Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published October 16, 2023 Previous issue | Next issue

  • Volume 133, Issue 20
Go to section:
  • Review Series
  • Commentaries
  • Research Articles
  • Corrigendum

On the cover: Patient-derived enteroids for microvillus inclusion disease

Kalashyan et al. develop intestinal enteroids derived from patients with the severe infantile intestinal disorder microvillus inclusion disease, for disease modeling and therapy development. The cover image shows a false-color electron micrograph of an enteroid.

Review Series
Alveolar epithelial regeneration in the aging lung
SeungHye Han, … , G.R. Scott Budinger, Cara J. Gottardi
SeungHye Han, … , G.R. Scott Budinger, Cara J. Gottardi
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e170504. https://doi.org/10.1172/JCI170504.
View: Text | PDF

Alveolar epithelial regeneration in the aging lung

  • Text
  • PDF
Abstract

Advancing age is the most important risk factor for the development of and mortality from acute and chronic lung diseases, including pneumonia, chronic obstructive pulmonary disease, and pulmonary fibrosis. This risk was manifest during the COVID-19 pandemic, when elderly people were disproportionately affected and died from SARS-CoV-2 pneumonia. However, the recent pandemic also provided lessons on lung resilience. An overwhelming majority of patients with SARS-CoV-2 pneumonia, even those with severe disease, recovered with near-complete restoration of lung architecture and function. These observations are inconsistent with historic views of the lung as a terminally differentiated organ incapable of regeneration. Here, we review emerging hypotheses that explain how the lung repairs itself after injury and why these mechanisms of lung repair fail in some individuals, particularly the elderly.

Authors

SeungHye Han, G.R. Scott Budinger, Cara J. Gottardi

×
Commentaries
Adenine crosses the biomarker bridge: from ’omics to treatment in diabetic kidney disease
Yelena Drexler, Alessia Fornoni
Yelena Drexler, Alessia Fornoni
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e174015. https://doi.org/10.1172/JCI174015.
View: Text | PDF

Adenine crosses the biomarker bridge: from ’omics to treatment in diabetic kidney disease

  • Text
  • PDF
Abstract

Enabling the early detection and prevention of diabetic kidney damage has potential to substantially reduce the global burden of kidney failure. There is a critical need for identification of mechanistic biomarkers that can predict progression and serve as therapeutic targets. In this issue of the JCI, Sharma and colleagues used an integrated multiomics approach to identify the metabolite adenine as a noninvasive biomarker of progression in early diabetic kidney disease (DKD). The highest tertile of urine adenine/creatinine ratio (UAdCR) was associated with higher risk for end-stage kidney disease and mortality across independent cohorts, including participants with early DKD without macroalbuminuria. Spatial metabolomics, single-cell transcriptomics, and experimental studies localized adenine to regions of tubular pathology and implicated the mTOR pathway in adenine-mediated tissue fibrosis. Inhibition of endogenous adenine production was protective in a diabetic model. These findings exemplify the potential for multiomics to uncover mechanistic biomarkers and targeted therapies in DKD.

Authors

Yelena Drexler, Alessia Fornoni

×

Chemical carcinogens: implications for cancer treatment
Shaofeng Liu, … , Mary Saunders, Tak W. Mak
Shaofeng Liu, … , Mary Saunders, Tak W. Mak
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e174319. https://doi.org/10.1172/JCI174319.
View: Text | PDF

Chemical carcinogens: implications for cancer treatment

  • Text
  • PDF
Abstract

Carcinogen exposure has been associated with enhanced cancer immunogenicity that is often attributed to neoantigen generation. However, the broader, neoantigen-independent impact of carcinogens on immune responses to cancer cells remains underexplored. In this issue of the JCI, Huang et al. uncover a mechanism wherein carcinogen-treated cancer cells exhibit an inability to establish an immunosuppressive tumor microenvironment (TME) due to reduced M-CSF expression. Intriguingly, the so-called carcinogen-induced tumor-associated macrophages (TAMs) within this TME exhibited anti-tumor properties instead of the conventional immunosuppressive phenotype. This phenomenon extended to human lung cancers, as evidenced by TAM reprogramming in smokers versus nonsmokers. This study substantially advances our understanding of carcinogen-mediated effects on cancer immunogenicity, potentially redirecting approaches to cancer immunotherapy.

Authors

Shaofeng Liu, Mary Saunders, Tak W. Mak

×

Puzzle resolved: CFTR mediates chloride homeostasis by segregating absorption and secretion to different cell types
Burkhard Tümmler
Burkhard Tümmler
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e174667. https://doi.org/10.1172/JCI174667.
View: Text | PDF

Puzzle resolved: CFTR mediates chloride homeostasis by segregating absorption and secretion to different cell types

  • Text
  • PDF
Abstract

In the lungs, the cystic fibrosis transmembrane conductance regulator (CFTR) regulates ion transport in surface-airway epithelia and submucosal glands, thus determining airway surface liquid (ASL) volume and mucus hydration. In this issue of the JCI, Lei Lei and colleagues report that the CFTR-rich and barttin/Cl– channel–expressing ionocytes mediate chloride absorption across airway epithelia, whereas the more abundant basal cells and secretory cells mediate chloride secretion. Thus, CFTR-mediated secretion and absorption of chloride ions in the lung are segregated by cell type, which has implications for future molecular therapies for cystic fibrosis lung disease.

Authors

Burkhard Tümmler

×
Research Articles
A systematic analysis of the human immune response to Plasmodium vivax
Florian A. Bach, … , Simon J. Draper, Philip J. Spence
Florian A. Bach, … , Simon J. Draper, Philip J. Spence
Published August 24, 2023
Citation Information: J Clin Invest. 2023;133(20):e152463. https://doi.org/10.1172/JCI152463.
View: Text | PDF Clinical Research and Public Health

A systematic analysis of the human immune response to Plasmodium vivax

  • Text
  • PDF
Abstract

BACKGROUND The biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODS Participants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTS P. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSION P. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATION ClinicalTrials.gov NCT03797989.FUNDING The European Union’s Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.

Authors

Florian A. Bach, Diana Muñoz Sandoval, Michalina Mazurczyk, Yrene Themistocleous, Thomas A. Rawlinson, Adam C. Harding, Alison Kemp, Sarah E. Silk, Jordan R. Barrett, Nick J. Edwards, Alasdair Ivens, Julian C. Rayner, Angela M. Minassian, Giorgio Napolitani, Simon J. Draper, Philip J. Spence

×

Repression of rRNA gene transcription by endothelial SPEN deficiency normalizes tumor vasculature via nucleolar stress
Zi-Yan Yang, … , Tian Xiao, Hua Han
Zi-Yan Yang, … , Tian Xiao, Hua Han
Published August 22, 2023
Citation Information: J Clin Invest. 2023;133(20):e159860. https://doi.org/10.1172/JCI159860.
View: Text | PDF

Repression of rRNA gene transcription by endothelial SPEN deficiency normalizes tumor vasculature via nucleolar stress

  • Text
  • PDF
Abstract

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.

Authors

Zi-Yan Yang, Xian-Chun Yan, Jia-Yu-Lin Zhang, Liang Liang, Chun-Chen Gao, Pei-Ran Zhang, Yuan Liu, Jia-Xing Sun, Bai Ruan, Juan-Li Duan, Ruo-Nan Wang, Xing-Xing Feng, Bo Che, Tian Xiao, Hua Han

×

Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and antitumor immunity through eNOS/Src
Elin Sjöberg, … , Anna Dimberg, Lena Claesson-Welsh
Elin Sjöberg, … , Anna Dimberg, Lena Claesson-Welsh
Published August 31, 2023
Citation Information: J Clin Invest. 2023;133(20):e161366. https://doi.org/10.1172/JCI161366.
View: Text | PDF

Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and antitumor immunity through eNOS/Src

  • Text
  • PDF
Abstract

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C–dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.

Authors

Elin Sjöberg, Marit Melssen, Mark Richards, Yindi Ding, Catarina Chanoca, Dongying Chen, Emmanuel Nwadozi, Sagnik Pal, Dominic T. Love, Takeshi Ninchoji, Masabumi Shibuya, Michael Simons, Anna Dimberg, Lena Claesson-Welsh

×

Posttranslational ISGylation of NLRP3 by HERC enzymes facilitates inflammasome activation in models of inflammation
Ying Qin, … , Chunyuan Zhao, Wei Zhao
Ying Qin, … , Chunyuan Zhao, Wei Zhao
Published August 31, 2023
Citation Information: J Clin Invest. 2023;133(20):e161935. https://doi.org/10.1172/JCI161935.
View: Text | PDF

Posttranslational ISGylation of NLRP3 by HERC enzymes facilitates inflammasome activation in models of inflammation

  • Text
  • PDF
Abstract

The NOD-, LRR-, and pyrin domain–containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system that initiates inflammatory responses. Posttranslational modifications (PTMs) of NLRP3, including ubiquitination and phosphorylation, control inflammasome activation and determine the intensity of inflammation. However, the role of other PTMs in controlling NLRP3 inflammasome activation remains unclear. This study found that TLR priming induced NLRP3 ISGylation (a type of PTM in which ISG15 covalently binds to the target protein) to stabilize the NLRP3 protein. Viral infection, represented by SARS-COV-2 infection, and type I IFNs induced expression of ISG15 and the predominant E3 ISGylation ligases HECT domain- and RCC1-like domain–containing proteins (HERCs; HERC5 in humans and HERC6 in mice). HERCs promoted NLRP3 ISGylation and inhibited K48-linked ubiquitination and proteasomal degradation, resulting in the enhancement of NLRP3 inflammasome activation. Concordantly, Herc6 deficiency ameliorated NLRP3-dependent inflammation as well as hyperinflammation caused by viral infection. The results illustrate the mechanism by which type I IFNs responses control inflammasome activation and viral infection–induced aberrant NLRP3 activation. This work identifies ISGylation as a PTM of NLRP3, revealing a priming target that modulates NLRP3-dependent immunopathology.

Authors

Ying Qin, Xintong Meng, Mengge Wang, Wenbo Liang, Rong Xu, Jingchunyu Chen, Hui Song, Yue Fu, Jingxin Li, Chengjiang Gao, Mutian Jia, Chunyuan Zhao, Wei Zhao

×

Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis
Efren A. Reyes, … , Zev J. Gartner, Ophir D. Klein
Efren A. Reyes, … , Zev J. Gartner, Ophir D. Klein
Published August 29, 2023
Citation Information: J Clin Invest. 2023;133(20):e163591. https://doi.org/10.1172/JCI163591.
View: Text | PDF

Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis

  • Text
  • PDF
Abstract

The gastrointestinal tract relies on the production, maturation, and transit of mucin to protect against pathogens and to lubricate the epithelial lining. Although the molecular and cellular mechanisms that regulate mucin production and movement are beginning to be understood, the upstream epithelial signals that contribute to mucin regulation remain unclear. Here, we report that the inflammatory cytokine tumor necrosis factor (TNF), generated by the epithelium, contributes to mucin homeostasis by regulating both cell differentiation and cystic fibrosis transmembrane conductance regulator (CFTR) activity. We used genetic mouse models and noninflamed samples from patients with inflammatory bowel disease (IBD) undergoing anti-TNF therapy to assess the effect of in vivo perturbation of TNF. We found that inhibition of epithelial TNF promotes the differentiation of secretory progenitor cells into mucus-producing goblet cells. Furthermore, TNF treatment and CFTR inhibition in intestinal organoids demonstrated that TNF promotes ion transport and luminal flow via CFTR. The absence of TNF led to slower gut transit times, which we propose results from increased mucus accumulation coupled with decreased luminal fluid pumping. These findings point to a TNF/CFTR signaling axis in the adult intestine and identify epithelial cell–derived TNF as an upstream regulator of mucin homeostasis.

Authors

Efren A. Reyes, David Castillo-Azofeifa, Jérémie Rispal, Tomas Wald, Rachel K. Zwick, Brisa Palikuqi, Angela Mujukian, Shervin Rabizadeh, Alexander R. Gupta, James M. Gardner, Dario Boffelli, Zev J. Gartner, Ophir D. Klein

×

Carcinogen exposure enhances cancer immunogenicity by blocking the development of an immunosuppressive tumor microenvironment
Mei Huang, … , Marjan Azin, Shadmehr Demehri
Mei Huang, … , Marjan Azin, Shadmehr Demehri
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e166494. https://doi.org/10.1172/JCI166494.
View: Text | PDF

Carcinogen exposure enhances cancer immunogenicity by blocking the development of an immunosuppressive tumor microenvironment

  • Text
  • PDF
Abstract

Carcinogen exposure is strongly associated with enhanced cancer immunogenicity. Increased tumor mutational burden and resulting neoantigen generation have been proposed to link carcinogen exposure and cancer immunogenicity. However, the neoantigen-independent immunological impact of carcinogen exposure on cancer is unknown. Here, we demonstrate that chemical carcinogen-exposed cancer cells fail to establish an immunosuppressive tumor microenvironment (TME), resulting in their T cell–mediated rejection in vivo. A chemical carcinogen-treated breast cancer cell clone that lacked any additional coding region mutations (i.e., neoantigen) was rejected in mice in a T cell–dependent manner. Strikingly, the coinjection of carcinogen- and control-treated cancer cells prevented this rejection, suggesting that the loss of immunosuppressive TME was the dominant cause of rejection. Reduced M-CSF expression by carcinogen-treated cancer cells significantly suppressed tumor-associated macrophages (TAMs) and resulted in the loss of an immunosuppressive TME. Single-cell analysis of human lung cancers revealed a significant reduction in the immunosuppressive TAMs in former smokers compared with individuals who had never smoked. These findings demonstrate that carcinogen exposure impairs the development of an immunosuppressive TME and indicate a novel link between carcinogens and cancer immunogenicity.

Authors

Mei Huang, Yun Xia, Kaiwen Li, Feng Shao, Zhaoyi Feng, Tiancheng Li, Marjan Azin, Shadmehr Demehri

×

Zfp335 establishes eTreg lineage and neonatal immune tolerance by targeting Hadha-mediated fatty acid oxidation
Xin Wang, … , WanJun Chen, Baojun Zhang
Xin Wang, … , WanJun Chen, Baojun Zhang
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e166628. https://doi.org/10.1172/JCI166628.
View: Text | PDF

Zfp335 establishes eTreg lineage and neonatal immune tolerance by targeting Hadha-mediated fatty acid oxidation

  • Text
  • PDF
Abstract

Regulatory T cells (Tregs) are instrumental in maintaining immune tolerance and preventing destructive autoimmunity, but how heterogeneous Treg populations are established remains largely unknown. Here, we show that Zfp335 deletion in Tregs failed to differentiate into effector Tregs (eTregs) and lose Treg-suppressive function and that KO mice exhibited early-onset lethal autoimmune inflammation with unrestricted activation of conventional T cells. Single-cell RNA-Seq analyses revealed that Zfp335-deficient Tregs lacked a eTreg population and showed dramatic accumulation of a dysfunctional Treg subset. Mechanistically, Zfp335-deficient Tregs displayed reduced oxidative phosphorylation and dysfunctional mitochondrial activity. Further studies revealed that Zfp335 controlled eTreg differentiation by regulating fatty acid oxidation (FAO) through direct targeting of the FAO enzyme Hadha. Importantly, we demonstrate a positive correlation between ZNF335 and HADHA expression in human eTregs. Our findings reveal that Zfp335 controls FAO-driven eTreg differentiation to establish immune tolerance.

Authors

Xin Wang, Lina Sun, Biao Yang, Wenhua Li, Cangang Zhang, Xiaofeng Yang, Yae Sun, Xiaonan Shen, Yang Gao, Bomiao Ju, Yafeng Gao, Dan Liu, Jiapeng Song, Xiaoxuan Jia, Yanhong Su, Anjun Jiao, Haiyan Liu, Lianjun Zhang, Lan He, Lei Lei, WanJun Chen, Baojun Zhang

×

Peroxisome disruption alters lipid metabolism and potentiates antitumor response with MAPK-targeted therapy in melanoma
Fan Huang, … , Wilson H. Miller Jr., Sonia V. del Rincón
Fan Huang, … , Wilson H. Miller Jr., Sonia V. del Rincón
Published August 24, 2023
Citation Information: J Clin Invest. 2023;133(20):e166644. https://doi.org/10.1172/JCI166644.
View: Text | PDF

Peroxisome disruption alters lipid metabolism and potentiates antitumor response with MAPK-targeted therapy in melanoma

  • Text
  • PDF
Abstract

Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK pathway inhibitors (MAPKis) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the proapoptotic effects of MAPKis via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism. Cotargeting PEX3 and UGCG selectively eliminated a subset of metabolically active, drug-tolerant CD36+ melanoma persister cells, thereby sensitizing melanoma to MAPKis and delaying resistance. Increased levels of peroxisomal genes and UGCG were found in patient-derived MAPKi-relapsed melanomas, and simultaneously inhibiting PEX3 and UGCG restored MAPKi sensitivity in multiple models of therapy resistance. Finally, combination therapy consisting of a newly identified inhibitor of the PEX3-PEX19 interaction, a UGCG inhibitor, and MAPKis demonstrated potent antitumor activity in preclinical melanoma models, thus representing a promising approach for melanoma treatment.

Authors

Fan Huang, Feiyang Cai, Michael S. Dahabieh, Kshemaka Gunawardena, Ali Talebi, Jonas Dehairs, Farah El-Turk, Jae Yeon Park, Mengqi Li, Christophe Goncalves, Natascha Gagnon, Jie Su, Judith H. LaPierre, Perrine Gaub, Jean-Sébastien Joyal, John J. Mitchell, Johannes V. Swinnen, Wilson H. Miller Jr., Sonia V. del Rincón

×

Angiopoietin-2 blockade suppresses growth of liver metastases from pancreatic neuroendocrine tumors by promoting T cell recruitment
Eunhyeong Lee, … , Gavin Thurston, Minah Kim
Eunhyeong Lee, … , Gavin Thurston, Minah Kim
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e167994. https://doi.org/10.1172/JCI167994.
View: Text | PDF

Angiopoietin-2 blockade suppresses growth of liver metastases from pancreatic neuroendocrine tumors by promoting T cell recruitment

  • Text
  • PDF
Abstract

Improving the management of metastasis in pancreatic neuroendocrine tumors (PanNETs) is critical, as nearly half of patients with PanNETs present with liver metastases, and this accounts for the majority of patient mortality. We identified angiopoietin-2 (ANGPT2) as one of the most upregulated angiogenic factors in RNA-Seq data from human PanNET liver metastases and found that higher ANGPT2 expression correlated with poor survival rates. Immunohistochemical staining revealed that ANGPT2 was localized to the endothelial cells of blood vessels in PanNET liver metastases. We observed an association between the upregulation of endothelial ANGPT2 and liver metastatic progression in both patients and transgenic mouse models of PanNETs. In human and mouse PanNET liver metastases, ANGPT2 upregulation coincided with poor T cell infiltration, indicative of an immunosuppressive tumor microenvironment. Notably, both pharmacologic inhibition and genetic deletion of ANGPT2 in PanNET mouse models slowed the growth of PanNET liver metastases. Furthermore, pharmacologic inhibition of ANGPT2 promoted T cell infiltration and activation in liver metastases, improving the survival of mice with metastatic PanNETs. These changes were accompanied by reduced plasma leakage and improved vascular integrity in metastases. Together, these findings suggest that ANGPT2 blockade may be an effective strategy for promoting T cell infiltration and immunostimulatory reprogramming to reduce the growth of liver metastases in PanNETs.

Authors

Eunhyeong Lee, Sophie O’Keefe, Alessandra Leong, Ha-Ram Park, Janani Varadarajan, Subrata Chowdhury, Shannon Hiner, Sungsoo Kim, Anahita Shiva, Richard A. Friedman, Helen Remotti, Tito Fojo, Hee Won Yang, Gavin Thurston, Minah Kim

×

SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling
Dongxue Su, … , Lanfen Chen, Dawang Zhou
Dongxue Su, … , Lanfen Chen, Dawang Zhou
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e168888. https://doi.org/10.1172/JCI168888.
View: Text | PDF

SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling

  • Text
  • PDF
Abstract

The loss of contact inhibition is a key step during carcinogenesis. The Hippo–Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density–dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane–stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity–regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20–like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.

Authors

Dongxue Su, Yuxi Li, Weiji Zhang, Huan Gao, Yao Cheng, Yongqiang Hou, Junhong Li, Yi Ye, Zhangjian Lai, Zhe Li, Haitao Huang, Jiaxin Li, Jinhuan Li, Mengyu Cheng, Cheng Nian, Na Wu, Zhien Zhou, Yunzhi Xing, Yu Zhao, He Liu, Jiayu Tang, Qinghua Chen, Lixin Hong, Wengang Li, Zhihai Peng, Bin Zhao, Randy L. Johnson, Pingguo Liu, Wanjin Hong, Lanfen Chen, Dawang Zhou

×

Patient-derived enteroids provide a platform for the development of therapeutic approaches in microvillus inclusion disease
Meri Kalashyan, … , Izumi Kaji, Jay R. Thiagarajah
Meri Kalashyan, … , Izumi Kaji, Jay R. Thiagarajah
Published August 29, 2023
Citation Information: J Clin Invest. 2023;133(20):e169234. https://doi.org/10.1172/JCI169234.
View: Text | PDF

Patient-derived enteroids provide a platform for the development of therapeutic approaches in microvillus inclusion disease

  • Text
  • PDF
Abstract

Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient–derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel–blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.

Authors

Meri Kalashyan, Krishnan Raghunathan, Haley Oller, Marie-Theres Bayer, Lissette Jimenez, Joseph T. Roland, Elena Kolobova, Susan J. Hagen, Jeffrey D. Goldsmith, Mitchell D. Shub, James R. Goldenring, Izumi Kaji, Jay R. Thiagarajah

×

Antioxidants stimulate BACH1-dependent tumor angiogenesis
Ting Wang, … , Eckardt Treuter, Martin O. Bergo
Ting Wang, … , Eckardt Treuter, Martin O. Bergo
Published August 31, 2023
Citation Information: J Clin Invest. 2023;133(20):e169671. https://doi.org/10.1172/JCI169671.
View: Text | PDF

Antioxidants stimulate BACH1-dependent tumor angiogenesis

  • Text
  • PDF
Abstract

Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs), but growing evidence indicates that transcriptional programs beyond HIFs control tumor angiogenesis. Here, we show that the redox-sensitive transcription factor BTB and CNC homology 1 (BACH1) controls the transcription of a broad range of angiogenesis genes. BACH1 is stabilized by lowering ROS levels; consequently, angiogenesis gene expression in lung cancer cells, tumor organoids, and xenograft tumors increased substantially following administration of vitamins C and E and N-acetylcysteine in a BACH1-dependent fashion under normoxia. Moreover, angiogenesis gene expression increased in endogenous BACH1–overexpressing cells and decreased in BACH1-knockout cells in the absence of antioxidants. BACH1 levels also increased upon hypoxia and following administration of prolyl hydroxylase inhibitors in both HIF1A-knockout and WT cells. BACH1 was found to be a transcriptional target of HIF1α, but BACH1’s ability to stimulate angiogenesis gene expression was HIF1α independent. Antioxidants increased tumor vascularity in vivo in a BACH1-dependent fashion, and overexpressing BACH1 rendered tumors sensitive to antiangiogenesis therapy. BACH1 expression in tumor sections from patients with lung cancer correlated with angiogenesis gene and protein expression. We conclude that BACH1 is an oxygen- and redox-sensitive angiogenesis transcription factor.

Authors

Ting Wang, Yongqiang Dong, Zhiqiang Huang, Guoqing Zhang, Ying Zhao, Haidong Yao, Jianjiang Hu, Elin Tüksammel, Huan Cai, Ning Liang, Xiufeng Xu, Xijie Yang, Sarah Schmidt, Xi Qiao, Susanne Schlisio, Staffan Strömblad, Hong Qian, Changtao Jiang, Eckardt Treuter, Martin O. Bergo

×

The CTBP2-PCIF1 complex regulates m6Am modification of mRNA in head and neck squamous cell carcinoma
Kang Li, … , Qianming Chen, Demeng Chen
Kang Li, … , Qianming Chen, Demeng Chen
Published August 29, 2023
Citation Information: J Clin Invest. 2023;133(20):e170173. https://doi.org/10.1172/JCI170173.
View: Text | PDF

The CTBP2-PCIF1 complex regulates m6Am modification of mRNA in head and neck squamous cell carcinoma

  • Text
  • PDF
Abstract

PCIF1 can mediate the methylation of N6,2′-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remain elusive. Here, we demonstrated that PCIF1-mediated cap mRNA m6Am modification promoted head and neck squamous cell carcinoma progression both in vitro and in vivo. CTBP2 was identified as a cofactor of PCIF1 to catalyze m6Am deposition on mRNA. CLIP-Seq data demonstrated that CTBP2 bound to similar mRNAs as compared with PCIF1. We then used the m6Am-Seq method to profile the mRNA m6Am site at single-base resolution and found that mRNA of TET2, a well-known tumor suppressor, was a major target substrate of the PCIF1-CTBP2 complex. Mechanistically, knockout of CTBP2 reduced PCIF1 occupancy on TET2 mRNA, and the PCIF1-CTBP2 complex negatively regulated the translation of TET2 mRNA. Collectively, our study demonstrates the oncogenic function of the epitranscriptome regulator PCIF1-CTBP2 complex, highlighting the importance of the m6Am modification in tumor progression.

Authors

Kang Li, Jie Chen, Caihua Zhang, Maosheng Cheng, Shuang Chen, Wei Song, Chunlong Yang, Rongsong Ling, Zhi Chen, Xiaochen Wang, Gan Xiong, Jieyi Ma, Yan Zhu, Quan Yuan, Qi Liu, Liang Peng, Qianming Chen, Demeng Chen

×

Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients
Kumar Sharma, … , Ravi Iyengar, for the Kidney Precision Medicine Project
Kumar Sharma, … , Ravi Iyengar, for the Kidney Precision Medicine Project
Published August 24, 2023
Citation Information: J Clin Invest. 2023;133(20):e170341. https://doi.org/10.1172/JCI170341.
View: Text | PDF

Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients

  • Text
  • PDF
Abstract

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.

Authors

Kumar Sharma, Guanshi Zhang, Jens Hansen, Petter Bjornstad, Hak Joo Lee, Rajasree Menon, Leila Hejazi, Jian-Jun Liu, Anthony Franzone, Helen C. Looker, Byeong Yeob Choi, Roman Fernandez, Manjeri A. Venkatachalam, Luxcia Kugathasan, Vikas S. Sridhar, Loki Natarajan, Jing Zhang, Varun S. Sharma, Brian Kwan, Sushrut S. Waikar, Jonathan Himmelfarb, Katherine R. Tuttle, Bryan Kestenbaum, Tobias Fuhrer, Harold I. Feldman, Ian H. de Boer, Fabio C. Tucci, John Sedor, Hiddo Lambers Heerspink, Jennifer Schaub, Edgar A. Otto, Jeffrey B. Hodgin, Matthias Kretzler, Christopher R. Anderton, Theodore Alexandrov, David Cherney, Su Chi Lim, Robert G. Nelson, Jonathan Gelfond, Ravi Iyengar, for the Kidney Precision Medicine Project

×

Adverse outcomes in SARS-CoV-2–infected pregnant mice are gestational age–dependent and resolve with antiviral treatment
Patrick S. Creisher, … , Andrew Pekosz, Sabra L. Klein
Patrick S. Creisher, … , Andrew Pekosz, Sabra L. Klein
Published August 15, 2023
Citation Information: J Clin Invest. 2023;133(20):e170687. https://doi.org/10.1172/JCI170687.
View: Text | PDF

Adverse outcomes in SARS-CoV-2–infected pregnant mice are gestational age–dependent and resolve with antiviral treatment

  • Text
  • PDF
Abstract

SARS-CoV-2 infection during pregnancy is associated with severe COVID-19 and adverse fetal outcomes, but the underlying mechanisms remain poorly understood. Moreover, clinical studies assessing therapeutics against SARS-CoV-2 in pregnancy are limited. To address these gaps, we developed a mouse model of SARS-CoV-2 infection during pregnancy. Outbred CD1 mice were infected at E6, E10, or E16 with a mouse-adapted SARS-CoV-2 (maSCV2) virus. Outcomes were gestational age–dependent, with greater morbidity, reduced antiviral immunity, greater viral titers, and impaired fetal growth and neurodevelopment occurring with infection at E16 (third trimester equivalent) than with infection at either E6 (first trimester equivalent) or E10 (second trimester equivalent). To assess the efficacy of ritonavir-boosted nirmatrelvir, which is recommended for individuals who are pregnant with COVID-19, we treated E16-infected dams with mouse-equivalent doses of nirmatrelvir and ritonavir. Treatment reduced pulmonary viral titers, decreased maternal morbidity, and prevented offspring growth restriction and neurodevelopmental impairments. Our results highlight that severe COVID-19 during pregnancy and fetal growth restriction is associated with heightened virus replication in maternal lungs. Ritonavir-boosted nirmatrelvir mitigated maternal morbidity along with fetal growth and neurodevelopment restriction after SARS-CoV-2 infection. These findings prompt the need for further consideration of pregnancy in preclinical and clinical studies of therapeutics against viral infections.

Authors

Patrick S. Creisher, Jamie L. Perry, Weizhi Zhong, Jun Lei, Kathleen R. Mulka, W. Hurley Ryan III, Ruifeng Zhou, Elgin H. Akin, Anguo Liu, Wayne Mitzner, Irina Burd, Andrew Pekosz, Sabra L. Klein

×

CFTR-rich ionocytes mediate chloride absorption across airway epithelia
Lei Lei, … , Paul B. McCray Jr., Ian M. Thornell
Lei Lei, … , Paul B. McCray Jr., Ian M. Thornell
Published August 15, 2023
Citation Information: J Clin Invest. 2023;133(20):e171268. https://doi.org/10.1172/JCI171268.
View: Text | PDF

CFTR-rich ionocytes mediate chloride absorption across airway epithelia

  • Text
  • PDF
Abstract

The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl– into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl– channels in their basolateral membrane. Disrupting barttin/Cl– channel function impaired liquid absorption, and overexpressing barttin/Cl– channels increased absorption. Together, apical CFTR and basolateral barttin/Cl– channels provide an electrically conductive pathway for Cl– flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.

Authors

Lei Lei, Soumba Traore, Guillermo S. Romano Ibarra, Philip H. Karp, Tayyab Rehman, David K. Meyerholz, Joseph Zabner, David A. Stoltz, Patrick L. Sinn, Michael J. Welsh, Paul B. McCray Jr., Ian M. Thornell

×

X-linked RBBP7 mutation causes maturation arrest and testicular tumors
Jingping Li, … , Fan Jin, Yongmei Xi
Jingping Li, … , Fan Jin, Yongmei Xi
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e171541. https://doi.org/10.1172/JCI171541.
View: Text | PDF

X-linked RBBP7 mutation causes maturation arrest and testicular tumors

  • Text
  • PDF
Abstract

Maturation arrest (MA) is a subtype of non-obstructive azoospermia, and male infertility is a known risk factor for testicular tumors. However, the genetic basis for many affected individuals remains unknown. Here, we identified a deleterious hemizygous variant of X-linked retinoblastoma-binding protein 7 (RBBP7) as a potential key cause of MA, which was also found to be associated with the development of Leydig cell tumors. This mutation resulted in premature protein translation termination, affecting the sixth WD40 domain of the RBBP7 and the interaction of the mutated RBBP7 with histone H4. Decreased BRCA1 and increased γH2AX were observed in the proband. In mouse spermatogonial and pachytene spermatocyte-derived cells, deprivation of rbbp7 led to cell cycle arrest and apoptosis. In Drosophila, knockdown of RBBP7/Caf1-55 in germ cells resulted in complete absence of germ cells and reduced testis size, whereas knockdown of RBBP7/Caf1-55 in cyst cells resulted in hyperproliferative testicular cells. Interestingly, male infertility caused by Caf1-55 deficiency was rescued by ectopic expression of wild-type human RBBP7 but not mutant variants, suggesting the importance of RBBP7 in spermatogenesis. Our study provides insights into the mechanisms underlying the co-occurrence of MA and testicular tumors and may pave the way for innovative genetic diagnostics of these 2 diseases.

Authors

Jingping Li, Huimei Zheng, Jiaru Hou, Jianhua Chen, Fengbin Zhang, Xiaohang Yang, Fan Jin, Yongmei Xi

×
Corrigendum
T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice
Florian Wiede, … , Dale I. Godfrey, Tony Tiganis
Florian Wiede, … , Dale I. Godfrey, Tony Tiganis
Published October 16, 2023
Citation Information: J Clin Invest. 2023;133(20):e175163. https://doi.org/10.1172/JCI175163.
View: Text | PDF | Amended Article

T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice

  • Text
  • PDF
Abstract

Authors

Florian Wiede, Benjamin J. Shields, Sock Hui Chew Konstantinos Kyparissoudis, Catherine van Vliet, Sandra Galic, Michel L. Tremblay, Sarah M. Russell, Dale I. Godfrey, Tony Tiganis

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts