
Citation Information: J Clin Invest. 2009;119(1):20-32. https://doi.org/10.1172/JCI36226.
View: Text | PDF

Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin

  • Text
  • PDF
Abstract

Apoptosis is a noninflammatory, programmed form of cell death. One mechanism underlying the non-phlogistic nature of the apoptosis program is the swift phagocytosis of the dying cells. How apoptotic cells attract mononuclear phagocytes and not granulocytes, the professional phagocytes that accumulate at sites of inflammation, has not been determined. Here, we show that apoptotic human cell lines of diverse lineages synthesize and secrete lactoferrin, a pleiotropic glycoprotein with known antiinflammatory properties. We further demonstrated that lactoferrin selectively inhibited migration of granulocytes but not mononuclear phagocytes, both in vitro and in vivo. Finally, we were able to attribute this antiinflammatory function of lactoferrin to its effects on granulocyte signaling pathways that regulate cell adhesion and motility. Together, our results identify lactoferrin as an antiinflammatory component of the apoptosis milieu and define what we believe to be a novel antiinflammatory property of lactoferrin: the ability to function as a negative regulator of granulocyte migration.

Authors

Irini Bournazou, John D. Pound, Rodger Duffin, Stylianos Bournazos, Lynsey A. Melville, Simon B. Brown, Adriano G. Rossi, Christopher D. Gregory

×

TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4
Toshihiro Ito, … , Stephen W. Chensue, Steven L. Kunkel
Toshihiro Ito, … , Stephen W. Chensue, Steven L. Kunkel
Published December 15, 2008
Citation Information: J Clin Invest. 2009;119(1):33-46. https://doi.org/10.1172/JCI35647.
View: Text | PDF

TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4

  • Text
  • PDF
Abstract

TLR9 activation is important for the maintenance of mycobacteria-elicited pulmonary granulomatous responses, hallmarks of protective immune responses following mycobacterial infection. However, the mechanism or mechanisms underlying this effect of TLR9 are not clear. Here, we show that Tlr9-deficient mice challenged with a Mycobacterium antigen display an altered Th17 cytokine profile, decreased accumulation of granuloma-associated myeloid DCs, and profoundly impaired delta-like 4 (dll4) Notch ligand expression. Mechanistic analysis revealed that WT bone marrow–derived DCs but not macrophages promoted the differentiation of Th17 cells from bacillus Calmette-Guérin–challenged (BCG-challenged) lung CD4+ T cells. Both lung and bone marrow DCs isolated from Tlr9-deficient mice inoculated with Mycobacterium antigen expressed lower levels of dll4 Notch ligand than the same cells isolated from WT mice. Passively immunizing WT mice with neutralizing antibodies specific for dll4 during granuloma formation resulted in larger granulomas and lower levels of Th17-related cytokines. In addition, dll4 specifically regulated Th17 activation in vitro. Together, these results suggest dll4 plays an important role in promoting Th17 effector activity during a mycobacterial challenge. Furthermore, TLR9 seems to be required for optimal dll4 expression and the regulation of Mycobacterium antigen–elicited granuloma formation in mice.

Authors

Toshihiro Ito, Matthew Schaller, Cory M. Hogaboam, Theodore J. Standiford, Matyas Sandor, Nicholas W. Lukacs, Stephen W. Chensue, Steven L. Kunkel

×

IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice
Haoli Jin, … , Hans C. Oettgen, Raif S. Geha
Haoli Jin, … , Hans C. Oettgen, Raif S. Geha
Published December 15, 2008
Citation Information: J Clin Invest. 2009;119(1):47-60. https://doi.org/10.1172/JCI32310.
View: Text | PDF

IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice

  • Text
  • PDF
Abstract

Atopic dermatitis (AD) is a common allergic inflammatory skin disease caused by a combination of intense pruritus, scratching, and epicutaneous (e.c.) sensitization with allergens. To explore the roles of IL-21 and IL-21 receptor (IL-21R) in AD, we examined skin lesions from patients with AD and used a mouse model of allergic skin inflammation. IL-21 and IL-21R expression was upregulated in acute skin lesions of AD patients and in mouse skin subjected to tape stripping, a surrogate for scratching. The importance of this finding was highlighted by the fact that both Il21r–/– mice and WT mice treated with soluble IL-21R–IgG2aFc fusion protein failed to develop skin inflammation after e.c. sensitization of tape-stripped skin. Adoptively transferred OVA-specific WT CD4+ T cells accumulated poorly in draining LNs (DLNs) of e.c. sensitized Il21r–/– mice. This was likely caused by both DC-intrinsic and nonintrinsic effects, because trafficking of skin DCs to DLNs was defective in Il21r–/– mice and, to a lesser extent, in WT mice reconstituted with Il21r–/– BM. More insight into this defect was provided by the observation that skin DCs from tape-stripped WT mice, but not Il21r–/– mice, upregulated CCR7 and migrated toward CCR7 ligands. Treatment of epidermal and dermal cells with IL-21 activated MMP2, which has been implicated in trafficking of skin DCs. These results suggest an important role for IL-21R in the mobilization of skin DCs to DLNs and the subsequent allergic response to e.c. introduced antigen.

Authors

Haoli Jin, Michiko K. Oyoshi, Yi Le, Teresa Bianchi, Suresh Koduru, Clinton B. Mathias, Lalit Kumar, Séverine Le Bras, Deborah Young, Mary Collins, Michael J. Grusby, Joerg Wenzel, Thomas Bieber, Marianne Boes, Leslie E. Silberstein, Hans C. Oettgen, Raif S. Geha

×

IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice
Stefan Haak, … , Burkhard Becher, Ari Waisman
Stefan Haak, … , Burkhard Becher, Ari Waisman
Published December 15, 2008
Citation Information: J Clin Invest. 2009;119(1):61-69. https://doi.org/10.1172/JCI35997.
View: Text | PDF

IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice

  • Text
  • PDF
Abstract

The clear association of Th17 cells with autoimmune pathogenicity implicates Th17 cytokines as critical mediators of chronic autoimmune diseases such as EAE. To study the impact of IL-17A on CNS inflammation, we generated transgenic mice in which high levels of expression of IL-17A could be initiated after Cre-mediated recombination. Although ubiquitous overexpression of IL-17A led to skin inflammation and granulocytosis, T cell–specific IL-17A overexpression did not have a perceptible impact on the development and health of the mice. In the context of EAE, neither the T cell–driven overexpression of IL-17A nor its complete loss had a major impact on the development of clinical disease. Since IL-17F may be able to compensate for the loss of IL-17A, we also generated IL-17F–deficient mice. This strain was fully susceptible to EAE and displayed unaltered emergence and expansion of autoreactive T cells during disease. To eliminate potential compensatory effects of either cytokine, we treated IL-17F–deficient mice with antagonistic monoclonal antibodies specific for IL-17A and found again only a minimal beneficial impact on disease development. We conclude therefore that both IL-17A and IL-17F, while prominently expressed by an encephalitogenic T cell population, may only marginally contribute to the development of autoimmune CNS disease.

Authors

Stefan Haak, Andrew L. Croxford, Katharina Kreymborg, Frank L. Heppner, Sandrine Pouly, Burkhard Becher, Ari Waisman

×

Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans
Stefano Romeo, … , Helen H. Hobbs, Jonathan C. Cohen
Stefano Romeo, … , Helen H. Hobbs, Jonathan C. Cohen
Published December 15, 2008
Citation Information: J Clin Invest. 2009;119(1):70-79. https://doi.org/10.1172/JCI37118.
View: Text | PDF

Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans

  • Text
  • PDF
Abstract

The relative activity of lipoprotein lipase (LPL) in different tissues controls the partitioning of lipoprotein-derived fatty acids between sites of fat storage (adipose tissue) and oxidation (heart and skeletal muscle). Here we used a reverse genetic strategy to test the hypothesis that 4 angiopoietin-like proteins (ANGPTL3, -4, -5, and -6) play key roles in triglyceride (TG) metabolism in humans. We re-sequenced the coding regions of the genes encoding these proteins and identified multiple rare nonsynonymous (NS) sequence variations that were associated with low plasma TG levels but not with other metabolic phenotypes. Functional studies revealed that all mutant alleles of ANGPTL3 and ANGPTL4 that were associated with low plasma TG levels interfered either with the synthesis or secretion of the protein or with the ability of the ANGPTL protein to inhibit LPL. A total of 1% of the Dallas Heart Study population and 4% of those participants with a plasma TG in the lowest quartile had a rare loss-of-function mutation in ANGPTL3, ANGPTL4, or ANGPTL5. Thus, ANGPTL3, ANGPTL4, and ANGPTL5, but not ANGPTL6, play nonredundant roles in TG metabolism, and multiple alleles at these loci cumulatively contribute to variability in plasma TG levels in humans.

Authors

Stefano Romeo, Wu Yin, Julia Kozlitina, Len A. Pennacchio, Eric Boerwinkle, Helen H. Hobbs, Jonathan C. Cohen

×

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes
Christophe A. Girard, … , Jens C. Brüning, Frances M. Ashcroft
Christophe A. Girard, … , Jens C. Brüning, Frances M. Ashcroft
Published December 8, 2008
Citation Information: J Clin Invest. 2009;119(1):80-90. https://doi.org/10.1172/JCI35772.
View: Text | PDF

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes

  • Text
  • PDF
Abstract

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (KATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic β cells. These β-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from β-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of KATP channels in pancreatic β cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of KATP channels, closed KATP channels, elevated intracellular calcium levels, and stimulated insulin release in β-V59M β cells, indicating that events downstream of KATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic β cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. β-V59M islets also displayed a reduced percentage of β cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of β-V59M mice. Their cause requires further investigation.

Authors

Christophe A. Girard, F. Thomas Wunderlich, Kenju Shimomura, Stephan Collins, Stephan Kaizik, Peter Proks, Fernando Abdulkader, Anne Clark, Vicky Ball, Lejla Zubcevic, Liz Bentley, Rebecca Clark, Chris Church, Alison Hugill, Juris Galvanovskis, Roger Cox, Patrik Rorsman, Jens C. Brüning, Frances M. Ashcroft

×

A DNA-PKcs mutation in a radiosensitive T–B– SCID patient inhibits Artemis activation and nonhomologous end-joining
Mirjam van der Burg, … , Jacques J.M. van Dongen, Dik C. van Gent
Mirjam van der Burg, … , Jacques J.M. van Dongen, Dik C. van Gent
Published December 15, 2008
Citation Information: J Clin Invest. 2009;119(1):91-98. https://doi.org/10.1172/JCI37141.
View: Text | PDF

A DNA-PKcs mutation in a radiosensitive T–B– SCID patient inhibits Artemis activation and nonhomologous end-joining

  • Text
  • PDF
Abstract

Radiosensitive T–B– severe combined immunodeficiency (RS-SCID) is caused by defects in the nonhomologous end-joining (NHEJ) DNA repair pathway, which results in failure of functional V(D)J recombination. Here we have identified the first human RS-SCID patient to our knowledge with a DNA-PKcs missense mutation (L3062R). The causative mutation did not affect the kinase activity or DNA end-binding capacity of DNA-PKcs itself; rather, the presence of long P-nucleotide stretches in the immunoglobulin coding joints indicated that it caused insufficient Artemis activation, something that is dependent on Artemis interaction with autophosphorylated DNA-PKcs. Moreover, overall end-joining activity was hampered, suggesting that Artemis-independent DNA-PKcs functions were also inhibited. This study demonstrates that the presence of DNA-PKcs kinase activity is not sufficient to rule out a defect in this gene during diagnosis and treatment of RS-SCID patients. Further, the data suggest that residual DNA-PKcs activity is indispensable in humans.

Authors

Mirjam van der Burg, Hanna IJspeert, Nicole S. Verkaik, Tuba Turul, Wouter W. Wiegant, Keiko Morotomi-Yano, Pierre-Olivier Mari, Ilhan Tezcan, David J. Chen, Malgorzata Z. Zdzienicka, Jacques J.M. van Dongen, Dik C. van Gent

×

Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1
Katharina Eikermann-Haerter, … , Michael A. Moskowitz, Cenk Ayata
Katharina Eikermann-Haerter, … , Michael A. Moskowitz, Cenk Ayata
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):99-109. https://doi.org/10.1172/JCI36059.
View: Text | PDF

Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1

  • Text
  • PDF
Abstract

Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the α1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.

Authors

Katharina Eikermann-Haerter, Ergin Dileköz, Chiho Kudo, Sean I. Savitz, Christian Waeber, Michael J. Baum, Michel D. Ferrari, Arn M.J.M. van den Maagdenberg, Michael A. Moskowitz, Cenk Ayata

×

PPARγ in the endothelium regulates metabolic responses to high-fat diet in mice
Takeshi Kanda, … , Thomas Michel, Jorge Plutzky
Takeshi Kanda, … , Thomas Michel, Jorge Plutzky
Published December 8, 2008
Citation Information: J Clin Invest. 2009;119(1):110-124. https://doi.org/10.1172/JCI36233.
View: Text | PDF

PPARγ in the endothelium regulates metabolic responses to high-fat diet in mice

  • Text
  • PDF
Abstract

Although endothelial dysfunction, defined as abnormal vasoreactivity, is a common early finding in individuals with type 2 diabetes, the endothelium has not been known to regulate metabolism. As PPARγ, a transcriptional regulator of energy balance, is expressed in endothelial cells, we set out to investigate the role of endothelial cell PPARγ in metabolism using mice that lack PPARγ in the endothelium and BM (γEC/BM-KO). When γEC/BM-KO mice were fed a high-fat diet, they had decreased adiposity and increased insulin sensitivity compared with control mice, despite increased serum FFA and triglyceride (TG) levels. After fasting or olive oil gavage, γEC/BM-KO mice exhibited significant dyslipidemia and failed to respond to the FFA and TG lowering effects of the PPARγ agonist rosiglitazone. BM transplantation studies, which reconstituted hematopoietic PPARγ, established that these metabolic phenotypes were due to endothelial PPARγ deficiency. We further found that the impairment in TG-rich lipoprotein metabolism in γEC/BM-KO mice was associated with fatty acid–mediated lipoprotein lipase inhibition and changes in a PPARγ-regulated endothelial cell transcriptional program. Despite their metabolic improvements, high-fat diet–fed γEC/BM-KO mice had impaired vasoreactivity. Taken together, these data suggest that PPARγ in the endothelium integrates metabolic and vascular responses and may contribute to the effects of PPARγ agonists, thus expanding what endothelial function and dysfunction may entail.

Authors

Takeshi Kanda, Jonathan D. Brown, Gabriela Orasanu, Silke Vogel, Frank J. Gonzalez, Juliano Sartoretto, Thomas Michel, Jorge Plutzky

×

Deletion of the von Hippel–Lindau gene in pancreatic β cells impairs glucose homeostasis in mice
James Cantley, … , Patrick H. Maxwell, Dominic J. Withers
James Cantley, … , Patrick H. Maxwell, Dominic J. Withers
Published December 8, 2008
Citation Information: J Clin Invest. 2009;119(1):125-135. https://doi.org/10.1172/JCI26934.
View: Text | PDF

Deletion of the von Hippel–Lindau gene in pancreatic β cells impairs glucose homeostasis in mice

  • Text
  • PDF
Abstract

Defective insulin secretion in response to glucose is an important component of the β cell dysfunction seen in type 2 diabetes. As mitochondrial oxidative phosphorylation plays a key role in glucose-stimulated insulin secretion (GSIS), oxygen-sensing pathways may modulate insulin release. The von Hippel–Lindau (VHL) protein controls the degradation of hypoxia-inducible factor (HIF) to coordinate cellular and organismal responses to altered oxygenation. To determine the role of this pathway in controlling glucose-stimulated insulin release from pancreatic β cells, we generated mice lacking Vhl in pancreatic β cells (βVhlKO mice) and mice lacking Vhl in the pancreas (PVhlKO mice). Both mouse strains developed glucose intolerance with impaired insulin secretion. Furthermore, deletion of Vhl in β cells or the pancreas altered expression of genes involved in β cell function, including those involved in glucose transport and glycolysis, and isolated βVhlKO and PVhlKO islets displayed impaired glucose uptake and defective glucose metabolism. The abnormal glucose homeostasis was dependent on upregulation of Hif-1α expression, and deletion of Hif1a in Vhl-deficient β cells restored GSIS. Consistent with this, expression of activated Hif-1α in a mouse β cell line impaired GSIS. These data suggest that VHL/HIF oxygen-sensing mechanisms play a critical role in glucose homeostasis and that activation of this pathway in response to decreased islet oxygenation may contribute to β cell dysfunction.

Authors

James Cantley, Colin Selman, Deepa Shukla, Andrey Y. Abramov, Frauke Forstreuter, Miguel A. Esteban, Marc Claret, Steven J. Lingard, Melanie Clements, Sarah K. Harten, Henry Asare-Anane, Rachel L. Batterham, Pedro L. Herrera, Shanta J. Persaud, Michael R. Duchen, Patrick H. Maxwell, Dominic J. Withers

×

CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima
Young Mi Park, … , Maria Febbraio, Roy L. Silverstein
Young Mi Park, … , Maria Febbraio, Roy L. Silverstein
Published December 8, 2008
Citation Information: J Clin Invest. 2009;119(1):136-145. https://doi.org/10.1172/JCI35535.
View: Text | PDF

CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima

  • Text
  • PDF
Abstract

The trapping of lipid-laden macrophages in the arterial intima is a critical but reversible step in atherogenesis. However, the mechanism by which this occurs is not clearly defined. Here, we tested in mice the hypothesis that CD36, a class B scavenger receptor expressed on macrophages, has a role in this process. Using both in vivo and in vitro migration assays, we found that oxidized LDL (oxLDL), but not native LDL, inhibited migration of WT mouse macrophages but not CD36-deficient cells. We further observed a crucial role for CD36 in modulating the in vitro migratory response of human peripheral blood monocyte–derived macrophages to oxLDL. oxLDL also induced rapid spreading and actin polymerization in CD36-sufficient but not CD36-deficient mouse macrophages in vitro. The underlying mechanism was dependent on oxLDL-mediated CD36 signaling, which resulted in sustained activation of focal adhesion kinase (FAK) and inactivation of Src homology 2–containing phosphotyrosine phosphatase (SHP-2). The latter was due to NADPH oxidase–mediated ROS generation, resulting in oxidative inactivation of critical cysteine residues in the SHP-2–active site. Macrophage migration in the presence of oxLDL was restored by both antioxidants and NADPH oxidase inhibitors, which restored the dynamic activation of FAK. We conclude therefore that CD36 signaling in response to oxLDL alters cytoskeletal dynamics to enhance macrophage spreading, inhibiting migration. This may induce trapping of macrophages in the arterial intima and promote atherosclerosis.

Authors

Young Mi Park, Maria Febbraio, Roy L. Silverstein

×

Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis
Pia Kuss, … , Jochen Hecht, Stefan Mundlos
Pia Kuss, … , Jochen Hecht, Stefan Mundlos
Published December 15, 2008
Citation Information: J Clin Invest. 2009;119(1):146-156. https://doi.org/10.1172/JCI36851.
View: Text | PDF

Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis

  • Text
  • PDF
Abstract

Individuals with the birth defect synpolydactyly (SPD) have 1 or more digit duplicated and 2 or more digits fused together. One form of SPD is caused by polyalanine expansions in homeobox d13 (Hoxd13). Here we have used the naturally occurring mouse mutant that has the same mutation, the SPD homolog (Spdh) allele, and a similar phenotype, to investigate the molecular pathogenesis of SPD. A transgenic approach and crossing experiments showed that the Spdh allele is a combination of loss and gain of function. Here we identify retinaldehyde dehydrogenase 2 (Raldh2), the rate-limiting enzyme for retinoic acid (RA) synthesis in the limb, as a direct Hoxd13 target and show decreased RA production in limbs from Spdh/Spdh mice. Intrauterine treatment with RA restored pentadactyly in Spdh/Spdh mice. We further show that RA and WT Hoxd13 suppress chondrogenesis in mesenchymal progenitor cells, whereas Hoxd13 encoded by Spdh promotes cartilage formation in primary cells isolated from Spdh/Spdh limbs, and that this was associated with increased expression of Sox6/9. Increased Sox9 expression and ectopic cartilage formation in the interdigital mesenchyme of limbs from Spdh/Spdh mice suggest uncontrolled differentiation of these cells into the chondrocytic lineage. Thus, we propose that mutated Hoxd13 causes polydactyly in SPD by inducing extraneous interdigital chondrogenesis, both directly and indirectly, via a reduction in RA levels.

Authors

Pia Kuss, Pablo Villavicencio-Lorini, Florian Witte, Joachim Klose, Andrea N. Albrecht, Petra Seemann, Jochen Hecht, Stefan Mundlos

×

Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras
Eirini P. Papapetrou, … , Derek Sant’Angelo, Michel Sadelain
Eirini P. Papapetrou, … , Derek Sant’Angelo, Michel Sadelain
Published December 1, 2008
Citation Information: J Clin Invest. 2009;119(1):157-168. https://doi.org/10.1172/JCI37216.
View: Text | PDF

Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras

  • Text
  • PDF
Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3′ untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a–specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell–based therapies, including cancer immunotherapy.

Authors

Eirini P. Papapetrou, Damian Kovalovsky, Laurent Beloeil, Derek Sant’Angelo, Michel Sadelain

×

Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis
Jin Nakahara, … , Sadakazu Aiso, Norihiro Suzuki
Jin Nakahara, … , Sadakazu Aiso, Norihiro Suzuki
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):169-181. https://doi.org/10.1172/JCI35440.
View: Text | PDF

Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis

  • Text
  • PDF
Abstract

Oligodendrocyte precursor cells (OPCs) persist near the demyelinated axons arising in MS but inefficiently differentiate into oligodendrocytes and remyelinate these axons. The pathogenesis of differentiation failure remains elusive. We initially hypothesized that injured axons fail to present Contactin, a positive ligand for the oligodendroglial Notch1 receptor to induce myelination, and thus tracked axoglial Contactin/Notch1 signaling in situ, using immunohistochemistry in brain tissue from MS patients containing chronic demyelinated lesions. Instead, we found that Contactin was saturated on demyelinated axons, Notch1-positive OPCs accumulated in Contactin-positive lesions, and the receptor was engaged, as demonstrated by cleavage to Notch1-intracellular domain (NICD). However, nuclear translocalization of NICD, required for myelinogenesis, was virtually absent in these cells. NICD and related proteins carrying nuclear localization signals were associated with the nuclear transporter Importin but were trapped in the cytoplasm. Abnormal expression of TIP30, a direct inhibitor of Importin, was observed in these OPCs. Overexpression of TIP30 in a rat OPC cell line resulted in cytoplasmic entrapment of NICD and arrest of differentiation upon stimulation with Contactin-Fc. Our results suggest that extracellular inhibitory factors as well as an intrinsic nucleocytoplasmic transport blockade within OPCs may be involved in the pathogenesis of remyelination failure in MS.

Authors

Jin Nakahara, Kohsuke Kanekura, Mikiro Nawa, Sadakazu Aiso, Norihiro Suzuki

×

Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease
Vanessa Brochard, … , Etienne C. Hirsch, Stéphane Hunot
Vanessa Brochard, … , Etienne C. Hirsch, Stéphane Hunot
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):182-192. https://doi.org/10.1172/JCI36470.
View: Text | PDF

Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease

  • Text
  • PDF
Abstract

Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of dopamine-containing neurons. Mounting evidence suggests that dopaminergic cell death is influenced by the innate immune system. However, the pathogenic role of the adaptive immune system in PD remains enigmatic. Here we showed that CD8+ and CD4+ T cells but not B cells had invaded the brain in both postmortem human PD specimens and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD during the course of neuronal degeneration. We further demonstrated that MPTP-induced dopaminergic cell death was markedly attenuated in the absence of mature T lymphocytes in 2 different immunodeficient mouse strains (Rag1–/– and Tcrb–/– mice). Importantly, similar attenuation of MPTP-induced dopaminergic cell death was seen in mice lacking CD4 as well as in Rag1–/– mice reconstituted with FasL-deficient splenocytes. However, mice lacking CD8 and Rag1–/– mice reconstituted with IFN-γ–deficient splenocytes were not protected. These data indicate that T cell–mediated dopaminergic toxicity is almost exclusively arbitrated by CD4+ T cells and requires the expression of FasL but not IFNγ. Further, our data may provide a rationale for targeting the adaptive arm of the immune system as a therapeutic strategy in PD.

Authors

Vanessa Brochard, Béhazine Combadière, Annick Prigent, Yasmina Laouar, Aline Perrin, Virginie Beray-Berthat, Olivia Bonduelle, Daniel Alvarez-Fischer, Jacques Callebert, Jean-Marie Launay, Charles Duyckaerts, Richard A. Flavell, Etienne C. Hirsch, Stéphane Hunot

×

IRBIT coordinates epithelial fluid and HCO3– secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct
Dongki Yang, … , Katsuhiko Mikoshiba, Shmuel Muallem
Dongki Yang, … , Katsuhiko Mikoshiba, Shmuel Muallem
Published December 1, 2008
Citation Information: J Clin Invest. 2009;119(1):193-202. https://doi.org/10.1172/JCI36983.
View: Text | PDF

IRBIT coordinates epithelial fluid and HCO3– secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct

  • Text
  • PDF
Abstract

Fluid and HCO3– secretion are vital functions of secretory epithelia. In most epithelia, this entails HCO3– entry at the basolateral membrane, mediated by the Na+-HCO3– cotransporter, pNBC1, and exit at the luminal membrane, mediated by a CFTR-SLC26 transporters complex. Here we report that the protein IRBIT (inositol-1,4,5-trisphosphate [IP3] receptors binding protein released with IP3), a previously identified activator of pNBC1, activates both the basolateral pNBC1 and the luminal CFTR to coordinate fluid and HCO3– secretion by the pancreatic duct. We used video microscopy and ion selective microelectrodes to measure fluid secretion and Cl– and HCO3– concentrations in cultured murine sealed intralobular pancreatic ducts. Short interference RNA–mediated knockdown of IRBIT markedly inhibited ductal pNBC1 and CFTR activities, luminal Cl– absorption and HCO3– secretion, and the associated fluid secretion. Single-channel measurements suggested that IRBIT regulated CFTR by reducing channel mean close time. Furthermore, expression of IRBIT constructs in HEK cells revealed that activation of pNBC1 required only the IRBIT PEST domain, while activation of CFTR required multiple IRBIT domains, suggesting that IRBIT activates these transporters by different mechanisms. These findings define IRBIT as a key coordinator of epithelial fluid and HCO3– secretion and may have implications to all CFTR-expressing epithelia and to cystic fibrosis.

Authors

Dongki Yang, Nikolay Shcheynikov, Weizhong Zeng, Ehud Ohana, Insuk So, Hideaki Ando, Akihiro Mizutani, Katsuhiko Mikoshiba, Shmuel Muallem

×

Endoplasmic reticulum–mitochondria crosstalk in NIX-mediated murine cell death
Abhinav Diwan, … , Evangelia G. Kranias, Gerald W. Dorn II
Abhinav Diwan, … , Evangelia G. Kranias, Gerald W. Dorn II
Published December 8, 2008
Citation Information: J Clin Invest. 2009;119(1):203-212. https://doi.org/10.1172/JCI36445.
View: Text | PDF

Endoplasmic reticulum–mitochondria crosstalk in NIX-mediated murine cell death

  • Text
  • PDF
Abstract

Transcriptional upregulation of the proapoptotic BCL2 family protein NIX limits red blood cell formation and can cause heart failure by inducing cell death, but the requisite molecular events are poorly defined. Here, we show complementary mechanisms for NIX-mediated cell death involving direct and ER/sarcoplasmic reticulum–mediated (ER/SR-mediated) mitochondria disruption. Endogenous cardiac NIX and recombinant NIX localize both to the mitochondria and to the ER/SR. In genetic mouse models, cardiomyocyte ER/SR calcium stores are proportional to the level of expressed NIX. Whereas Nix ablation was protective in a mouse model of apoptotic cardiomyopathy, genetic correction of the decreased SR calcium content of Nix-null mice restored sensitivity to cell death and reestablished cardiomyopathy. Nix mutants specific to ER/SR or mitochondria activated caspases and were equally lethal, but only ER/SR-Nix caused loss of the mitochondrial membrane potential. These results establish a new function for NIX as an integrator of transcriptional and calcium-mediated signals for programmed cell death.

Authors

Abhinav Diwan, Scot J. Matkovich, Qunying Yuan, Wen Zhao, Atsuko Yatani, Joan Heller Brown, Jeffery D. Molkentin, Evangelia G. Kranias, Gerald W. Dorn II

×

Epithelial cell α3β1 integrin links β-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis
Kevin K. Kim, … , Jordan A. Kreidberg, Harold A. Chapman
Kevin K. Kim, … , Jordan A. Kreidberg, Harold A. Chapman
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):213-224. https://doi.org/10.1172/JCI36940.
View: Text | PDF

Epithelial cell α3β1 integrin links β-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis

  • Text
  • PDF
Abstract

Pulmonary fibrosis, in particular idiopathic pulmonary fibrosis (IPF), results from aberrant wound healing and scarification. One population of fibroblasts involved in the fibrotic process is thought to originate from lung epithelial cells via epithelial-mesenchymal transition (EMT). Indeed, alveolar epithelial cells (AECs) undergo EMT in vivo during experimental fibrosis and ex vivo in response to TGF-β1. As the ECM critically regulates AEC responses to TGF-β1, we explored the role of the prominent epithelial integrin α3β1 in experimental fibrosis by generating mice with lung epithelial cell–specific loss of α3 integrin expression. These mice had a normal acute response to bleomycin injury, but they exhibited markedly decreased accumulation of lung myofibroblasts and type I collagen and did not progress to fibrosis. Signaling through β-catenin has been implicated in EMT; we found that in primary AECs, α3 integrin was required for β-catenin phosphorylation at tyrosine residue 654 (Y654), formation of the pY654–β-catenin/pSmad2 complex, and initiation of EMT, both in vitro and in vivo during the fibrotic phase following bleomycin injury. Finally, analysis of lung tissue from IPF patients revealed the presence of pY654–β-catenin/pSmad2 complexes and showed accumulation of pY654–β-catenin in myofibroblasts. These findings demonstrate epithelial integrin–dependent profibrotic crosstalk between β-catenin and Smad signaling and support the hypothesis that EMT is an important contributor to pathologic fibrosis.

Authors

Kevin K. Kim, Ying Wei, Charles Szekeres, Matthias C. Kugler, Paul J. Wolters, Marla L. Hill, James A. Frank, Alexis N. Brumwell, Sarah E. Wheeler, Jordan A. Kreidberg, Harold A. Chapman

×

Genome-wide hepatitis C virus amino acid covariance networks can predict response to antiviral therapy in humans
Rajeev Aurora, … , John E. Tavis, the Virahep-C Study Group
Rajeev Aurora, … , John E. Tavis, the Virahep-C Study Group
Published December 22, 2008
Citation Information: J Clin Invest. 2009;119(1):225-236. https://doi.org/10.1172/JCI37085.
View: Text | PDF Technical Advance

Genome-wide hepatitis C virus amino acid covariance networks can predict response to antiviral therapy in humans

  • Text
  • PDF
Abstract

Hepatitis C virus (HCV) is a common RNA virus that causes hepatitis and liver cancer. Infection is treated with IFN-α and ribavirin, but this expensive and physically demanding therapy fails in half of patients. The genomic sequences of independent HCV isolates differ by approximately 10%, but the effects of this variation on the response to therapy are unknown. To address this question, we analyzed amino acid covariance within the full viral coding region of pretherapy HCV sequences from 94 participants in the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) clinical study. Covarying positions were common and linked together into networks that differed by response to therapy. There were 3-fold more hydrophobic amino acid pairs in HCV from nonresponding patients, and these hydrophobic interactions were predicted to contribute to failure of therapy by stabilizing viral protein complexes. Using our analysis to detect patterns within the networks, we could predict the outcome of therapy with greater than 95% coverage and 100% accuracy, raising the possibility of a prognostic test to reduce therapeutic failures. Furthermore, the hub positions in the networks are attractive antiviral targets because of their genetic linkage with many other positions that we predict would suppress evolution of resistant variants. Finally, covariance network analysis could be applicable to any virus with sufficient genetic variation, including most human RNA viruses.

Authors

Rajeev Aurora, Maureen J. Donlin, Nathan A. Cannon, John E. Tavis

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts