Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Footnotes
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Corrigendum Open Access | 10.1172/JCI189439

CRISPR/Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA

Honghe Liu, Xiao-Feng Zhao, Yu-Ning Lu, Lindsey R. Hayes, and Jiou Wang

Find articles by Liu, H. in: PubMed | Google Scholar

Find articles by Zhao, X. in: PubMed | Google Scholar

Find articles by Lu, Y. in: PubMed | Google Scholar

Find articles by Hayes, L. in: PubMed | Google Scholar

Find articles by Wang, J. in: PubMed | Google Scholar

Published December 16, 2024 - More info

Published in Volume 134, Issue 24 on December 16, 2024
J Clin Invest. 2024;134(24):e189439. https://doi.org/10.1172/JCI189439.
© 2024 Liu et al. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Published December 16, 2024 - Version history
View PDF

Related article:

CRISPR/Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA
Honghe Liu, … , Lindsey R. Hayes, Jiou Wang
Honghe Liu, … , Lindsey R. Hayes, Jiou Wang
CRISPR-Cas13d targeting of GGGGCC repeat RNA reduces toxic dipeptide proteins in patient cells and mice, suggesting a potential therapy for ALS/FTD and related diseases.
Research Article Genetics Neuroscience

CRISPR/Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA

  • Text
  • PDF
Abstract

A hexanucleotide GGGGCC repeat expansion in the non-coding region of the C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR/Cas13d, a powerful RNA-targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR/Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR/Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR/Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.

Authors

Honghe Liu, Xiao-Feng Zhao, Yu-Ning Lu, Lindsey R. Hayes, Jiou Wang

×

Original citation J Clin Invest. 2024;134(21):e179016. https://doi.org/10.1172/JCI179016

Citation for this corrigendum: J Clin Invest. 2024;134(24):e189439. https://doi.org/10.1172/JCI189439

During the preparation of this manuscript, an involved patent was mistakenly omitted from the conflict-of-interest statement. The correct statement is below. The HTML and PDF versions of the manuscript have been updated.

HL and JW are listed as inventors on a patent application (application number: 63313150) filed by Johns Hopkins University on technologies related to this manuscript.

Footnotes

See the related article at CRISPR/Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA.

Version history
  • Version 1 (December 16, 2024): Electronic publication

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Footnotes
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts