In IgE-mediated food allergies, exposure to the allergen activates systemic allergic responses. Oral immunotherapy (OIT) treats food allergies through incremental increases in oral allergen exposure. However, OIT only induces sustained clinical tolerance and decreased basophil sensitivity in a subset of individuals despite increases in circulating allergen-specific IgG in all treated individuals. Therefore, we examined the allergen-specific antibodies from 2 OIT cohorts of patients with sustained and transient responses. Here, we compared antibodies from individuals with sustained or transient responses and discovered specific tolerance-associated conformational epitopes of the immunodominant allergen Ara h 2 recognized by neutralizing antibodies. First, we identified what we believe to be previously unknown conformational, intrahelical epitopes using x-ray crystallography with recombinant antibodies. We then identified epitopes only recognized in sustained tolerance. Finally, antibodies recognizing tolerance-associated epitopes effectively neutralized allergen to suppress IgE-mediated effector cell activation. Our results demonstrate the molecular basis of antibody-mediated protection in IgE-mediated food allergy, by defining how these antibodies disrupt IgE-allergen interactions to prevent allergic reactions. Our approach to studying the structural and functional basis for neutralizing antibodies demonstrates the clinical relevance of specific antibody clones in antibody-mediated tolerance. We anticipate that our findings will form the foundation for treatments of peanut allergy using neutralizing antibodies and hypoallergens.
Nicole A. LaHood, Jungki Min, Tarun Keswani, Crystal M. Richardson, Kwasi Amoako, Jingjia Zhou, Orlee Marini-Rapoport, Hervé Bernard, Stéphane Hazebrouck, Wayne G. Shreffler, J. Christopher Love, Anna Pomes, Lars C. Pedersen, Geoffrey A. Mueller, Sarita U. Patil
Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.
Kimberly A. Jett, Zakery N. Baker, Amzad Hossain, Aren Boulet, Paul A. Cobine, Sagnika Ghosh, Philip Ng, Orhan Yilmaz, Kris Barreto, John DeCoteau, Karen Mochoruk, George N. Ioannou, Christopher Savard, Sai Yuan, Osama H.M.H. Abdalla, Christopher Lowden, Byung-Eun Kim, Hai-Ying Mary Cheng, Brendan J. Battersby, Vishal M. Gohil, Scot C. Leary
Three principal ER quality-control mechanisms, namely, the unfolded protein response, ER-associated degradation (ERAD), and ER-phagy are each important for the maintenance of ER homeostasis, yet how they are integrated to regulate ER homeostasis and organellar architecture in vivo is largely unclear. Here we report intricate crosstalk among the 3 pathways, centered around the SEL1L-HRD1 protein complex of ERAD, in the regulation of organellar organization in β cells. SEL1L-HRD1 ERAD deficiency in β cells triggers activation of autophagy, at least in part, via IRE1α (an endogenous ERAD substrate). In the absence of functional SEL1L-HRD1 ERAD, proinsulin is retained in the ER as high molecular weight conformers, which are subsequently cleared via ER-phagy. A combined loss of both SEL1L and autophagy in β cells leads to diabetes in mice shortly after weaning, with premature death by approximately 11 weeks of age, associated with marked ER retention of proinsulin and β cell loss. Using focused ion beam scanning electron microscopy powered by deep-learning automated image segmentation and 3D reconstruction, our data demonstrate a profound organellar restructuring with a massive expansion of ER volume and network in β cells lacking both SEL1L and autophagy. These data reveal at an unprecedented detail the intimate crosstalk among the 3 ER quality-control mechanisms in the dynamic regulation of organellar architecture and β cell function.
Neha Shrestha, Mauricio Torres, Jason Zhang, You Lu, Leena Haataja, Rachel B. Reinert, Jeffrey Knupp, Yu-Jie Chen, Gunes Parlakgul, Ana Paula Arruda, Billy Tsai, Peter Arvan, Ling Qi
Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.
Mehdi Benamar, Qian Chen, Janet Chou, Amélie M. Julé, Rafik Boudra, Paola Contini, Elena Crestani, Peggy S. Lai, Muyun Wang, Jason Fong, Shira Rockwitz, Pui Lee, Tsz Man Fion Chan, Ekin Zeynep Altun, Eda Kepenekli, Elif Karakoc-Aydiner, Ahmet Ozen, Perran Boran, Fatih Aygun, Pinar Onal, Ayse Ayzit Kilinc Sakalli, Haluk Cokugras, Metin Yusuf Gelmez, Fatma Betul Oktelik, Esin Aktas Cetin, Yuelin Zhong, Maria Lucia Taylor, Katherine Irby, Natasha B. Halasa, Elizabeth H. Mack, Overcoming COVID-19 Investigators, Sara Signa, Ignazia Prigione, Marco Gattorno, Nicola Cotugno, Donato Amodio, Raif S. Geha, Mary Beth Son, Jane Newburger, Pankaj B. Agrawal, Stefano Volpi, Paolo Palma, Ayca Kiykim, Adrienne G. Randolph, Gunnur Deniz, Safa Baris, Raffaele De Palma, Klaus Schmitz-Abe, Louis-Marie Charbonnier, Lauren A. Henderson, Talal A. Chatila
The rostral ventromedial medulla (RVM) exerts bidirectional descending modulation of pain attributable to the activity of electrophysiologically identified pronociceptive ON and antinociceptive OFF neurons. Here, we report that GABAergic ON neurons specifically express G protein–coupled estrogen receptor (GPER). GPER+ neurons exhibited characteristic ON-like responses upon peripheral nociceptive stimulation. Optogenetic activation of GPER+ neurons facilitated, but their ablation abrogated, pain. Furthermore, activation of GPER caused depolarization of ON cells, potentiated pain, and ameliorated morphine analgesia through desensitizing μ-type opioid receptor–mediated (MOR-mediated) activation of potassium currents. In contrast, genetic ablation or pharmacological blockade of GPER attenuated pain, enhanced morphine analgesia, and delayed the development of morphine tolerance in diverse preclinical pain models. Our data strongly indicate that GPER is a marker for GABAergic ON cells and illuminate the mechanisms underlying hormonal regulation of pain and analgesia, thus highlighting GPER as a promising target for the treatment of pain and opioid tolerance.
Yingfu Jiao, Po Gao, Li Dong, Xiaowei Ding, Youqiang Meng, Jiahong Qian, Ting Gao, Ruoxi Wang, Tao Jiang, Yunchun Zhang, Dexu Kong, Yi Wu, Sihan Chen, Saihong Xu, Dan Tang, Ping Luo, Meimei Wu, Li Meng, Daxiang Wen, Changhao Wu, Guohua Zhang, Xueyin Shi, Weifeng Yu, Weifang Rong
Control of intracellular parasites responsible for malaria requires host IFN-γ+T-bet+CD4+ T cells (Th1 cells) with IL-10 produced by Th1 cells to mitigate the pathology induced by this inflammatory response. However, these IL-10–producing Th1 (induced type I regulatory [Tr1]) cells can also promote parasite persistence or impair immunity to reinfection or vaccination. Here, we identified molecular and phenotypic signatures that distinguished IL-10–Th1 cells from IL-10+Tr1 cells in Plasmodium falciparum–infected people who participated in controlled human malaria infection studies, as well as C57BL/6 mice with experimental malaria caused by P. berghei ANKA. We also identified a conserved Tr1 cell molecular signature shared between patients with malaria, dengue, and graft-versus-host disease. Genetic manipulation of primary human CD4+ T cells showed that the transcription factor cMAF played an important role in the induction of IL-10, while BLIMP-1 promoted the development of human CD4+ T cells expressing multiple coinhibitory receptors. We also describe heterogeneity of Tr1 cell coinhibitory receptor expression that has implications for targeting these molecules for clinical advantage during infection. Overall, this work provides insights into CD4+ T cell development during malaria that offer opportunities for creation of strategies to modulate CD4+ T cell functions and improve antiparasitic immunity.
Chelsea L. Edwards, Susanna S. Ng, Fabian de Labastida Rivera, Dillon Corvino, Jessica A. Engel, Marcela Montes de Oca, Luzia Bukali, Teija C.M. Frame, Patrick T. Bunn, Shashi Bhushan Chauhan, Siddharth Sankar Singh, Yulin Wang, Jinrui Na, Fiona H. Amante, Jessica R. Loughland, Megan S.F. Soon, Nicola Waddell, Pamela Mukhopadhay, Lambros T. Koufariotis, Rebecca L. Johnston, Jason S. Lee, Rachel Kuns, Ping Zhang, Michelle J. Boyle, Geoffrey R. Hill, James S. McCarthy, Rajiv Kumar, Christian R. Engwerda
Accumulation of activated immune cells results in nonspecific hepatocyte killing in chronic hepatitis B (CHB), leading to fibrosis and cirrhosis. This study aims to understand the underlying mechanisms in humans and to define whether these are driven by widespread activation or a subpopulation of immune cells. We enrolled CHB patients with active liver damage to receive antiviral therapy and performed longitudinal liver sampling using fine-needle aspiration to investigate mechanisms of CHB pathogenesis in the human liver. Single-cell sequencing of total liver cells revealed a distinct liver-resident, polyclonal CD8+ T cell population that was enriched at baseline and displayed a highly activated immune signature during liver damage. Cytokine combinations, identified by in silico prediction of ligand-receptor interaction, induced the activated phenotype in healthy liver CD8+ T cells, resulting in nonspecific Fas ligand–mediated killing of target cells. These results define a CD8+ T cell population in the human liver that can drive pathogenesis and a key pathway involved in their function in CHB patients.
Shirin Nkongolo, Deeqa Mahamed, Adrian Kuipery, Juan D. Sanchez Vasquez, Samuel C. Kim, Aman Mehrotra, Anjali Patel, Christine Hu, Ian McGilvray, Jordan J. Feld, Scott Fung, Diana Chen, Jeffrey J. Wallin, Anuj Gaggar, Harry L.A. Janssen, Adam J. Gehring
Understanding the regulatory mechanisms of PD-L1 expression in tumors provides key clues for improving immune checkpoint blockade efficacy or developing novel oncoimmunotherapy. Here, we showed that the FDA-approved sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin dramatically suppressed PD-L1 expression and enhanced T cell–mediated cytotoxicity. Mechanistic study revealed that SGLT2 colocalized with PD-L1 at the plasma membrane and recycling endosomes and thereby prevented PD-L1 from proteasome-mediated degradation. Canagliflozin disturbed the physical interaction between SGLT2 and PD-L1 and subsequently allowed the recognition of PD-L1 by Cullin3SPOP E3 ligase, which triggered the ubiquitination and proteasome-mediated degradation of PD-L1. In mouse models and humanized immune-transformation models, either canagliflozin treatment or SGLT2 silencing significantly reduced PD-L1 expression and limited tumor progression — to a level equal to the PD-1 mAb — which was correlated with an increase in the activity of antitumor cytotoxic T cells. Notably, prolonged progression-free survival and overall survival curves were observed in the group of PD-1 mAb–treated patients with non–small cell lung cancer with high expression of SGLT2. Therefore, our study identifies a regulator of cell surface PD-L1, provides a ready-to-use small-molecule drug for PD-L1 degradation, and highlights a potential therapeutic target to overcome immune evasion by tumor cells.
Ling Ding, Xi Chen, Wenxin Zhang, Xiaoyang Dai, Hongjie Guo, Xiaohui Pan, Yanjun Xu, Jianguo Feng, Meng Yuan, Xiaomeng Gao, Jian Wang, Xiaqing Xu, Sicheng Li, Honghai Wu, Ji Cao, Qiaojun He, Bo Yang
People with kidney disease are disproportionately affected by atherosclerosis for unclear reasons. Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived mediator of kidney disease, levels of which are strongly associated with cardiovascular outcomes. We assessed suPAR’s pathogenic involvement in atherosclerosis using epidemiologic, genetic, and experimental approaches. We found serum suPAR levels to be predictive of coronary artery calcification and cardiovascular events in 5,406 participants without known coronary disease. In a genome-wide association meta-analysis including over 25,000 individuals, we identified a missense variant in the plasminogen activator, urokinase receptor (PLAUR) gene (rs4760), confirmed experimentally to lead to higher suPAR levels. Mendelian randomization analysis in the UK Biobank using rs4760 indicated a causal association between genetically predicted suPAR levels and atherosclerotic phenotypes. In an experimental model of atherosclerosis, proprotein convertase subtilisin/kexin–9 (Pcsk9) transfection in mice overexpressing suPAR (suPARTg) led to substantially increased atherosclerotic plaques with necrotic cores and macrophage infiltration compared with those in WT mice, despite similar cholesterol levels. Prior to induction of atherosclerosis, aortas of suPARTg mice excreted higher levels of CCL2 and had higher monocyte counts compared with WT aortas. Aortic and circulating suPARTg monocytes exhibited a proinflammatory profile and enhanced chemotaxis. These findings characterize suPAR as a pathogenic factor for atherosclerosis acting at least partially through modulation of monocyte function.
George Hindy, Daniel J. Tyrrell, Alexi Vasbinder, Changli Wei, Feriel Presswalla, Hui Wang, Pennelope Blakely, Ayse Bilge Ozel, Sarah Graham, Grace H. Holton, Joseph Dowsett, Akl C. Fahed, Kingsley-Michael Amadi, Grace K. Erne, Annika Tekmulla, Anis Ismail, Christopher Launius, Nona Sotoodehnia, James S. Pankow, Lise Wegner Thørner, Christian Erikstrup, Ole Birger Pedersen, Karina Banasik, Søren Brunak, Henrik Ullum, Jesper Eugen-Olsen, Sisse Rye Ostrowski, on behalf of the DBDS Consortium, Mary E. Haas, Jonas B. Nielsen, Luca A. Lotta, on behalf of the Regeneron Genetics Center, Gunnar Engström, Olle Melander, Marju Orho-Melander, Lili Zhao, Venkatesh L. Murthy, David J. Pinsky, Cristen J. Willer, Susan R. Heckbert, Jochen Reiser, Daniel R. Goldstein, Karl C. Desch, Salim S. Hayek
Metabolic reprogramming is an important cancer hallmark. However, the mechanisms driving metabolic phenotypes of cancer cells are unclear. Here, we show that the interferon-inducible (IFN-inducible) protein viperin drove metabolic alteration in cancer cells. Viperin expression was observed in various types of cancer and was inversely correlated with the survival rates of patients with gastric, lung, breast, renal, pancreatic, or brain cancer. By generating viperin knockdown or stably expressing cancer cells, we showed that viperin, but not a mutant lacking its iron-sulfur cluster–binding motif, increased lipogenesis and glycolysis via inhibition of fatty acid β-oxidation in cancer cells. In the tumor microenvironment, deficiency of fatty acids and oxygen as well as production of IFNs upregulated viperin expression via the PI3K/AKT/mTOR/HIF-1α and JAK/STAT pathways. Moreover, viperin was primarily expressed in cancer stem-like cells (CSCs) and functioned to promote metabolic reprogramming and enhance CSC properties, thereby facilitating tumor growth in xenograft mouse models. Collectively, our data indicate that viperin-mediated metabolic alteration drives the metabolic phenotype and progression of cancer.
Kyung Mi Choi, Jeong Jin Kim, Jihye Yoo, Ku Sul Kim, Youngeun Gu, John Eom, Haengdueng Jeong, Kyungeun Kim, Ki Taek Nam, Young Soo Park, Joon-Yong Chung, Jun-Young Seo
No posts were found with this tag.