Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,578 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 2557
  • 2558
  • Next →
Tumoral RCOR2 promotes tumor development through dual epigenetic regulation of tumor plasticity and immunogenicity
Lei Bao, … , Yingfei Wang, Weibo Luo
Lei Bao, … , Yingfei Wang, Weibo Luo
Published July 3, 2025
Citation Information: J Clin Invest. 2025;135(18):e188801. https://doi.org/10.1172/JCI188801.
View: Text | PDF

Tumoral RCOR2 promotes tumor development through dual epigenetic regulation of tumor plasticity and immunogenicity

  • Text
  • PDF
Abstract

Gain of plasticity and loss of MHC-II enable tumor cells to evade immune surveillance, contributing to tumor development. Here, we showed that the transcriptional corepressor RCOR2 is a key factor that integrates two epigenetic programs surveilling tumor plasticity and immunogenicity. RCOR2 was upregulated predominantly in tumor cells and promoted tumor development in mice through reducing tumor cell death by CD4+CD8+ T cells and inducing cancer stemness. Mechanistically, RCOR2 repressed RNF43 expression through LSD1-mediated demethylation of histone H3 at lysine 4 to induce activation of Wnt/β-catenin and tumor stemness. Simultaneously, RCOR2 inhibited CIITA expression through HDAC1/2-mediated deacetylation of histone H4 at lysine 16, leading to MHC-II silencing in tumor cells and subsequent impairment of CD4+CD8+ T cell immunosurveillance, thereby promoting immune evasion. RCOR2 loss potentiated anti–PD-1 therapy in mouse models of cancer and correlated with better response to anti–PD-1 therapy in human patients. Collectively, these findings uncover a “two birds with one stone” effect for RCOR2, highlighting its potential as a valuable target for improved cancer therapy.

Authors

Lei Bao, Ming Zhu, Maowu Luo, Ashwani Kumar, Yan Peng, Chao Xing, Yingfei Wang, Weibo Luo

×

Elevated NR2F1 underlies the persistence of invasive disease after treatment of BRAF-mutant melanoma
Manoela Tiago, … , Julio A. Aguirre-Ghiso, Andrew E. Aplin
Manoela Tiago, … , Julio A. Aguirre-Ghiso, Andrew E. Aplin
Published July 30, 2025
Citation Information: J Clin Invest. 2025;135(18):e178446. https://doi.org/10.1172/JCI178446.
View: Text | PDF

Elevated NR2F1 underlies the persistence of invasive disease after treatment of BRAF-mutant melanoma

  • Text
  • PDF
Abstract

Despite the success of targeted inhibitors in cutaneous melanoma, therapeutic responses are limited by the aged tumor microenvironment and drug-tolerant residual cells. Given the similarities between drug tolerance and cellular dormancy, we studied the dormancy marker, nuclear receptor subfamily 2 group F member 1 (NR2F1), in response to BRAF-V600E inhibitors (BRAFi) plus MEK inhibitors (MEKi) in BRAF-mutant melanoma models. Transcriptomic analysis of melanoma patient samples treated with BRAFi + MEKi showed increased NR2F1. NR2F1 was highly expressed in the drug-tolerant invasive cell state of minimal residual disease in patient-derived and mouse-derived xenografts on BRAFi + MEKi. NR2F1 over-expression was sufficient to reduce BRAFi + MEKi effects on tumor growth in vivo, and cell proliferation, death, and invasion in vitro. Effects were linked to genes involved in mTORC1 signaling. These cells were sensitive to the combination of BRAFi, MEKi plus rapamycin. Melanomas from aged mice, known to exhibit decreased responses to BRAFi + MEKi, displayed higher levels of NR2F1 compared to tumors from young mice. Depleting NR2F1 in an aged mouse melanomas improved the response to targeted therapy. These findings show high NR2F1 expression in ‘invasive-state’ residual cells and that targeting NR2F1-high cells with mTORC1 inhibitors may improve outcomes in patients with melanoma.

Authors

Manoela Tiago, Timothy J. Purwin, Casey D. Stefanski, Renaira Oliveira da Silva, Mitchell E. Fane, Yash Chhabra, Jelan I. Haj, Jessica L.F. Teh, Rama Kadamb, Weijia Cai, Sheera R. Rosenbaum, Vivian Chua, Nir Hacohen, Michael A. Davies, Jessie Villanueva, Inna Chervoneva, Ashani T. Weeraratna, Dan A. Erkes, Claudia Capparelli, Julio A. Aguirre-Ghiso, Andrew E. Aplin

×

Combinatorial therapy regimens targeting preclinical models of melanoma resistant to immune checkpoint blockade
Imran Khan, … , Sean McAllister, Mohammed Kashani-Sabet
Imran Khan, … , Sean McAllister, Mohammed Kashani-Sabet
Published July 10, 2025
Citation Information: J Clin Invest. 2025;135(18):e185220. https://doi.org/10.1172/JCI185220.
View: Text | PDF

Combinatorial therapy regimens targeting preclinical models of melanoma resistant to immune checkpoint blockade

  • Text
  • PDF
Abstract

Few effective therapeutic options exist after progression on immune checkpoint blockade (ICB) for melanoma. Here, we utilized a platform incorporating transcriptomic profiling, high-throughput drug screening, and murine models to demonstrate the preclinical efficacy of several combinatorial regimens against ICB-resistant melanoma. Transcriptomic analysis of ICB-resistant melanomas demonstrated activation of several targetable pathways. High-throughput drug screening targeting these pathways identified several effective combinations in ICB-resistant patient-derived xenograft models. The combination of cobimetinib and regorafenib (termed Cobi+Reg) emerged as a particularly promising regimen, with efficacy against distinct molecular melanoma subtypes and after progression on ICB in immunocompetent models. Transcriptomic and spatial analysis of Cobi+Reg–treated tumors demonstrated upregulation of antigen presentation machinery, with concomitantly increased activated T cell infiltration. Combining Cobi+Reg with ICB was superior to either modality in vivo. This analytical platform exploits the biology of ICB-resistant melanoma to identify therapeutic vulnerabilities, resulting in the identification of drug combinations that form the basis for rational clinical trial design in the setting of advanced melanoma resistant to ICB.

Authors

Imran Khan, Aida Rodriguez-Brotons, Anukana Bhattacharjee, Vladimir Bezrookove, Altaf Dar, David De Semir, Mehdi Nosrati, Ryan Ice, Liliana Soroceanu, Stanley P. Leong, Kevin B. Kim, Yihui Shi, James E. Cleaver, James R. Miller III, Pierre-Yves Desprez, John M. Kirkwood, Marcus Bosenberg, Nathan Salomonis, Sean McAllister, Mohammed Kashani-Sabet

×

Mutations in the spliceosomal gene SNW1 cause neurodevelopment disorders with microcephaly
Lei Ji, … , Shan Bian, Xiao Mao
Lei Ji, … , Shan Bian, Xiao Mao
Published July 3, 2025
Citation Information: J Clin Invest. 2025;135(18):e186119. https://doi.org/10.1172/JCI186119.
View: Text | PDF

Mutations in the spliceosomal gene SNW1 cause neurodevelopment disorders with microcephaly

  • Text
  • PDF
Abstract

The spliceosome is a critical cellular machinery responsible for pre-mRNA splicing that is essential for the proper expression of genes. Mutations in its core components are increasingly linked to neurodevelopmental disorders, such as primary microcephaly. Here, we investigated the role of SNW domain–containing protein 1 (SNW1), a spliceosomal protein, in splicing integrity and neurodevelopment. We identified 9 heterozygous mutations in the SNW1 gene in patients presenting with primary microcephaly. These mutations impaired SNW1’s interactions with core spliceosomal proteins, leading to defective RNA splicing and reduced protein functionality. Using Drosophila melanogaster and human embryonic stem cell–derived cerebral organoids models, we demonstrated that SNW1 depletion resulted in significant reductions in neural stem cell proliferation and increased apoptosis. RNA-Seq revealed disrupted alternative splicing, especially skipping exons, and altered expression of neurodevelopment-associated genes (CENPE, MEF2C, and NRXN2). Our findings provide crucial insights into the molecular mechanisms by which SNW1 dysfunction contributes to neurodevelopmental disorders and underscore the importance of proper spliceosome function in brain development.

Authors

Lei Ji, Jin Yan, Nicole A. Losurdo, Hua Wang, Liangjie Liu, Keyi Li, Zhen Liu, Zhenming Guo, Jing Xu, Adriana Bibo, Decheng Ren, Ke Yang, Yingying Luo, Fengping Yang, Gui Wang, Zhenglong Xiang, Yuan Wang, Huaizhe Zhan, Hu Pan, Juanli Hu, Jianmin Zhong, Rami Abou Jamra, Pia Zacher, Luciana Musante, Flavio Faletra, Paola Costa, Caterina Zanus, Nathalie Couque, Lyse Ruaud, Anna M. Cueto-González, Hector San Nicolas Fernández, Eduardo Tizzano, Nuria Martinez Gil, Xiaorong Liu, Weiping Liao, Layal Abi Farraj, Alden Y. Huang, Liying Zhang, Aparna Murali, Esther Schmuel, Christina S. Han, Kayla King, Weiyue Gu, Pengchao Wang, Kai Li, Nichole Link, Guang He, Shan Bian, Xiao Mao

×

Aggressive B cell lymphomas retain ATR-dependent determinants of T cell exclusion from the germinal center dark zone
Valeria Cancila, … , Anand D. Jeyasekharan, Claudio Tripodo
Valeria Cancila, … , Anand D. Jeyasekharan, Claudio Tripodo
Published July 17, 2025
Citation Information: J Clin Invest. 2025;135(18):e187371. https://doi.org/10.1172/JCI187371.
View: Text | PDF

Aggressive B cell lymphomas retain ATR-dependent determinants of T cell exclusion from the germinal center dark zone

  • Text
  • PDF
Abstract

The germinal center (GC) dark zone (DZ) and light zone represent distinct anatomical regions in lymphoid tissue where B cell proliferation, immunoglobulin diversification, and selection are coordinated. Diffuse large B cell lymphomas (DLBCLs) with DZ-like gene expression profiles exhibit poor outcomes, though the reasons are unclear and are not directly related to proliferation. Physiological DZs exhibit an exclusion of T cells, prompting exploration of whether T cell paucity contributes to DZ-like DLBCL. We used spatial transcriptomic approaches to achieve higher resolution of T cell spatial heterogeneity in the GC and to derive potential pathways that underlie T cell exclusion. We showed that T cell exclusion from the DZ was linked to DNA damage response (DDR) and chromatin compaction molecular features characterizing the spatial DZ signature, and that these programs were independent of activation-induced cytidine deaminase (AID) activity. As ATR is a key regulator of DDR, we tested its role in the T cell inhibitory DZ transcriptional imprint. ATR inhibition reversed not only the DZ transcriptional signature, but also DZ T cell exclusion in DZ-like DLBCL in vitro microfluidic models and in in vivo samples of murine lymphoid tissue. These findings highlight that ATR activity underpins a physiological scenario of immune silencing. ATR inhibition may reverse the immune-silent state and enhance T cell–based immunotherapy in aggressive lymphomas with GC DZ–like characteristics.

Authors

Valeria Cancila, Giorgio Bertolazzi, Allison S.Y. Chan, Giovanni Medico, Giulia Bastianello, Gaia Morello, Daniel Paysan, Clemence Lai, Liang Hong, Girija Shenoy, Patrick W. Jaynes, Giovanna Schiavoni, Fabrizio Mattei, Silvia Piconese, Maria V. Revuelta, Francesco Noto, Luca Businaro, Adele De Ninno, Ilenia Cammarata, Fabio Pagni, Saradha Venkatachalapathy, Sabina Sangaletti, Arianna Di Napoli, Giada Cicio, Davide Vacca, Silvia Lonardi, Luisa Lorenzi, Andrés J.M. Ferreri, Beatrice Belmonte, Min Liu, Manikandan Lakshmanan, Michelle S.N. Ong, Biyan Zhang, Tingyi See, Kong-Peng Lam, Gabriele Varano, Mario P. Colombo, Silvio Bicciato, Giorgio Inghirami, Leandro Cerchietti, Maurilio Ponzoni, Roberta Zappasodi, Evelyn Metzger, Joseph Beechem, Fabio Facchetti, Marco Foiani, Stefano Casola, Anand D. Jeyasekharan, Claudio Tripodo

×

Organ-specific features of human kidney lymphatics are disrupted in chronic transplant rejection
Daniyal J. Jafree, … , Menna R. Clatworthy, David A. Long
Daniyal J. Jafree, … , Menna R. Clatworthy, David A. Long
Published July 15, 2025
Citation Information: J Clin Invest. 2025;135(18):e168962. https://doi.org/10.1172/JCI168962.
View: Text | PDF

Organ-specific features of human kidney lymphatics are disrupted in chronic transplant rejection

  • Text
  • PDF
Abstract

Lymphatic vessels maintain tissue fluid homeostasis and modulate inflammation, yet their spatial organization and molecular identity in the healthy human kidney, and how these change during chronic transplant rejection, remain poorly defined. Here, we show that lymphatic capillaries initiate adjacent to cortical kidney tubules and lack smooth muscle coverage. These vessels exhibit an organ-specific molecular signature, enriched for CCL14, DNASE1L3, and MDK, with limited expression of canonical immune-trafficking markers found in other organ lymphatics, such as LYVE1 and CXCL8. In allografts with chronic mixed rejection, lymphatics become disorganized and infiltrate the medulla, with their endothelial junctions remodeling from a button-like to a continuous, zipper-like, architecture. Lymphatics in rejecting kidneys localize around and interconnect tertiary lymphoid structures at different maturation stages, with altered intralymphatic and perilymphatic CD4+ T cell distribution. The infiltrating T cells express IFN-γ, which upregulates coinhibitory ligands in lymphatic endothelial cells, including PVR and LGALS9. Simultaneously, lymphatics acquire HLA class II expression and exhibit C4d deposition, consistent with alloantibody binding and complement activation. Together, these findings define the spatial and molecular features of human kidney lymphatics, revealing tolerogenic reprogramming accompanied by structural perturbations during chronic transplant rejection.

Authors

Daniyal J. Jafree, Benjamin J. Stewart, Karen L. Price, Maria Kolatsi-Joannou, Camille Laroche, Barian Mohidin, Benjamin Davis, Hannah Mitchell, Lauren G Russell, Lucía Marinas del Rey, Chun Jing Wang, William J Mason, Byung Il Lee, Lauren Heptinstall, Ayshwarya Subramanian, Gideon Pomeranz, Dale Moulding, Laura Wilson, Tahmina Wickenden, Saif N. Malik, Natalie Holroyd, Claire L. Walsh, Jennifer C. Chandler, Kevin X. Cao, Paul J.D. Winyard, Adrian S. Woolf, Marc Aurel Busche, Simon Walker-Samuel, Lucy S.K. Walker, Tessa Crompton, Peter J. Scambler, Reza Motallebzadeh, Menna R. Clatworthy, David A. Long

×

NOTCH1 reverses immune suppression in small cell lung cancer through reactivation of STING
Yoo Sun Kim, … , David S. Shames, Nitin Roper
Yoo Sun Kim, … , David S. Shames, Nitin Roper
Published July 8, 2025
Citation Information: J Clin Invest. 2025;135(18):e185423. https://doi.org/10.1172/JCI185423.
View: Text | PDF

NOTCH1 reverses immune suppression in small cell lung cancer through reactivation of STING

  • Text
  • PDF
Abstract

Downregulation of antigen presentation and lack of immune infiltration are defining features of small cell lung cancer (SCLC), limiting response to immune checkpoint blockade (ICB). While a high–MHC class I, immune-inflamed subset benefits from ICB, underlying mechanisms of immune response in SCLC have yet to be elucidated. Here we show that in the IMpower133 clinical trial, high, but not low, NOTCH1 expression was significantly associated with longer survival with the addition of ICB to chemotherapy among approximately 80% of SCLC patients with NE-enriched tumors (ASCL1-enriched, HR 0.39, P = 0.0012; NEUROD1-enriched, HR 0.44, P = 0.024). Overexpression or pharmacologic activation of NOTCH1 in ASCL1 and NEUROD1 SCLC cell lines dramatically upregulated MHC class I through epigenetic reactivation of STING. In syngeneic mouse models, Notch1 activation reprogrammed SCLC tumors from immune-excluded to immune-inflamed, facilitating durable, complete responses with ICB combined with a STING agonist. STING1 expression was significantly enriched in high- compared with low-NOTCH1-expressing tumors in IMpower133, validating our proposed mechanism. Our data reveal a previously undiscovered role for NOTCH1 as a critical driver of SCLC immunogenicity and a potential predictive biomarker for ICB in SCLC. NOTCH1 activation may be a therapeutic strategy to unleash antitumor immune responses in SCLC and other neuroendocrine cancers in which NOTCH1 is typically suppressed.

Authors

Yoo Sun Kim, Barzin Y. Nabet, Briana N. Cortez, Nai-Yun Sun, Robin Sebastian, Christophe E. Redon, Anagh Ray, Liang Liu, Afeez A. Ishola, Sarah Loew, Anjali Dhall, Sivasish Sindiri, Velimir Gayevskiy, Min-Jung Lee, Shraddha Rastogi, Nahoko Sato, Noemi Kedei, Thorkell Andresson, Sudipto Das, Suresh Kumar, Alan E. Bers, Hongliang Zhang, Alberto Chiappori, Priyanka Gopal, Mohamed E. Abazeed, Haobin Chen, Mirit I. Aladjem, Yves Pommier, Moises J. Velez, David S. Shames, Nitin Roper

×

Endocochlear potential contributes to hair cell death in TMPRSS3 hearing loss
A. Eliot Shearer, … , Jeffrey R. Holt, Rick F. Nelson
A. Eliot Shearer, … , Jeffrey R. Holt, Rick F. Nelson
Published July 17, 2025
Citation Information: J Clin Invest. 2025;135(18):e186395. https://doi.org/10.1172/JCI186395.
View: Text | PDF

Endocochlear potential contributes to hair cell death in TMPRSS3 hearing loss

  • Text
  • PDF
Abstract

Pathogenic variants in the gene TMPRSS3 are a common cause of hearing loss in humans, although the causal mechanisms remain unknown. Previous work has shown that Tmprss3Y260X/Y260X mice exhibit normal hair cell development, mechanosensory transduction, and spiral ganglion patterning, but experience rapid hair cell death from P12 to P14 at the onset of hearing. Here, we demonstrate that Tmprss3Y260X/Y260X mice display an early and temporary spike in endocochlear potential (EP) prior to the onset of hair cell death. In vitro experiments with cochlear explants from Tmprss3Y260X/Y260X mice and in vivo studies with Tmprss3Y260X/Y260X mice crossed with 2 different mutant models that lacked EP generation promoted hair cell survival. Furthermore, systemic administration of furosemide, a drug that reduces EP in vivo, reduced hair cell death in Tmprss3Y260X/Y260X mice. These findings suggest that extracellular factors, including EP, play a role in TMPRSS3-related hair cell survival and hearing loss, and suggest that modulating EP could be a therapeutic strategy.

Authors

A. Eliot Shearer, Yuan-Siao Chen, Stephanie L. Rouse, Xiaohan Wang, Janmaris Marin Fermin, Kevin T.A. Booth, Jasmine Moawad, Nicole Bianca Libiran, Jinan Li, Hae-Young Kim, Michael Hoa, Rafal Olszewski, Jing-Yu Lei, Ernesto Cabrera, Douglas J. Totten, Bo Zhao, Jeffrey R. Holt, Rick F. Nelson

×

The functionally conserved human lncRNA motif GULF lowers glucose and lipid levels in obese mice
Zhe Li, … , Hang Sun, Haiming Cao
Zhe Li, … , Hang Sun, Haiming Cao
Published September 16, 2025
Citation Information: J Clin Invest. 2025;135(18):e186355. https://doi.org/10.1172/JCI186355.
View: Text | PDF

The functionally conserved human lncRNA motif GULF lowers glucose and lipid levels in obese mice

  • Text
  • PDF
Abstract

Growing evidence links human long noncoding RNAs (lncRNAs) to metabolic disease pathogenesis, yet no FDA-approved drugs target human lncRNAs. Most human lncRNAs lack conservation in other mammals, complicating efforts to define their roles and identify therapeutic targets. Here, we leveraged the concept of functionally conserved lncRNAs (FCLs) — lncRNAs that share function despite no sequence similarity — to develop a framework for identifying human lncRNAs as therapeutic targets for metabolic disorders. We used expression quantitative trait loci mapping and functional conservation analyses to pinpoint human lncRNAs influenced by disease-associated SNPs and with potential functionally conserved mouse equivalents. We identified human and mouse GULLs (glucose and lipid lowering), which regulate glucose and lipid metabolism by binding CRTC2, thereby modulating gluconeogenic genes via CREB and lipogenic genes via SREBP1. Despite their lack of sequence similarity, both lncRNAs demonstrated similar metabolic effects in obese mice, with more pronounced benefits from long-term activation. To identify druggable sites, we mapped GULLs’ binding motifs to CRTC2 (termed GULFs). Standalone human GULF, an RNA oligomer resembling FDA-approved siRNAs, significantly improved glucose and lipid levels in obese mice. This framework highlights functionally conserved human lncRNAs as promising therapeutic targets, exemplified by GULLs’ potential as a glucose- and lipid-lowering therapeutic.

Authors

Zhe Li, Sunmi Seok, Chengfei Jiang, Ping Li, Yonghe Ma, Hang Sun, Haiming Cao

×

Double-positive T cells form heterotypic clusters with circulating tumor cells to foster cancer metastasis
David Scholten, … , Deyu Fang, Huiping Liu
David Scholten, … , Deyu Fang, Huiping Liu
Published September 16, 2025
Citation Information: J Clin Invest. 2025;135(18):e193521. https://doi.org/10.1172/JCI193521.
View: Text | PDF

Double-positive T cells form heterotypic clusters with circulating tumor cells to foster cancer metastasis

  • Text
  • PDF
Abstract

The immune ecosystem is central to maintaining effective defensive responses. However, it remains largely understudied how immune cells in the peripheral blood interact with circulating tumor cells (CTCs) in metastasis. Here, blood analysis of patients with advanced breast cancer revealed that over 75% of CTC-positive blood specimens contained heterotypic CTC clusters with CD45+ white blood cells (WBCs), which correlates with breast cancer subtypes, racial groups, and decreased survival. CTC-WBC clusters included overrepresented T cells and underrepresented neutrophils. Specifically, a rare subset of CD4 and CD8 double-positive T (DPT) cells was 140-fold enriched in CTC clusters versus their frequency in WBCs. DPT cells shared properties with CD4+ and CD8+ T cells but exhibited unique features of T cell exhaustion and immune suppression. Mechanistically, the integrin heterodimer α4β1, also named very late antigen 4 (VLA-4), in DPT cells and its ligand, VCAM1, in tumor cells are essential mediators of DPT-CTC clusters. Neoadjuvant administration of anti-VLA-4 neutralizing antibodies markedly blocked CTC–DPT clusters, inhibited metastasis, and extended mouse survival. These findings highlight a pivotal role of rare DPT cells in fostering cancer dissemination through CTC clustering. It lays a foundation for developing innovative biomarker-guided therapeutic strategies to prevent and target cancer metastasis.

Authors

David Scholten, Lamiaa El-Shennawy, Yuzhi Jia, Youbin Zhang, Elizabeth Hyun, Carolina Reduzzi, Andrew D. Hoffmann, Hannah F. Almubarak, Fangjia Tong, Nurmaa K. Dashzeveg, Yuanfei Sun, Joshua R. Squires, Janice Lu, Leonidas C. Platanias, Clive H. Wasserfall, William J. Gradishar, Massimo Cristofanilli, Deyu Fang, Huiping Liu

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 2557
  • 2558
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts