Treatment options for advanced liver disease and hepatocellular carcinoma (HCC) are limited, and strategies to prevent HCC development are lacking. Aiming to discover therapeutic targets, we combined genome-wide transcriptomic analysis of liver tissues from patients with advanced liver disease and HCC and a cell-based system predicting liver disease progression and HCC risk. Computational analysis predicted peroxiredoxin 2 (PRDX2) as a candidate gene mediating hepatocarcinogenesis and HCC risk. Analysis of tissues from patients with HCC confirmed a perturbed expression of PRDX2 in cancer. In vivo perturbation studies in mouse models for hepatocarcinogenesis driven by metabolic dysfunction–associated steatohepatitis showed that specific Prdx2 KO in hepatocytes improved metabolic liver functions, restored AMPK activity, and prevented HCC development by suppressing oncogenic signaling. Perturbation studies in HCC cell lines, a cell line–derived xenograft mouse model, and patient-derived HCC spheroids revealed that PRDX2 also mediates cancer initiation, cancer cell proliferation, and survival through its antioxidant activity. Targeting PRDX2 may therefore be a strategy to prevent HCC development in metabolic liver disease.
Emilie Crouchet, Eugénie Schaeffer, Marine A. Oudot, Julien Moehlin, Cloé Gadenne, Frank Jühling, Hussein El Saghire, Naoto Fujiwara, Shijia Zhu, Fahmida Akter Rasha, Sarah C. Durand, Anouk Charlot, Clara Ponsolles, Romain Martin, Nicolas Brignon, Fabio Del Zompo, Laura Meiss-Heydmann, Marie Parnot, Nourdine Hamdane, Danijela Heide, Jenny Hetzer, Mathias Heikenwälder, Emanuele Felli, Patrick Pessaux, Nathalie Pochet, Joffrey Zoll, Brian Cunniff, Yujin Hoshida, Laurent Mailly, Thomas F. Baumert, Catherine Schuster