Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Review Series

  • 567 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 56
  • 57
  • Next →
Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment
Víctor A. Arrieta, … , Roger Stupp, Adam M. Sonabend
Víctor A. Arrieta, … , Roger Stupp, Adam M. Sonabend
Published January 17, 2023
Citation Information: J Clin Invest. 2023;133(2):e163447. https://doi.org/10.1172/JCI163447.
View: Text | PDF

Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment

  • Text
  • PDF
Abstract

Immune checkpoint blockade (ICB) has revolutionized modern cancer therapy, arousing great interest in the neuro-oncology community. While several reports show that subsets of patients with glioma exhibit durable responses to immunotherapy, the efficacy of this treatment has not been observed for unselected patient populations, preventing its broad clinical implementation for gliomas and glioblastoma (GBM). To exploit the maximum therapeutic potential of ICB for patients with glioma, understanding the different aspects of glioma-related tumor immune responses is of critical importance. In this Review, we discuss contributing factors that distinguish subsets of patients with glioma who may benefit from ICB. Specifically, we discuss (a) the complex interaction between the tumor immune microenvironment and glioma cells as a potential influence on immunotherapy responses; (b) promising biomarkers for responses to immune checkpoint inhibitors; and (c) the potential contributions of peripheral immune cells to therapeutic responses.

Authors

Víctor A. Arrieta, Crismita Dmello, Daniel J. McGrail, Daniel J. Brat, Catalina Lee-Chang, Amy B. Heimberger, Dhan Chand, Roger Stupp, Adam M. Sonabend

×

Monocyte-neutrophil entanglement in glioblastoma
Dinorah Friedmann-Morvinski, Dolores Hambardzumyan
Dinorah Friedmann-Morvinski, Dolores Hambardzumyan
Published January 3, 2023
Citation Information: J Clin Invest. 2023;133(1):e163451. https://doi.org/10.1172/JCI163451.
View: Text | PDF

Monocyte-neutrophil entanglement in glioblastoma

  • Text
  • PDF
Abstract

Glioblastoma (GBM) is the most belligerent and frequent brain tumor in adults. Research over the past two decades has provided increased knowledge of the genomic and molecular landscape of GBM and highlighted the presence of a high degree of inter- and intratumor heterogeneity within the neoplastic compartment. It is now appreciated that GBMs are composed of multiple distinct and impressionable neoplastic and non-neoplastic cell types that form the unique brain tumor microenvironment (TME). Non-neoplastic cells in the TME form reciprocal interactions with neoplastic cells to promote tumor growth and invasion, and together they influence the tumor response to standard-of-care therapies as well as emerging immunotherapies. One of the most prevalent non-neoplastic cell types in the GBM TME are myeloid cells, the most abundant of which are of hematopoietic origin, including monocytes/monocyte-derived macrophages. Less abundant, although still a notable presence, are neutrophils of hematopoietic origin and intrinsic brain-resident microglia. In this Review we focus on neutrophils and monocytes that infiltrate tumors from the blood circulation, their heterogeneity, and their interactions with neoplastic cells and other non-neoplastic cells in the TME. We conclude with an overview of challenges in targeting these cells and discuss avenues for therapeutic exploitation to improve the dismal outcomes of patients with GBM.

Authors

Dinorah Friedmann-Morvinski, Dolores Hambardzumyan

×

Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy
Fatima Khan, … , Amy B. Heimberger, Peiwen Chen
Fatima Khan, … , Amy B. Heimberger, Peiwen Chen
Published January 3, 2023
Citation Information: J Clin Invest. 2023;133(1):e163446. https://doi.org/10.1172/JCI163446.
View: Text | PDF

Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy

  • Text
  • PDF
Abstract

Glioblastoma (GBM) is the most aggressive tumor in the central nervous system and contains a highly immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages and microglia (TAMs) are a dominant population of immune cells in the GBM TME that contribute to most GBM hallmarks, including immunosuppression. The understanding of TAMs in GBM has been limited by the lack of powerful tools to characterize them. However, recent progress on single-cell technologies offers an opportunity to precisely characterize TAMs at the single-cell level and identify new TAM subpopulations with specific tumor-modulatory functions in GBM. In this Review, we discuss TAM heterogeneity and plasticity in the TME and summarize current TAM-targeted therapeutic potential in GBM. We anticipate that the use of single-cell technologies followed by functional studies will accelerate the development of novel and effective TAM-targeted therapeutics for GBM patients.

Authors

Fatima Khan, Lizhi Pang, Madeline Dunterman, Maciej S. Lesniak, Amy B. Heimberger, Peiwen Chen

×

Cargo selection in endoplasmic reticulum–to–Golgi transport and relevant diseases
Vi T. Tang, David Ginsburg
Vi T. Tang, David Ginsburg
Published January 3, 2023
Citation Information: J Clin Invest. 2023;133(1):e163838. https://doi.org/10.1172/JCI163838.
View: Text | PDF

Cargo selection in endoplasmic reticulum–to–Golgi transport and relevant diseases

  • Text
  • PDF
Abstract

Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.

Authors

Vi T. Tang, David Ginsburg

×

Targeting fatty acid metabolism in glioblastoma
Jason Miska, Navdeep S. Chandel
Jason Miska, Navdeep S. Chandel
Published January 3, 2023
Citation Information: J Clin Invest. 2023;133(1):e163448. https://doi.org/10.1172/JCI163448.
View: Text | PDF

Targeting fatty acid metabolism in glioblastoma

  • Text
  • PDF
Abstract

Glioblastoma (GBM) is a primary tumor of the brain defined by its uniform lethality and resistance to conventional therapies. There have been considerable efforts to untangle the metabolic underpinnings of this disease to find novel therapeutic avenues for treatment. An emerging focus in this field is fatty acid (FA) metabolism, which is critical for numerous diverse biological processes involved in GBM pathogenesis. These processes can be classified into four broad fates: anabolism, catabolism, regulation of ferroptosis, and the generation of signaling molecules. Each fate provides a unique perspective by which we can inspect GBM biology and gives us a road map to understanding this complicated field. This Review discusses the basic, translational, and clinical insights into each of these fates to provide a contemporary understanding of FA biology in GBM. It is clear, based on the literature, that there are far more questions than answers in the field of FA metabolism in GBM, and substantial efforts should be made to untangle these complex processes in this intractable disease.

Authors

Jason Miska, Navdeep S. Chandel

×

Epigenetics, DNA damage, and aging
Carolina Soto-Palma, … , Christopher D. Faulk, Xiao Dong
Carolina Soto-Palma, … , Christopher D. Faulk, Xiao Dong
Published August 15, 2022
Citation Information: J Clin Invest. 2022;132(16):e158446. https://doi.org/10.1172/JCI158446.
View: Text | PDF

Epigenetics, DNA damage, and aging

  • Text
  • PDF
Abstract

Over the course of a human lifespan, genome integrity erodes, leading to an increased abundance of several types of chromatin changes. The abundance of DNA lesions (chemical perturbations to nucleotides) increases with age, as does the number of genomic mutations and transcriptional disruptions caused by replication or transcription of those lesions, respectively. At the epigenetic level, precise DNA methylation patterns degrade, likely causing increasingly stochastic variations in gene expression. Similarly, the tight regulation of histone modifications begins to unravel. The genomic instability caused by these mechanisms allows transposon element reactivation and remobilization, further mutations, gene dysregulation, and cytoplasmic chromatin fragments. This cumulative genomic instability promotes cell signaling events that drive cell fate decisions and extracellular communications known to disrupt tissue homeostasis and regeneration. In this Review, we focus on age-related epigenetic changes and their interactions with age-related genomic changes that instigate these events.

Authors

Carolina Soto-Palma, Laura J. Niedernhofer, Christopher D. Faulk, Xiao Dong

×

Metabolic changes in aging humans: current evidence and therapeutic strategies
Allyson K. Palmer, Michael D. Jensen
Allyson K. Palmer, Michael D. Jensen
Published August 15, 2022
Citation Information: J Clin Invest. 2022;132(16):e158451. https://doi.org/10.1172/JCI158451.
View: Text | PDF

Metabolic changes in aging humans: current evidence and therapeutic strategies

  • Text
  • PDF
Abstract

Aging and metabolism are inextricably linked, and many age-related changes in body composition, including increased central adiposity and sarcopenia, have underpinnings in fundamental aging processes. These age-related changes are further exacerbated by a sedentary lifestyle and can be in part prevented by maintenance of activity with aging. Here we explore the age-related changes seen in individual metabolic tissues — adipose, muscle, and liver — as well as globally in older adults. We also discuss the available evidence for therapeutic interventions such as caloric restriction, resistance training, and senolytic and senomorphic drugs to maintain healthy metabolism with aging, focusing on data from human studies.

Authors

Allyson K. Palmer, Michael D. Jensen

×

Cellular senescence: a key therapeutic target in aging and diseases
Lei Zhang, … , Paul D. Robbins, Yi Zhu
Lei Zhang, … , Paul D. Robbins, Yi Zhu
Published August 1, 2022
Citation Information: J Clin Invest. 2022;132(15):e158450. https://doi.org/10.1172/JCI158450.
View: Text | PDF

Cellular senescence: a key therapeutic target in aging and diseases

  • Text
  • PDF
Abstract

Cellular senescence is a hallmark of aging defined by stable exit from the cell cycle in response to cellular damage and stress. Senescent cells (SnCs) can develop a characteristic pathogenic senescence-associated secretory phenotype (SASP) that drives secondary senescence and disrupts tissue homeostasis, resulting in loss of tissue repair and regeneration. The use of transgenic mouse models in which SnCs can be genetically ablated has established a key role for SnCs in driving aging and age-related disease. Importantly, senotherapeutics have been developed to pharmacologically eliminate SnCs, termed senolytics, or suppress the SASP and other markers of senescence, termed senomorphics. Based on extensive preclinical studies as well as small clinical trials demonstrating the benefits of senotherapeutics, multiple clinical trials are under way. This Review discusses the role of SnCs in aging and age-related diseases, strategies to target SnCs, approaches to discover and develop senotherapeutics, and preclinical and clinical advances of senolytics.

Authors

Lei Zhang, Louise E. Pitcher, Matthew J. Yousefzadeh, Laura J. Niedernhofer, Paul D. Robbins, Yi Zhu

×

Connecting aging biology and inflammation in the omics era
Keenan A. Walker, … , David M. Wilson III, Luigi Ferrucci
Keenan A. Walker, … , David M. Wilson III, Luigi Ferrucci
Published July 15, 2022
Citation Information: J Clin Invest. 2022;132(14):e158448. https://doi.org/10.1172/JCI158448.
View: Text | PDF

Connecting aging biology and inflammation in the omics era

  • Text
  • PDF
Abstract

Aging is characterized by the accumulation of damage to macromolecules and cell architecture that triggers a proinflammatory state in blood and solid tissues, termed inflammaging. Inflammaging has been implicated in the pathogenesis of many age-associated chronic diseases as well as loss of physical and cognitive function. The search for mechanisms that underlie inflammaging focused initially on the hallmarks of aging, but it is rapidly expanding in multiple directions. Here, we discuss the threads connecting cellular senescence and mitochondrial dysfunction to impaired mitophagy and DNA damage, which may act as a hub for inflammaging. We explore the emerging multi-omics efforts that aspire to define the complexity of inflammaging — and identify molecular signatures and novel targets for interventions aimed at counteracting excessive inflammation and its deleterious consequences while preserving the physiological immune response. Finally, we review the emerging evidence that inflammation is involved in brain aging and neurodegenerative diseases. Our goal is to broaden the research agenda for inflammaging with an eye on new therapeutic opportunities.

Authors

Keenan A. Walker, Nathan Basisty, David M. Wilson III, Luigi Ferrucci

×

Mitochondrial dysfunction in cell senescence and aging
Satomi Miwa, … , Eduardo Chini, Thomas von Zglinicki
Satomi Miwa, … , Eduardo Chini, Thomas von Zglinicki
Published July 1, 2022
Citation Information: J Clin Invest. 2022;132(13):e158447. https://doi.org/10.1172/JCI158447.
View: Text | PDF

Mitochondrial dysfunction in cell senescence and aging

  • Text
  • PDF
Abstract

Mitochondrial dysfunction and cell senescence are hallmarks of aging and are closely interconnected. Mitochondrial dysfunction, operationally defined as a decreased respiratory capacity per mitochondrion together with a decreased mitochondrial membrane potential, typically accompanied by increased production of oxygen free radicals, is a cause and a consequence of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. Here, we summarize pathways that cause mitochondrial dysfunction in senescence and aging and discuss the major consequences of mitochondrial dysfunction and how these consequences contribute to senescence and aging. We also highlight the potential of senescence-associated mitochondrial dysfunction as an antiaging and antisenescence intervention target, proposing the combination of multiple interventions converging onto mitochondrial dysfunction as novel, potent senolytics.

Authors

Satomi Miwa, Sonu Kashyap, Eduardo Chini, Thomas von Zglinicki

×
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 56
  • 57
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts