Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

In-Press Preview

In-Press Preview Articles
Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity
Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the...
Published January 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133102.
View: Text | PDF
Research In-Press Preview Autoimmunity Transplantation

Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity

  • Text
  • PDF
Abstract

Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue-restricted antigens (PTA). At the initiation of GVHD, LN fibroblastic reticular cells (FRC) rapidly reduced expression of genes regulated by DEAF1, an Autoimmune Regulator-like transcription factor required for intra-nodal expression of PTA. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRC during GVHD resulted in the activation of auto-aggressive T cells and gut injury. Finally, we show that FRC normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging auto-reactive T cells from the repertoire.

Authors

Simone Dertschnig, Pamela Evans, Pedro Santos e Sousa, Teresa Manzo, Ivana R. Ferrer, Hans J. Stauss, Clare L. Bennett, Ronjon Chakraverty

×

Prevention of Connexin43 remodeling protects against duchenne muscular dystrophy cardiomyopathy
Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested to play a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular...
Published January 7, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128190.
View: Text | PDF
Research In-Press Preview Cardiology Cell biology

Prevention of Connexin43 remodeling protects against duchenne muscular dystrophy cardiomyopathy

  • Text
  • PDF
Abstract

Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested to play a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular dystrophy (DMD), however a mechanistic understanding of this association is lacking. Here, we identified a reduction of phosphorylation of Cx43 serines S325/S328/S330 in human and mouse DMD hearts. We hypothesized that hypo-phosphorylation of Cx43 serine-triplet triggers pathological Cx43 redistribution to the lateral sides of cardiomyocytes (remodeling). Therefore, we generated knock-in mdx mice in which the Cx43 serine-triplet was replaced with either phospho-mimicking glutamic acids (mdxS3E) or non-phosphorylatable alanines (mdxS3A). The mdxS3E but not mdxS3A mice were resistant to Cx43 remodeling with a corresponding reduction of Cx43 hemichannel activity. MdxS3E cardiomyocytes displayed improved intracellular Ca2+ signaling and a reduction of NOX2/reactive oxygen species (ROS) production. Furthermore, mdxS3E mice were protected against inducible arrhythmias, related lethality and the development of cardiomyopathy. Inhibition of microtubule polymerization by colchicine reduced both NOX2/ROS and oxidized CaMKII, increased S325/S328/S330 phosphorylation and prevented Cx43 remodeling in mdx hearts. Together, these results demonstrate a mechanism of dystrophic Cx43-remodeling and suggest that targeting Cx43 may be a therapeutic strategy to prevent heart dysfunction and arrhythmias in DMD patients.

Authors

Eric Himelman, Mauricio A. Lillo, Julie Nouet, J. Patrick Gonzalez, Qingshi Zhao, Lai-Hua Xie, Hong Li, Tong Liu, Xander H.T. Wehrens, Paul D. Lampe, Glenn I. Fishman, Natalia Shirokova, Jorge E. Contreras, Diego Fraidenraich

×

HIV persists throughout deep tissues with repopulation from multiple anatomical sources
Background. Understanding HIV dynamics across the human body is important for cure efforts. This goal has been hampered by technical difficulties and the challenge to obtain fresh tissues. Methods....
Published January 7, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134815.
View: Text | PDF
Clinical Medicine In-Press Preview AIDS/HIV Infectious disease

HIV persists throughout deep tissues with repopulation from multiple anatomical sources

  • Text
  • PDF
Abstract

Background. Understanding HIV dynamics across the human body is important for cure efforts. This goal has been hampered by technical difficulties and the challenge to obtain fresh tissues. Methods. This observational study evaluated 6 persons with HIV (4 virally suppressed with antiretroviral therapy and 2 with rebound viremia after stopping therapy) who provided blood serially before death and their bodies for rapid autopsy. HIV reservoirs were characterized by digital droplet PCR and single genome amplification and sequencing of full-length (FL) envelope HIV. Phylogeographic methods reconstructed HIV spread and generalized linear models tested for viral factors associated with dispersal. Results. Across participants, HIV DNA levels varied from ~0 to 659 copies/106 cells (IQR:22.9-126.5). A total of 605 intact FL env sequences were recovered in antemortem blood cells and across 28 tissues (IQR:5-9). Sequence analysis showed: 1) emergence of large, identical, intact HIV RNA populations in blood after stopping therapy, which repopulated tissues throughout the body, 2) multiple sites acted as hubs for HIV dissemination but blood and lymphoid tissues were the main source, and 3) viral exchanges occurred within brain areas and across the blood brain barrier, and 4) migration was associated with low HIV divergence between sites and higher diversity at the recipient site. Conclusion. HIV reservoirs persist in all deep tissues, and blood is the main source of dispersal. This may explain why eliminating HIV susceptibility in circulating T cells via bone marrow transplants allowed some people with HIV to have therapy free remission, even though deeper tissue reservoirs were not targeted. Trial registration. Not applicable. Funding. National Institute of Health Grants (P01 AI31385, P30 AI036214, AI131971-01, AI120009AI036214,HD094646, AI027763, AI134295, AI68636).

