Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Integration of ER protein quality-control mechanisms defines β cell function and ER architecture
Neha Shrestha, … , Peter Arvan, Ling Qi
Neha Shrestha, … , Peter Arvan, Ling Qi
Published November 8, 2022
Citation Information: J Clin Invest. 2023;133(1):e163584. https://doi.org/10.1172/JCI163584.
View: Text | PDF
Research Article Cell biology Metabolism

Integration of ER protein quality-control mechanisms defines β cell function and ER architecture

  • Text
  • PDF
Abstract

Three principal ER quality-control mechanisms, namely, the unfolded protein response, ER-associated degradation (ERAD), and ER-phagy are each important for the maintenance of ER homeostasis, yet how they are integrated to regulate ER homeostasis and organellar architecture in vivo is largely unclear. Here we report intricate crosstalk among the 3 pathways, centered around the SEL1L-HRD1 protein complex of ERAD, in the regulation of organellar organization in β cells. SEL1L-HRD1 ERAD deficiency in β cells triggers activation of autophagy, at least in part, via IRE1α (an endogenous ERAD substrate). In the absence of functional SEL1L-HRD1 ERAD, proinsulin is retained in the ER as high molecular weight conformers, which are subsequently cleared via ER-phagy. A combined loss of both SEL1L and autophagy in β cells leads to diabetes in mice shortly after weaning, with premature death by approximately 11 weeks of age, associated with marked ER retention of proinsulin and β cell loss. Using focused ion beam scanning electron microscopy powered by deep-learning automated image segmentation and 3D reconstruction, our data demonstrate a profound organellar restructuring with a massive expansion of ER volume and network in β cells lacking both SEL1L and autophagy. These data reveal at an unprecedented detail the intimate crosstalk among the 3 ER quality-control mechanisms in the dynamic regulation of organellar architecture and β cell function.

Authors

Neha Shrestha, Mauricio Torres, Jason Zhang, You Lu, Leena Haataja, Rachel B. Reinert, Jeffrey Knupp, Yu-Jie Chen, Allen H. Hunter, Gunes Parlakgul, Ana Paula Arruda, Billy Tsai, Peter Arvan, Ling Qi

×

Full Text PDF | Download (5.53 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts