Lymphatic filariasis is the major global cause of non-hereditary lymphoedema. We demonstrate the filarial nematode, Brugia malayi, induces lymphatic remodelling and impaired lymphatic drainage following parasitism of limb lymphatics in a mouse model. Lymphatic insufficiency was associated with elevated circulating lymphangiogenic mediators, including vascular endothelial growth factor C. Lymphatic insufficiency was dependent on type-2 adaptive immunity, interleukin-4 receptor, recruitment of C-C chemokine receptor-2 monocytes and alternatively-activated macrophages with pro-lymphangiogenic phenotype. Oral treatments with second-generation tetracyclines improved lymphatic function, while other classes of antibiotic had no significant effect. Second-generation tetracyclines directly targeted lymphatic endothelial cell proliferation and modified type-2 pro-lymphangiogenic macrophage development. Doxycycline treatment impeded monocyte recruitment, inhibited polarisation of alternatively-activated macrophages and suppressed T cell adaptive immune responses following infection. Our results determine a mechanism-of-action for the anti-morbidity effects of doxycycline in filariasis and supports clinical evaluation of second-generation tetracyclines as affordable, safe therapeutics for lymphoedemas of chronic inflammatory origin.
Julio Furlong-Silva, Stephen D. Cross, Amy E. Marriott, Nicolas Pionnier, John Archer, Andrew Steven, Stefan Schulte-Merker, Matthias Mack, Young-Kwon Hong, Mark J. Taylor, Joseph D. Turner
Characterization of the T cell response in individuals who recover from SARS-CoV-2 infection is critical to understand its contribution to protective immunity. A multiplexed peptide-MHC tetramer approach was used to screen 408 SARS-CoV-2 candidate epitopes for CD8+ T cell recognition in a cross-sectional sample of 30 COVID-19 convalescent individuals. T cells were evaluated using a 28-marker phenotypic panel, and findings were modelled against time from diagnosis, humoral and inflammatory responses. There were 132 SARS-CoV-2-specific CD8+ T cell responses detected across six different HLAs, corresponding to 52 unique epitope reactivities. CD8+ T cell responses were detected in almost all convalescent individuals and were directed against several structural and non-structural target epitopes from the entire SARS-CoV-2 proteome. A unique phenotype for SARS-CoV-2-specific T cells was observed that was distinct from other common virus-specific T cells detected in the same cross-sectional sample and characterized by early differentiation kinetics. Modelling demonstrated a coordinated and dynamic immune response characterized by a decrease in inflammation, increase in neutralizing antibody titer, and differentiation of a specific CD8+ T cell response. Overall, T cells exhibited distinct differentiation into stem-cell and transitional memory states, subsets, which may be key to developing durable protection.
Hassen Kared, Andrew D. Redd, Evan M. Bloch, Tania S. Bonny, Hermi R. Sumatoh, Faris Kairi, Daniel Carbajo, Brian Abel, Evan W. Newell, Maria Bettinotti, Sarah E. Benner, Eshan U. Patel, Kirsten Littlefield, Oliver Laeyendecker, Shmuel Shoham, David Sullivan, Arturo Casadevall, Andrew Pekosz, Alessandra Nardin, Michael Fehlings, Aaron AR Tobian, Thomas C. Quinn
Lysosomal dysfunction caused by mutations in lysosomal genes results in lysosomal storage disorder (LSD), characterized by accumulation of damaged proteins and organelles in cells and functional abnormalities in major organs, including the heart, skeletal muscle and liver. In LSD, autophagy is inhibited at the lysosomal degradation step and accumulation of autophagosomes is observed. Enlargement of the left ventricle (LV) and contractile dysfunction were observed in RagA/B cardiac-specific knockout (cKO) mice, a mouse model of LSD in which lysosomal acidification is impaired irreversibly. YAP, a downstream effector of the Hippo pathway, was accumulated in RagA/B cKO mouse hearts. Inhibition of YAP ameliorated cardiac hypertrophy and contractile dysfunction and attenuated accumulation of autophagosomes without affecting lysosomal function, suggesting that YAP plays an important role in mediating cardiomyopathy in RagA/B cKO mice. Cardiomyopathy was also alleviated by downregulation of Atg7, an intervention to inhibit autophagy, whereas it was exacerbated by stimulation of autophagy. YAP physically interacted with transcription factor EB (TFEB), a master transcription factor that controls autophagic and lysosomal gene expression, thereby facilitating accumulation of autophagosomes without degradation. These results indicate that accumulation of YAP in the presence of LSD promotes cardiomyopathy by stimulating accumulation of autophagosomes through activation of TFEB.
Shohei Ikeda, Jihoon Nah, Akihiro Shirakabe, Peiyong Zhai, Shin-ichi Oka, Sebastiano Sciarretta, Kun-Liang Guan, Hiroaki Shimokawa, Junichi Sadoshima
Human metabolic incorporation of non-human sialic acid (Sia) N-glycolylneuraminic acid into endogenous glycans generates inflammation via pre-existing antibodies, likely contributing to red-meat-induced atherosclerosis acceleration. Exploring if this mechanism affects atherosclerosis in end-stage renal disease (ESRD), we instead found serum accumulation of 2-keto-3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (Kdn), a Sia prominently expressed in cold-blooded vertebrates. Levels of Kdn precursor mannose also increased but within normal range in ESRD patients. Mannose ingestion by healthy volunteers raised urinary mannose and Kdn. Kdn production pathways remain conserved in mammals but were diminished by a M42T substitution in a key biosynthetic enzyme, N-acetylneuraminate synthase. Remarkably, reversion to the ancestral methionine then occurred independently in two lineages, including humans. However, mammalian glycan databases contain no Kdn-glycans. We hypothesize that potential toxicities of excess mannose in mammals is partly buffered by conversion to free Kdn. Thus, mammals likely conserved Kdn biosynthesis and modulated it in lineage-specific manner, not for glycosylation, but to control physiological mannose intermediates/metabolites. However, human cells can be forced to express Kdn-glycans, via genetic mutations enhancing Kdn utilization, or by transfection with fish enzymes producing CMP-Kdn. Antibodies against Kdn-glycans occur in pooled human immunoglobulins. Pathological conditions that elevate Kdn levels could therefore result in antibody-mediated inflammatory pathologies.
Kunio Kawanishi, Sudeshna Saha, Sandra Diaz, Michael Vaill, Aniruddha Sasmal, Shoib S. Siddiqui, Biswa P. Choudhury, Kumar Sharma, Xi Chen, Ian C. Schoenhofen, Chihiro Sato, Ken Kitajima, Hudson H. Freeze, Anja Münster-Kühnel, Ajit Varki
Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase (NOS)-dependent NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of Caveolin-1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells (iPSCs) from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO-glycolysis pathway may be a new target to modulate bone anabolism.
Zixue Jin, Jordan Kho, Brian Dawson, Ming-Ming Jiang, Yuqing Chen-Evenson, Saima Ali, Lindsay C. Burrage, Monica Grover, Donna J. Palmer, Dustin L. Turner, Philip Ng, Sandesh C.S. Nagamani, Brendan Lee
Autosomal dominant "sterile alpha motif domain containing 9 (Samd9) and Samd9L (Samd9/9L) syndromes" are a large subgroup of currently established inherited bone marrow failure syndromes that include MIRAGE, ataxia pancytopenia, and familial monosomy 7 syndromes. Samd9/9L genes are located in tandem on chromosome 7 and have been known to be the genes responsible for myeloid malignancies associated with monosomy 7. Additionally, as interferon-inducible genes, Samd9/9L are crucial for protection against viruses. Samd9/9L syndromes are caused by gain-of-function mutations and develop into infantile myelodysplastic syndromes associated with monosomy 7 (MDS/-7) at extraordinarily high frequencies. We generated mice expressing Samd9LD764N, which mimic the MIRAGE syndrome presenting with growth retardation, a short life, bone marrow failure, and multi-organ degeneration. In hematopoietic cells, Samd9LD764N downregulates the endocytosis of transferrin and c-Kit resulting in a rare cause of anemia and a low bone marrow reconstitutive potential that ultimately causes MDS/-7. By contrast, in non-hematopoietic cells we tested, Samd9LD764N upregulated the endocytosis of EGFR by Ship2 phosphatase translocation to the cytomembrane and activated lysosomes, resulting in the reduced expression of surface receptors and signaling. Thus Samd9/9L is a downstream regulator of interferon that controls receptor metabolism, with constitutive activation leading to multi-organ dysfunction.
Akiko Nagamachi, Akinori Kanai, Megumi Nakamura, Hiroshi Okuda, Akihiko Yokoyama, Satoru Shinriki, Hirotaka Matsui, Toshiya Inaba
Chronic pancreatitis affects over 250,000 people in the US and millions worldwide. It is associated with chronic debilitating pain, pancreatic exocrine failure, high-risk of pancreatic cancer, and usually progresses to diabetes. Treatment options are limited and ineffective. We developed a new potential therapy, wherein a pancreatic ductal infusion of 1-2% acetic acid in mice and non-human primates resulted in a non-regenerative, near-complete ablation of the exocrine pancreas, with complete preservation of the islets. Pancreatic ductal infusion of acetic acid in a mouse model of chronic pancreatitis led to resolution of chronic inflammation and pancreatitis-associated pain. Furthermore, acetic acid-treated animals showed improved glucose tolerance and insulin secretion. The loss of exocrine tissue in this procedure would not typically require further management in patients with chronic pancreatitis because they usually have pancreatic exocrine failure requiring dietary enzyme supplements. Thus, this procedure, which should be readily translatable to humans through an endoscopic retrograde cholangiopancreatography (ERCP), may offer a potential innovative non-surgical therapy for chronic pancreatitis that relieves pain and prevents the progression of pancreatic diabetes.
Mohamed Saleh, Kartikeya Sharma, Ranjeet S. Kalsi, Joseph C. Fusco, Anuradha Sehrawat, Jami L. Saloman, Ping Guo, Ting Zhang, Nada Mohamed, Yan Wang, Krishna Prasadan, George Gittes
Primary membranous nephropathy (pMN) is a leading cause of the nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1 positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induce proteolysis of the two essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton. Specific blockade of the lectin pathway prevented degradation of synaptopodin and NEPH1. Anti-PLA2R1-IgG4 directly bound mannose-binding lectin in a glycosylation-dependent manner. In a cohort of pMN patients, we identified increased levels of galactose-deficient IgG4, which correlated with anti-PLA2R1-titers and podocyte damage induced by patient sera. Assembly of the terminal C5b-9 complement complex and activation of the complement receptors C3aR1 or C5aR1 was required to induce proteolysis of synaptopodin and NEPH1 by two distinct proteolytic pathways, mediated by cysteine and aspartic proteinases, respectively. Together, these results demonstrate a mechanism by which aberrantly glycosylated IgG4 activates the lectin pathway and induces podocyte injury in primary membranous nephropathy.
George Haddad, Johan M. Lorenzen, Hong Ma, Noortje de Haan, Harald Seeger, Christelle Zaghrini, Simone Brandt, Malte Kölling, Urs Wegmann, Bence Kiss, Gábor Pál, Péter Gál, Rudolf P. Wuthrich, Manfred Wuhrer, Laurence H. Beck, David J. Salant, Gérard Lambeau, Andreas D. Kistler
To clarify the function of cyclin A2 in colon homeostasis and colorectal cancer (CRC), we generated mice deficient for cyclin A2 in colonic epithelial cells (CEC). Colons of those mice displayed architectural changes in the mucosa, and signs of inflammation as well as an increased proliferation of CEC associated with the appearance of low- and high-grade dysplasia. The main initial events triggering those alterations in cyclin A2 deficient CEC appear to be abnormal mitoses and DNA damage. Cyclin A2 deletion in CEC promoted the development of dysplasia and adenocarcinomas in the murine colitis-associated cancer model. We next explored the status of cyclin A2 expression in clinical CRC samples at the mRNA and protein level and found higher expression in tumors of stage I and II patients compared to those of stage III and IV. A meta-analysis of 11 transcriptome datasets comprising 2,239 primary CRC tumors displayed different CCNA2 (the mRNA coding for cyclin A2) expression levels among the CRC tumor subtypes with highest in CMS1 and lowest in CMS4. Moreover, high expression of CCNA2 was found to be a new independent prognosis factor for CRC tumors.
Yuchen Guo, Monica Gabola, Rossano Lattanzio, Conception Paul, Valérie Pinet, Ruizhi Tang, Hulya Turali, Julie Bremond, Ciro Longobardi, Chloé Maurizy, Quentin Da Costa, Pascal Finetti, Florence Boissière-Michot, Benjamin Rivière, Céline Lemmers, Séverine Garnier, François Bertucci, Inti Zlobec, Karim Chebli, Jamal Tazi, Rania Azar, Jean-Marie Blanchard, Peter Sicinski, Emilie Mamessier, Bénédicte Lemmers, Michael Hahne
Mutant isocitrate-dehydrogenase-1 (IDH1-R132H; mIDH1) is a hallmark of adult gliomas. Lower grade mIDH1 gliomas are classified into two molecular subgroups: (i) 1p/19q co-deletion/TERT-promoter mutations or (ii) inactivating mutations in α-thalassemia/mental retardation syndrome X-linked (ATRX) and TP53. This work, focuses on gliomas’ subtype harboring mIDH1, TP53 and ATRX inactivation. IDH1-R132H is a gain-of-function mutation that converts α-ketoglutarate into 2-hydroxyglutarate (D-2HG). The role of D-2HG within the tumor microenvironment of mIDH1/mATRX/mTP53 gliomas remains unexplored. Inhibition of D-2HG, when used as monotherapy or in combination with radiation and temozolomide (IR/TMZ), led to increased median survival (MS) of mIDH1 glioma bearing mice. Also, D-2HG inhibition elicited anti-mIDH1 glioma immunological memory. In response to D-2HG inhibition, PD-L1 expression levels on mIDH1-glioma cells increased to similar levels as observed in wild-type-IDH1 gliomas. Thus, we combined D-2HG inhibition/IR/TMZ with anti-PDL1 immune checkpoint-blockade and observed complete tumor regression in 60% of mIDH1 glioma bearing mice. This combination strategy reduced T-cell exhaustion and favored the generation of memory CD8+ T-cells. Our findings demonstrate that metabolic reprogramming elicits anti-mIDH1 glioma immunity, leading to increased MS and immunological memory. Our preclinical data supports the testing of IDH-R132H inhibitors in combination with IR/TMZ and anti-PDL1 as targeted therapy for mIDH1/mATRX/mTP53 glioma patients.
Padma Kadiyala, Stephen V. Carney, Jessica C. Gauss, Maria B. Garcia-Fabiani, Santiago Haase, Mahmoud S. Alghamri, Felipe J. Núñez, Yayuan Liu, Minzhi Yu, Ayman W. Taher, Fernando M. Nunez, Dan Li, Marta B. Edwards, Celina G. Kleer, Henry Appelman, Yilun Sun, Lili Zhao, James J. Moon, Anna Schwendeman, Pedro R. Lowenstein, Maria G. Castro
No posts were found with this tag.