Authors

Antoine Chaillon, Sara Gianella, Simon Dellicour, Stephen A. Rawlings, Timothy E. Schlub, Michelli Faria De Oliveira, Caroline Ignacio, Magali Porrachia, Bram Vrancken, Davey M. Smith

×

Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1β-mediated colitis
Bruton tyrosine kinase (BTK) is present in a wide variety of cells and may thus have important non-B cell functions. Here we explored the function of this kinase in macrophages with studies of its...
Published January 2, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128322.
View: Text | PDF
Research In-Press Preview Gastroenterology

Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1β-mediated colitis

  • Text
  • PDF
Abstract

Bruton tyrosine kinase (BTK) is present in a wide variety of cells and may thus have important non-B cell functions. Here we explored the function of this kinase in macrophages with studies of its regulation of the NLRP3 inflammasome. We found that bone marrow-derived macrophages (BMDMs) from BTK-deficient mice or monocytes from X-linked agammaglobulinemia patients exhibit increased NLRP3 inflammasome activity; this was also the case with BMDMs exposed to low doses of BTK inhibitor such as ibrutinib and monocytes from chronic lymphocytic leukemia patients being treated with ibrutinib. In mechanistic studies, we found that BTK binds to NLRP3 during the priming phase of inflammasome activation and in doing so inhibits LPS/nigericin-induced assembly of the NLRP3 inflammasome during the activation phase of inflammasome activation. This inhibitory effect was caused by BTK inhibition of PP2A-mediated dephosphorylation of Ser5 in the pyrin domain of NLRP3. Finally, we showed that BTK-deficient mice are subject to severe experimental colitis and such colitis is normalized by administration of anti-IL-β or an inhibitor of IL-1β signaling, anakinra. Together, these studies strongly suggest that BTK functions as a physiologic inhibitor of NLRP3 inflammasome activation; they thereby explain the fact that XLA patients are prone to develop Crohn’s disease.

Authors

Liming Mao, Atsushi Kitani, Eitaro Hiejima, Kim Montgomery-Recht, Wenchang Zhou, Ivan Fuss, Adrian Wiestner, Warren Strober

×

Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2
Cancer–related anemia is present in over 60% of newly diagnosed cancer patients and is associated with substantial morbidity and high medical costs. Drugs that enhance erythropoiesis are urgently...
Published January 2, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133344.
View: Text | PDF
Concise Communication In-Press Preview Hematology Stem cells

Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2

  • Text
  • PDF
Abstract

Cancer–related anemia is present in over 60% of newly diagnosed cancer patients and is associated with substantial morbidity and high medical costs. Drugs that enhance erythropoiesis are urgently required to decrease transfusion rates and improve quality of life. Clinical studies have observed an unexpected improvement in hemoglobin and red blood cell (RBC) transfusion-independence in AML patients treated with the isocitrate dehydrogenase 2 (IDH2) mutant-specific inhibitor, enasidenib, leading to improved quality of life without a reduction in AML disease burden. Here, we demonstrate that enasidenib enhanced human erythroid differentiation of hematopoietic progenitors. The phenomenon was not observed with other IDH1/2 inhibitors and occurred in IDH2-deficient CRIPSR-engineered progenitors independently of D-2-hydroxyglutarate. The effect of enasidenib on hematopoietic progenitors was mediated by protoporphyrin accumulation, driving heme production and erythroid differentiation in committed CD71+ progenitors rather than hematopoietic stem cells. Our results position enasidenib as a promising therapeutic agent for improvement of anemia and provide the basis for a clinical trial using enasidenib to decrease transfusion dependence in a wide array of clinical contexts.

Authors

Ritika Dutta, Tian Yi Zhang, Thomas Köhnke, Daniel Thomas, Miles Linde, Eric Gars, Melissa Stafford, Satinder Kaur, Yusuke Nakauchi, Raymond Yin, Armon Azizi, Anupama Narla, Ravindra Majeti

×

High residual C-peptide likely contributes to glycemic control in type 1 diabetes
BACKGROUND. Residual C-peptide is detected in many people for years following the diagnosis of type 1 diabetes; however, the physiologic significance of low levels of detectable C-peptide is not...
Published January 2, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134057.
View: Text | PDF
Clinical Medicine In-Press Preview Endocrinology

High residual C-peptide likely contributes to glycemic control in type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. Residual C-peptide is detected in many people for years following the diagnosis of type 1 diabetes; however, the physiologic significance of low levels of detectable C-peptide is not known. METHODS. We studied sixty-three adults with type 1 diabetes classified by peak mixed-meal tolerance test (MMTT) C-peptide as negative (<0.007; n =15), low (0.017–0.200; n =16), intermediate (>0.200–0.400; n =15), or high (>0.400 pmol/mL; n =17). We compared the groups’ glycemia from continuous glucose monitoring (CGM), β-cell secretory responses from a glucose-potentiated arginine (GPA) test, insulin sensitivity from a hyperinsulinemia euglycemic (EU) clamp, and glucose counterregulatory responses from a subsequent hypoglycemic (HYPO) clamp. RESULTS. Low and intermediate MMTT C-peptide groups did not exhibit β-cell secretory responses to hyperglycemia, whereas the high C-peptide group showed increases in both C-peptide and proinsulin (P ≤0.01). All groups with detectable MMTT C-peptide demonstrated acute C-peptide and proinsulin responses to arginine that were positively correlated with peak MMTT C-peptide (P <0.0001 for both analytes). During the EU-HYPO clamp, C-peptide levels were proportionately suppressed in the low, intermediate, and high C-peptide compared to the negative group (P ≤0.0001), whereas glucagon increased from EU to HYPO only in the high C-peptide group compared to negative (P =0.01). CGM demonstrated lower mean glucose and more time-in-range for the high C-peptide group. CONCLUSION. These results indicate that in adults with type 1 diabetes, β-cell responsiveness to hyperglycemia and α-cell responsiveness to hypoglycemia are only observed at high levels of residual C-peptide that likely contribute to glycemic control.

Authors

Michael R. Rickels, Carmella Evans-Molina, Henry T. Bahnson, Alyssa Ylescupidez, Kristen J. Nadeau, Wei Hao, Mark A. Clements, Jennifer L. Sherr, Richard E. Pratley, Tamara S. Hannon, Viral N. Shah, Kellee M. Miller, Carla J. Greenbaum

×

Microphthalmia transcription factor expression contributes to bone marrow failure in Fanconi anemia
Hematopoietic stem cell (HSC) attrition is considered the key event underlying progressive bone marrow failure (BMF) in Fanconi anemia (FA), the most frequent inherited BMF disorder in humans....
Published December 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI131540.
View: Text | PDF
Research In-Press Preview Cell biology Hematology

Microphthalmia transcription factor expression contributes to bone marrow failure in Fanconi anemia

  • Text
  • PDF
Abstract

Hematopoietic stem cell (HSC) attrition is considered the key event underlying progressive bone marrow failure (BMF) in Fanconi anemia (FA), the most frequent inherited BMF disorder in humans. However, despite major advances, how the cellular, biochemical and molecular alterations reported in FA lead to HSC exhaustion remains poorly understood. Here, we demonstrated in human and mouse cells that loss-of-function of FANCA or FANCC, products of two genes affecting more than 80% of FA patients worldwide, is associated with constitutive expression of the transcription factor Microphthalmia (MiTF) through the cooperative, unscheduled activation of several stress signaling pathways, including the SMAD2/3, p38MAPK, NF-kB and AKT cascades. We validated the unrestrained Mitf expression downstream of p38 in Fanca-/- mice, which display hallmarks of hematopoietic stress, including loss of HSC quiescence, DNA damage accumulation in HSCs and reduced HSC repopulation capacity. Importantly, we demonstrated that shRNA-mediated downregulation of Mitf expression or inhibition of p38 signaling rescued HSC quiescence and prevented DNA damage accumulation. Our data support the hypothesis that HSC attrition in FA is the consequence of defects in the DNA damage response combined with chronic activation of otherwise transiently activated signaling pathways, which jointly prevent the recovery of HSC quiescence.

Authors

Alessia Oppezzo, Julie Bourseguin, Emilie Renaud, Patrycja Pawlikowska, Filippo Rosselli

×

Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma
Oncogenic KRAS is a major driver in lung adenocarcinoma (LUAD) that has yet to be therapeutically conquered. Here we report that the SLC7A11/glutathione axis displays metabolic synthetic lethality...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124049.
View: Text | PDF
Research In-Press Preview Oncology

Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma

  • Text
  • PDF
Abstract

Oncogenic KRAS is a major driver in lung adenocarcinoma (LUAD) that has yet to be therapeutically conquered. Here we report that the SLC7A11/glutathione axis displays metabolic synthetic lethality with oncogenic KRAS. Through metabolomics approaches, we found that mutationally activated KRAS strikingly increased the intracellular cystine level and glutathione biosynthesis. SLC7A11, a cystine/glutamate antiporter conferring specificity for cystine uptake, was overexpressed in patients with KRAS-mutant LUAD and showed positive association with tumor progression. Furthermore, SLC7A11 inhibition either by genetic depletion or pharmacological inhibition by sulfasalazine resulted in selective killing across a panel of KRAS-mutant cancer cells in vitro and tumor growth inhibition in vivo, suggesting the functionality and specificity of SLC7A11 as a therapeutic target. Importantly, we further identified a potent SLC7A11 inhibitor, HG106 that markedly decreased cystine uptake and intracellular glutathione biosynthesis. Furthermore, HG106 exhibited selective cytotoxicity towards KRAS-mutant cells by increasing oxidative stress- and endoplasmic reticulum stress-mediated cell apoptosis. Of note, treatment of KRAS-mutant LUAD with HG106 in several lung cancer preclinical mouse models led to marked tumor suppression and prolonged mouse survival. Overall, our findings reveal that KRAS-mutant LUAD cells are vulnerable to SLC7A11 inhibition, providing promising therapeutic approaches to the treatment of this currently incurable disease.

Authors

Kewen Hu, Kun Li, Jing Lv, Jie Feng, Jing Chen, Haigang Wu, Feixiong Cheng, Wenhao Jiang, Jieqiong Wang, Haixiang Pei, Paul J. Chiao, Zhenyu Cai, Yihua Chen, Mingyao Liu, Xiufeng Pang

×

Staphylococcus aureus α-toxin suppresses antigen-specific T cell responses
Staphylococcus aureus remains a leading cause of human infection. These infections frequently recur when the skin is a primary site of infection, especially in infants and children. In contrast,...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130728.
View: Text | PDF
Concise Communication In-Press Preview Infectious disease Microbiology

Staphylococcus aureus α-toxin suppresses antigen-specific T cell responses

  • Text
  • PDF
Abstract

Staphylococcus aureus remains a leading cause of human infection. These infections frequently recur when the skin is a primary site of infection, especially in infants and children. In contrast, invasive staphylococcal disease is less commonly associated with reinfection, suggesting that tissue-specific mechanisms govern the development of immunity. Knowledge of how S. aureus manipulates protective immunity has been hampered by a lack of antigen-specific models to interrogate the T cell response. Utilizing a chicken egg ovalbumin (OVA)-expressing S. aureus strain to analyze OVA-specific T cell responses, we demonstrated that primary skin infection is associated with impaired development of T cell memory. Conversely, invasive infection induced antigen-specific memory and protected against reinfection. This defect in adaptive immunity following skin infection was associated with a loss of dendritic cells, attributable to S. aureus α-toxin (Hla) expression. Genetic and immunization-based approaches to protect against Hla during skin infection restored the T cell response. Within the human population, exposure to α-toxin through skin infection may modulate the establishment of T cell-mediated immunity, adversely impacting long-term protection. These studies prompt consideration that vaccination targeting S. aureus may be most effective if delivered prior to initial contact with the organism.

Authors

Brandon Lee, Reuben Olaniyi, Jakub Kwiecinski, Juliane Bubeck Wardenburg

×

An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability
Deficits in social interaction (SI) are a core symptom of Autism Spectrum Disorders (ASD), however treatments for social deficits are notably lacking. Elucidating brain circuits and neuromodulatory...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI131752.
View: Text | PDF
Research In-Press Preview Neuroscience

An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability

  • Text
  • PDF
Abstract

Deficits in social interaction (SI) are a core symptom of Autism Spectrum Disorders (ASD), however treatments for social deficits are notably lacking. Elucidating brain circuits and neuromodulatory signaling systems that regulate sociability could facilitate a deeper understanding of ASD pathophysiology and reveal novel treatments for ASD. Here we found that in vivo optogenetic activation of the basolateral amygdala-nucleus accumbens (BLA-NAc) glutamatergic circuit reduced SI and increased social avoidance in mice. Furthermore, we found that 2-arachidonoylglycerol (2-AG) endocannabinoid (eCB) signaling reduced BLA-NAc glutamatergic activity, and that pharmacological 2-AG augmentation via administration of JZL184 blocked SI deficits associated with in vivo BLA-NAc stimulation. Additionally, optogenetic inhibition of the BLA-NAc circuit significantly increased SI in the Shank3B-/-, an ASD model with substantial SI impairment, without affecting SI in wild-type mice. Finally, we demonstrated that JZL184 delivered systemically or directly to the NAc also normalized SI deficits in Shank3B-/-mice, while ex vivo JZL184 application corrected aberrant NAc excitatory and inhibitory neurotransmission and reduced BLA-NAc-elicited feedforward inhibition of NAc neurons in Shank3B-/- mice. These data reveal circuit-level and neuromodulatory mechanisms regulating social function relevant to ASD and suggest 2-AG augmentation could reduce social deficits via modulation of excitatory and inhibitory neurotransmission in the NAc.

Authors

Oakleigh M. Folkes, Rita Báldi, Veronika Kondev, David J. Marcus, Nolan D. Hartley, Brandon D. Turner, Jade K. Ayers, Jordan J. Baechle, Maya P. Misra, Megan Altemus, Carrie A. Grueter, Brad A. Grueter, Sachin Patel

×

Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases
BACKGROUND. Undifferentiated systemic autoinflammatory diseases (USAID) present diagnostic and therapeutic challenges. Chronic interferon (IFN) signaling and cytokine dysregulation may identify...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129301.
View: Text | PDF
Clinical Medicine In-Press Preview Immunology Inflammation

Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases

  • Text
  • PDF
Abstract

BACKGROUND. Undifferentiated systemic autoinflammatory diseases (USAID) present diagnostic and therapeutic challenges. Chronic interferon (IFN) signaling and cytokine dysregulation may identify diseases with available targeted treatments. METHODS. Sixty-six consecutively-referred USAID patients underwent standardized evaluation of Type-I IFN-response-gene-signature (IRG-S); cytokine profiling, and genetic evaluation by next-generation sequencing. RESULTS. Thirty-six USAID patients (55%) had elevated IRG-S. Neutrophilic panniculitis (40% vs 0%), basal ganglia calcifications (46% vs 0%), interstitial lung disease (47% vs 5%), and myositis (60% vs 10%) were more prevalent in patients with elevated IRG-S. Moderate IRG-S elevation and highly-elevated serum IL-18 distinguished eight patients with pulmonary alveolar proteinosis (PAP) and recurrent macrophage activation syndrome (MAS). Among patients with panniculitis and progressive cytopenias, two patients were compound heterozygous for novel LRBA mutations, four patients harbored novel splice variants in IKBKG/NEMO, and six patients had de novo frameshift mutations in SAMD9L. Of additional 12 patients with elevated IRG-S and CANDLE-, SAVI- or Aicardi-Goutières-Syndrome (AGS)-like phenotypes, five patients carried mutations in either SAMHD1, TREX1, PSMB8 or PSMG2. Two patients had anti-MDA5 autoantibody-positive juvenile dermatomyositis, and seven could not be classified. Patients with LRBA, IKBKG/NEMO and SAMD9L mutations showed a pattern of IRG elevation that suggests prominent NF-κB activation different from the canonical interferonopathies CANDLE, SAVI and AGS. CONCLUSIONS. In patients with elevated IRG-S, we identified characteristic clinical features and 3 additional autoinflammatory diseases: IL-18-mediated PAP and recurrent MAS (IL-18PAP-MAS), NEMO∆5-associated autoinflammatory syndrome (NEMO-NDAS), and SAMD9L-associated autoinflammatory disease (SAMD9L-SAAD). The IRG-S expands the diagnostic armamentarium in evaluating USAIDs and points to different pathways regulating IRG expression.

Authors

Adriana A. de Jesus, Yanfeng Hou, Stephen Brooks, Louise Malle, Angelique Biancotto, Yan Huang, Katherine R. Calvo, Bernadette Marrero, Susan Moir, Andrew J. Oler, Zuoming Deng, Gina A. Montealegre Sanchez, Amina Ahmed, Eric Allenspach, Bita Arabshahi, Edward Behrens, Susanne Benseler, Liliana Bezrodnik, Sharon Bout-Tabaku, AnneMarie C. Brescia, Diane Brown, Jon M. Burnham, María Soledad Caldirola, Ruy Carrasco, Alice Y. Chan, Rolando Cimaz, Paul Dancey, Jason Dare, Marietta DeGuzman, Victoria Dimitriades, Ian Ferguson, Polly Ferguson, Laura Finn, Marco Gattorno, Alexei A. Grom, Eric P. Hanson, Philip J. Hashkes, Christian M. Hedrich, Ronit Herzog, Gerd Horneff, Rita Jerath, Elizabeth Kessler, Hanna Kim, Daniel J. Kingsbury, Ronald M. Laxer, Pui Y. Lee, Min Ae Lee-Kirsch, Laura Lewandowski, Suzanne Li, Vibke Lilleby, Vafa Mammadova, Lakshmi N. Moorthy, Gulnara Nasrullayeva, Kathleen M. O’Neil, Karen Onel, Seza Ozen, Nancy Pan, Pascal Pillet, Daniela G.P. Piotto, Marilynn G. Punaro, Andreas Reiff, Adam Reinhardt, Lisa G. Rider, Rafael Rivas-Chacon, Tova Ronis, Angela Rösen-Wolff, Johannes Roth, Natasha Mckerran Ruth, Marite Rygg, Heinrike Schmeling, Grant Schulert, Christiaan Scott, Gisela Seminario, Andrew Shulman, Vidya Sivaraman, Mary Beth Son, Yuriy Stepanovskyy, Elizabeth Stringer, Sara Taber, Maria Teresa Terreri, Cynthia Tifft, Troy Torgerson, Laura Tosi, Annet Van Royen-Kerkhof, Theresa Wampler Muskardin, Scott W. Canna, Raphaela Goldbach-Mansky

×

The mir181ab1 cluster promotes kras-driven oncogenesis and progression in lung and pancreas
Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129012.
View: Text | PDF
Research In-Press Preview Oncology

The mir181ab1 cluster promotes kras-driven oncogenesis and progression in lung and pancreas

  • Text
  • PDF
Abstract

Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found the miRNA cluster mir181ab1 as a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically-engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype underscoring their non-redundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in two highly aggressive and difficult to treat KRAS-mutated cancers.

Authors

Karmele Valencia, Oihane Erice, Kaja Kostyrko, Simone Hausmann, Elizabeth Guruceaga, Anuradha Thathireddy, Natasha M. Flores, Leanne C. Sayles, Alex G. Lee, Rita Fragoso, Tian-Qiang Sun, Adrian Vallejo, Marta Roman, Rodrigo Entrialgo-Cadierno, Itziar Migueliz, Nerea Razquin, Puri Fortes, Fernando Lecanda, Jun Lu, Mariano Ponz-Sarvise, Chang-Zheng Chen, Pawel K. Mazur, E. Alejandro Sweet-Cordero, Silvestre Vicent

×

Genomics of lethal prostate cancer at diagnosis and castration-resistance
Genomics of primary prostate cancer differs from that of metastatic castration-resistant prostate cancer (mCRPC). We studied genomic aberrations in primary prostate cancer biopsies from patients...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI132031.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

Genomics of lethal prostate cancer at diagnosis and castration-resistance

  • Text
  • PDF
Abstract

Genomics of primary prostate cancer differs from that of metastatic castration-resistant prostate cancer (mCRPC). We studied genomic aberrations in primary prostate cancer biopsies from patients who developed mCRPC, also studying matching, same patient, diagnostic and mCRPC biopsies following treatment. We profiled 470 treatment-naïve, prostate cancer diagnostic biopsies and for 61 cases, mCRPC biopsies using targeted and low-pass whole genome sequencing (n = 52). Descriptive statistics were used to summarize mutation and copy number profile. Prevalence was compared using Fisher's exact test. Survival correlations were studied using log-rank test. TP53 (27%) and PTEN (12%) and DDR gene defects (BRCA2 7%; CDK12 5%; ATM 4%) were commonly detected. TP53, BRCA2, and CDK12 mutations were significantly commoner than described in the TCGA cohort. Patients with RB1 loss in the primary tumour had a worse prognosis. Among 61 men with matched hormone-naïve and mCRPC biopsies, differences were identified in AR, TP53, RB1, and PI3K/AKT mutational status between same-patient samples. In conclusion, the genomics of diagnostic prostatic biopsies acquired from men who develop mCRPC differs to that of the primary prostatic cancers. RB1/TP53/AR aberrations are enriched in later stages, but the prevalence of DDR defects in diagnostic samples is similar to mCRPC.

Authors

Joaquin Mateo, George Seed, Claudia Bertan, Pasquale Rescigno, David Dolling, Ines Figueiredo, Susana Miranda, Daniel Nava Rodrigues, Bora Gurel, Matthew Clarke, Mark Atkin, Rob Chandler, Carlo Messina, Semini Sumanasuriya, Diletta Bianchini, Maialen Barrero, Antonella Petremolo, Zafeiris Zafeiriou, Mariane Sousa Fontes, Raquel Perez-Lopez, Nina Tunariu, Ben A. Fulton, Robert Jones, Ursula B. McGovern, Christy Ralph, Mohini Varughese, Omi Parikh, Suneil Jain, Tony Elliott, Shahneen Sandhu, Nuria Porta, Emma Hall, Wei Yuan, Suzanne Carreira, Johann S. de Bono

×

Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1
Recent findings have shown that inhibitors targeting BET (bromodomain and extraterminal domain) proteins, such as the small molecule JQ1, are potent growth inhibitors of many cancers and hold...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126327.
View: Text | PDF
Research In-Press Preview Oncology

Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1

  • Text
  • PDF
Abstract

Recent findings have shown that inhibitors targeting BET (bromodomain and extraterminal domain) proteins, such as the small molecule JQ1, are potent growth inhibitors of many cancers and hold promise for cancer therapy. However, some reports also have revealed that JQ1 can activate additional oncogenic pathways and may affect EMT (epithelial mesenchymal transition). Therefore, it is important to address the potential unexpected effect of JQ1 treatment, such as cell invasion and metastasis. Here, we showed that in prostate cancer, JQ1 inhibited cancer cell growth but promoted invasion and metastasis in a BET protein independent manner. Multiple invasion pathways including EMT, BMP (bone morphogenetic protein) signaling, chemokine signaling and focal adhesion pathway were activated by JQ1 to promote invasion. Notably, JQ1 induced upregulation of invasion genes through inhibition of FOXA1, an invasion suppressor in prostate cancer. JQ1 directly interacted with FOXA1, inactivated FOXA1 binding to its interacting repressors, TLE3, HDAC7, and NFIC, thus blocking FOXA1 repressive function and activating the invasion genes. Our finding indicates that JQ1 has an unexpected effect of promoting invasion in prostate cancer. Thus, the ill effect of JQ1 or its derived therapeutic agents cannot be ignored during cancer treatment, especially in FOXA1 related cancers.

Authors

Leiming Wang, Mafei Xu, Chung-Yang Kao, Sophia Y. Tsai, Ming-Jer Tsai

×

HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING
The incidence of human papillomavirus (HPV)+ head and neck squamous cell carcinoma (HNSCC) has surpassed that of cervical cancer and is projected to increase rapidly until 2060. The co-evolution of...
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129497.
View: Text | PDF
Research In-Press Preview Immunology Oncology

HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING

  • Text
  • PDF
Abstract

The incidence of human papillomavirus (HPV)+ head and neck squamous cell carcinoma (HNSCC) has surpassed that of cervical cancer and is projected to increase rapidly until 2060. The co-evolution of HPV with transforming epithelial cells leads to the shutdown of host immune detection. Targeting proximal viral nucleic acid-sensing machinery is an evolutionarily conserved strategy among viruses to enable immune evasion. However, E7 from the dominant HPV subtype-16 in HNSCC shares low homology with HPV18 E7, which was shown to inhibit the STING-DNA-sensing pathway. The mechanisms by which HPV16 suppresses STING remain unknown. Recently, we characterized the role of the STING-type-I interferon (IFN-I) pathway in maintaining immunogenicity of HNSCC in mouse models. Here we extended those findings into clinical domain utilizing tissue microarrays and machine-learning-enhanced profiling of STING signatures with immune subsets. We additionally showed that HPV16 E7 employs distinct mechanisms than HPV18 E7 to antagonize the STING pathway. We identified NLRX1 as a critical intermediary partner to facilitate HPV16 E7-potentiated STING turnover. The depletion of NLRX1 resulted in significantly improved IFN-I-dependent T-cell infiltration profiles and tumor control. Overall, we discovered a unique HPV16 viral strategy to thwart host innate immune detection that can be further exploited to restore cancer immunogenicity.

Authors

Xiaobo Luo, Christopher R. Donnelly, Wang Gong, Blake R. Heath, Yuning Hao, Lorenza A. Donnelly, Toktam Moghbeli, Yee Sun Tan, Xin Lin, Emily Bellile, Benjamin A. Kansy, Thomas E. Carey, J. Chad Brenner, Lei Cheng, Peter J. Polverini, Meredith A. Morgan, Haitao Wen, Mark E. Prince, Robert L. Ferris, Yuying Xie, Simon Young, Gregory T. Wolf, Qianming Chen, Yu L. Lei

×

Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia
The protein-protein interaction between menin and Mixed Lineage Leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the...
Published December 19, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129126.
View: Text | PDF
Research In-Press Preview Hematology Therapeutics

Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia

  • Text
  • PDF
Abstract

The protein-protein interaction between menin and Mixed Lineage Leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the Nucleophosmin 1 (NPM1) gene. As a step toward clinical translation of menin-MLL1 inhibitors, we report development of MI-3454, a highly potent and orally bioavailable inhibitor of the menin-MLL1 interaction. MI-3454 profoundly inhibited proliferation and induced differentiation in acute leukemia cells and primary patient samples with MLL1 translocations or NPM1 mutations. When applied as a single agent, MI-3454 induced complete remission or regression of leukemia in mouse models of MLL1-rearranged or NPM1-mutated leukemia, including patient-derived xenograft models, through downregulation of key genes involved in leukemogenesis. We also identified MEIS1 as a potential pharmacodynamic biomarker of treatment response with MI-3454 in leukemia, and demonstrated that this compound is well tolerated and did not impair normal hematopoiesis in mice. Overall, this study demonstrates for the first time profound activity of the menin-MLL1 inhibitor as a single agent in clinically relevant PDX models of leukemia. These data provide a strong rationale for clinical translation of MI-3454 or its analogs for leukemia patients with MLL1-rearrangements or NPM1 mutations

Authors

Szymon Klossowski, Hongzhi Miao, Katarzyna Kempinska, Tao Wu, Trupta Purohit, EunGi Kim, Brian M. Linhares, Dong Chen, Gloria Jih, Eric Perkey, Huang Huang, Miao He, Bo Wen, Yi Wang, Ke Yu, Stanley Chun-Wei Lee, Gwenn Danet-Desnoyers, Winifred Trotman, Malathi Kandarpa, Anitria Cotton, Omar Abdel-Wahab, Hongwei Lei, Yali Dou, Monica Guzman, Luke Peterson, Tanja A. Gruber, Sarah M. Choi, Duxin Sun, Pingda Ren, Lian-Sheng Li, Yi Liu, Francis J. Burrows, Ivan Maillard, Tomasz Cierpicki, Jolanta Grembecka

×

Graft-versus-host disease of the CNS is mediated by TNF upregulation in microglia
Acute graft-versus-host disease (GVHD) can affect the central nervous system (CNS). The role of microglia in CNS-GVHD remains undefined. In agreement with microglia activation, we found that...
Published December 17, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130272.
View: Text | PDF
Research In-Press Preview Transplantation

Graft-versus-host disease of the CNS is mediated by TNF upregulation in microglia

  • Text
  • PDF
Abstract

Acute graft-versus-host disease (GVHD) can affect the central nervous system (CNS). The role of microglia in CNS-GVHD remains undefined. In agreement with microglia activation, we found that profound morphological changes, MHC-II- and CD80-upregulation occurred upon GVHD induction. RNA-sequencing-based analysis of purified microglial obtained from mice with CNS-GVHD revealed TNF upregulation. Selective TNF gene deletion in microglia of Cx3cr1creER:Tnffl/-mice reduced MHC-II-expression, decreased CNS T-cell infiltrates and VCAM-1+ endothelial cells. GVHD increased microglia TGF-β-activated kinase-1 (TAK1) activation and NF-κB/p38-MAPK-signaling. Selective Tak1-deletion in microglia using Cx3cr1creER:Tak1fl/fl-mice resulted in reduced TNF-production, microglial MHC-II, and improved neurocognitive-activity. Pharmacological TAK1-inhibition reduced TNF-production and MHC-II-expression by microglia, Th1 and Th17 T-cell infiltrates, VCAM-1+ endothelial cells and improved neurocognitive activity, without blocking graft-versus-leukemia effects. Consistent with these findings in mice, we observed increased activation and TNF-production of microglia in the CNS of GVHD-patients. In summary, we prove a role for microglia in CNS-GVHD, identify the TAK1/TNF/MHC-II axis as mediator of CNS-GVHD and provide a novel TAK1 inhibitor-based approach against GVHD-induced neurotoxicity.

Authors

Nimitha R. Mathew, Janaki M. Vinnakota, Petya Apostolova, Daniel Erny, Shaima’a Hamarsheh, Geoffroy Andrieux, Jung-Seok Kim, Kathrin Hanke, Tobias Goldmann, Louise Chappell-Maor, Nadia El-Khawanky, Gabriele Ihorst, Dominik Schmidt, Justus Duyster, Jürgen Finke, Thomas Blank, Melanie Boerries, Bruce R. Blazar, Steffen Jung, Marco Prinz, Robert Zeiser

×

Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic...
Published December 12, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI132185.
View: Text | PDF
Research In-Press Preview Immunology Metabolism

Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations

  • Text
  • PDF
Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and post-exertional malaise. There is little known about the metabolism of specific immune cells in ME/CFS patients. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 ME/CFS patients and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism, and plasma cytokines. We found that ME/CFS CD8+ T cells have reduced mitochondrial membrane potential compared to healthy controls. Both CD4+ and CD8+ T cells from ME/CFS patients had reduced glycolysis at rest, while CD8+ T cells also had reduced glycolysis following activation. ME/CFS patients had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from healthy control subjects. Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.

Authors

Alexandra H. Mandarano, Jessica Maya, Ludovic Giloteaux, Daniel L. Peterson, Marco Maynard, C. Gunnar Gottschalk, Maureen R. Hanson

×

Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by KATP channel overactivity
Cantu Syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM)...
Published December 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130571.
View: Text | PDF
Concise Communication In-Press Preview Cardiology Vascular biology

Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by KATP channel overactivity

  • Text
  • PDF
Abstract

Cantu Syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knock-in mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved (1) by genetic downregulation of KATP channel activity specifically in VSM, and (2) by chronic administration of the clinically-used KATP channel inhibitor, glibenclamide. These findings demonstrate (i) that VSM KATP channel GoF underlies CS cardiac enlargement, (ii) reversibility of CS-associated abnormalities and (iii) evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.

Authors

Conor McClenaghan, Yan Huang, Zihan Yan, Theresa Harter, Carmen M. Halabi, Rod Chalk, Attila Kovacs, Gijs van Haaften, Maria S. Remedi, Colin G. Nichols

×

CD8+ T cells target cerebrovasculature in children with cerebral malaria
BACKGROUND. Cerebral malaria (CM) accounts for nearly 400,000 deaths annually in African children. Current dogma suggests that CM results from infected RBC (iRBC) sequestration in the brain...
Published December 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI133474.
View: Text | PDF
Clinical Medicine In-Press Preview Infectious disease Neuroscience

CD8+ T cells target cerebrovasculature in children with cerebral malaria

  • Text
  • PDF
Abstract

BACKGROUND. Cerebral malaria (CM) accounts for nearly 400,000 deaths annually in African children. Current dogma suggests that CM results from infected RBC (iRBC) sequestration in the brain microvasculature and resulting sequelae. Therapies targeting these events have been unsuccessful; findings in experimental models suggest that CD8+ T cells drive disease pathogenesis. However, these data have largely been ignored because corroborating evidence in humans is lacking. This work fills a critical gap in our understanding of CM pathogenesis that is impeding development of therapeutics. METHODS. Using multiplex immunohistochemistry, we characterized cerebrovascular immune cells in brain sections from 34 children who died from CM or other causes. Children were grouped by clinical diagnosis (CM+ or –), iRBC sequestration (Seqhi, lo, or 0) and HIV status (HIV+ or –). RESULTS. We identified effector CD3+CD8+ T cells engaged on the cerebrovasculature in 69% of CM+ HIV– children. The number of intravascular CD3+CD8+ T cells was influenced by CM status (CM+ vs –, P = 0.004) and sequestration level (Seqhi > lo, P = 0.010). HIV co-infection significantly increased T cell numbers and shifted cells from an intravascular (P = 0.004) to perivascular (P < 0.0001) distribution. CONCLUSION. Within the studied cohort, CM is associated with cerebrovascular engagement of CD3+CD8+ T cells, which is exacerbated by HIV coinfection. Thus, CD3+CD8+ T cells are highly promising targets for CM adjunctive therapy, opening new avenues for the treatment of this deadly disease. FUNDING. This research was supported by the Intramural Research Program of the National Institutes of Health.

Authors

Brittany A. Riggle, Monica Manglani, Dragan Maric, Kory R. Johnson, Myoung-Hwa Lee, Osorio Lopes Abath Neto, Terrie E. Taylor, Karl B. Seydel, Avindra Nath, Louis H. Miller, Dorian B. McGavern, Susan K. Pierce

×

← Previous 1 2 … 18 19 20 … 38 39 Next →

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts