Reviews

Abstract

Aging and metabolism are inextricably linked, and many age-related changes in body composition, including increased central adiposity and sarcopenia, have underpinnings in fundamental aging processes. These age-related changes are further exacerbated by a sedentary lifestyle and can be in part prevented by maintenance of activity with aging. Here we explore the age-related changes seen in individual metabolic tissues — adipose, muscle, and liver — as well as globally in older adults. We also discuss the available evidence for therapeutic interventions such as caloric restriction, resistance training, and senolytic and senomorphic drugs to maintain healthy metabolism with aging, focusing on data from human studies.

Authors

Allyson K. Palmer, Michael D. Jensen

×

Abstract

SARS-CoV-2–infected individuals may suffer a multi–organ system disorder known as “long COVID” or post-acute sequelae of SARS-CoV-2 infection (PASC). There are no standard treatments, the pathophysiology is unknown, and incidence varies by clinical phenotype. Acute COVID-19 correlates with biomarkers of systemic inflammation, hypercoagulability, and comorbidities that are less prominent in PASC. Macrovessel thrombosis, a hallmark of acute COVID-19, is less frequent in PASC. Female sex at birth is associated with reduced risk for acute COVID-19 progression, but with increased risk of PASC. Persistent microvascular endotheliopathy associated with cryptic SARS-CoV-2 tissue reservoirs has been implicated in PASC pathology. Autoantibodies, localized inflammation, and reactivation of latent pathogens may also be involved, potentially leading to microvascular thrombosis, as documented in multiple PASC tissues. Diagnostic assays illuminating possible therapeutic targets are discussed.

Authors

Jasimuddin Ahamed, Jeffrey Laurence

×

Abstract

Cellular senescence is a hallmark of aging defined by stable exit from the cell cycle in response to cellular damage and stress. Senescent cells (SnCs) can develop a characteristic pathogenic senescence-associated secretory phenotype (SASP) that drives secondary senescence and disrupts tissue homeostasis, resulting in loss of tissue repair and regeneration. The use of transgenic mouse models in which SnCs can be genetically ablated has established a key role for SnCs in driving aging and age-related disease. Importantly, senotherapeutics have been developed to pharmacologically eliminate SnCs, termed senolytics, or suppress the SASP and other markers of senescence, termed senomorphics. Based on extensive preclinical studies as well as small clinical trials demonstrating the benefits of senotherapeutics, multiple clinical trials are under way. This Review discusses the role of SnCs in aging and age-related diseases, strategies to target SnCs, approaches to discover and develop senotherapeutics, and preclinical and clinical advances of senolytics.

Authors

Lei Zhang, Louise E. Pitcher, Matthew J. Yousefzadeh, Laura J. Niedernhofer, Paul D. Robbins, Yi Zhu

×

Abstract

Aging is characterized by the accumulation of damage to macromolecules and cell architecture that triggers a proinflammatory state in blood and solid tissues, termed inflammaging. Inflammaging has been implicated in the pathogenesis of many age-associated chronic diseases as well as loss of physical and cognitive function. The search for mechanisms that underlie inflammaging focused initially on the hallmarks of aging, but it is rapidly expanding in multiple directions. Here, we discuss the threads connecting cellular senescence and mitochondrial dysfunction to impaired mitophagy and DNA damage, which may act as a hub for inflammaging. We explore the emerging multi-omics efforts that aspire to define the complexity of inflammaging — and identify molecular signatures and novel targets for interventions aimed at counteracting excessive inflammation and its deleterious consequences while preserving the physiological immune response. Finally, we review the emerging evidence that inflammation is involved in brain aging and neurodegenerative diseases. Our goal is to broaden the research agenda for inflammaging with an eye on new therapeutic opportunities.

Authors

Keenan A. Walker, Nathan Basisty, David M. Wilson III, Luigi Ferrucci

×

Abstract

Mitochondrial dysfunction and cell senescence are hallmarks of aging and are closely interconnected. Mitochondrial dysfunction, operationally defined as a decreased respiratory capacity per mitochondrion together with a decreased mitochondrial membrane potential, typically accompanied by increased production of oxygen free radicals, is a cause and a consequence of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. Here, we summarize pathways that cause mitochondrial dysfunction in senescence and aging and discuss the major consequences of mitochondrial dysfunction and how these consequences contribute to senescence and aging. We also highlight the potential of senescence-associated mitochondrial dysfunction as an antiaging and antisenescence intervention target, proposing the combination of multiple interventions converging onto mitochondrial dysfunction as novel, potent senolytics.

Authors

Satomi Miwa, Sonu Kashyap, Eduardo Chini, Thomas von Zglinicki

×

Abstract

Recent improvements in cancer treatment have increased the lifespan of pediatric and adult cancer survivors. However, cancer treatments accelerate aging in survivors, which manifests clinically as the premature onset of chronic diseases, such as endocrinopathies, osteoporosis, cardiac dysfunction, subsequent cancers, and geriatric syndromes of frailty, among others. Therefore, cancer treatment–induced early aging accounts for significant morbidity, mortality, and health expenditures among cancer survivors. One major mechanism driving this accelerated aging is cellular senescence; cancer treatments induce cellular senescence in tumor cells and in normal, nontumor tissue, thereby helping mediate the onset of several chronic diseases. Studies on clinical monitoring and therapeutic targeting of cellular senescence have made considerable progress in recent years. Large-scale clinical trials are currently evaluating senotherapeutic drugs, which inhibit or eliminate senescent cells to ameliorate cancer treatment–related aging. In this article, we survey the recent literature on phenotypes and mechanisms of aging in cancer survivors and provide an up-to-date review of the major preclinical and translational evidence on cellular senescence as a mechanism of accelerated aging in cancer survivors, as well as insight into the potential of senotherapeutic drugs. However, only with time will the clinical effect of senotherapies on cancer survivors be visible.

Authors

Shameel Shafqat, Evelyn Arana Chicas, Areez Shafqat, Shahrukh K. Hashmi

×

Abstract

Cancer cells shed naked DNA molecules into the circulation. This circulating tumor DNA (ctDNA) has become the predominant analyte for liquid biopsies to understand the mutational landscape of cancer. Coupled with next-generation sequencing, ctDNA can serve as an alternative substrate to tumor tissues for mutation detection and companion diagnostic purposes. In fact, recent advances in precision medicine have rapidly enabled the use of ctDNA to guide treatment decisions for predicting response and resistance to targeted therapies and immunotherapies. An advantage of using ctDNA over conventional tissue biopsies is the relatively noninvasive approach of obtaining peripheral blood, allowing for simple repeated and serial assessments. Most current clinical practice using ctDNA has endeavored to identify druggable and resistance mutations for guiding systemic therapy decisions, albeit mostly in metastatic disease. However, newer research is evaluating potential for ctDNA as a marker of minimal residual disease in the curative setting and as a useful screening tool to detect cancer in the general population. Here we review the history of ctDNA and liquid biopsies, technologies to detect ctDNA, and some of the current challenges and limitations in using ctDNA as a marker of minimal residual disease and as a general blood-based cancer screening tool. We also discuss the need to develop rigorous clinical studies to prove the clinical utility of ctDNA for future applications in oncology.

Authors

Donna K. Dang, Ben H. Park

×

Abstract

Immunity is governed by fundamental genetic processes. These processes shape the nature of immune cells and set the rules that dictate the myriad complex cellular interactions that power immune systems. Everything from the generation of T cell receptors and antibodies, control of epitope presentation, and recognition of pathogens by the immunoediting of cancer cells is, in large part, made possible by core genetic mechanisms and the cellular machinery that they encode. In the last decade, next-generation sequencing has been used to dissect the complexities of cancer immunity with potent effect. Sequencing of exomes and genomes has begun to reveal how the immune system recognizes “foreign” entities and distinguishes self from non-self, especially in the setting of cancer. High-throughput analyses of transcriptomes have revealed deep insights into how the tumor microenvironment affects immunotherapy efficacy. In this Review, we discuss how high-throughput sequencing has added to our understanding of how immune systems interact with cancer cells and how cancer immunotherapies work.

Authors

Ahmed Halima, Winston Vuong, Timothy A. Chan

×

Abstract

The discovery of microRNAs and their role in diseases was a breakthrough that inspired research into microRNAs as drug targets. Cardiovascular diseases are an area in which limitations of conventional pharmacotherapy are highly apparent and where microRNA-based drugs have appreciably progressed into preclinical and clinical testing. In this Review, we summarize the current state of microRNAs as therapeutic targets in the cardiovascular system. We report recent advances in the identification and characterization of microRNAs, their manipulation and clinical translation, and discuss challenges and perspectives toward clinical application.

Authors

Bernhard Laggerbauer, Stefan Engelhardt

×

Abstract

Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis that match O2 supply and demand for each of the 50 trillion cells in the adult human body. Cancer cells co-opt this homeostatic system to drive cancer progression. HIFs activate the transcription of thousands of genes that mediate angiogenesis, cancer stem cell specification, cell motility, epithelial-mesenchymal transition, extracellular matrix remodeling, glucose and lipid metabolism, immune evasion, invasion, and metastasis. In this Review, the mechanisms and consequences of HIF activation in cancer cells are presented. The current status and future prospects of small-molecule HIF inhibitors for use as cancer therapeutics are discussed.

Authors

Elizabeth E. Wicks, Gregg L. Semenza

×

No posts were found with this tag.