Birth defects are the leading cause of infant mortality, and most inborn errors of development are multifactorial in origin resulting from complex gene-environment interactions. Definition of specific gene-environment interactions in the etiology and pathogenesis of congenital disorders is critically needed in the absence of genotype-phenotype correlation but is challenging. This is particularly true for congenital craniofacial anomalies, which account for approximately one-third of all birth defects, as they typically exhibit considerable inter- and intrafamilial variability. A classic example of this is Treacher Collins syndrome (TCS), which, although primarily caused by mutations in treacle ribosome biogenesis factor 1 (TCOF1), is characterized by considerable variability in the severity of mandibulofacial dysostosis. Here, we describe the genetic and environmental factors with converging effects that mechanistically contribute to the etiology and pathogenesis of craniofacial variation in this rare congenital disorder. We discovered in Tcof1+/– mouse models of TCS that the combination of different endogenous levels of Tcof1 (also known as treacle) protein and ROS within distinct genetic backgrounds correlated with TCS phenotype severity. Furthermore, geometric morphometric analyses revealed that genotype largely determines the craniofacial shape but that redox status determines the size of individual bones. Taken together, our results highlight the roles of ROS and genomic instability in modulating the variability and phenotype severity of craniofacial anomalies.
Sharien Fitriasari, Roberta Fiorino, Thoa H.K. Truong, Mary C. McKinney, Jill Dixon, Michael J. Dixon, Paul A. Trainor
LRRK2 contains a kinase domain where the N2081D Crohn’s disease (CD) risk and the G2019S Parkinson’s disease (PD) pathogenic variants are located. It is not clear how the N2081D variant increases CD risk or how these adjacent mutations give rise to distinct disorders. To investigate the pathophysiology of the CD-linked LRRK2 N2081D variant, we generated a knock-in (KI) mouse model and compared its effects with those of the LRRK2-G2019S mutation. Lrrk2N2081D KI mice demonstrated heightened sensitivity to induced colitis, resulting in more severe intestinal damage than in Lrrk2G2019S KI and WT mice. Analysis of colon tissue revealed distinct mutation-dependent LRRK2 RAB substrate phosphorylation, with significantly elevated phosphorylated RAB10 levels in Lrrk2N2081D mice. In cells, we demonstrated that the N2081D mutation activates LRRK2 through a mechanism distinct from that of LRRK2-G2019S. We also found that proinflammatory stimulation enhances LRRK2 kinase activity, leading to mutation-dependent differences in RAB phosphorylation and inflammatory responses in dendritic cells (DCs). Finally, we show that knockout of Rab12, but not pharmacological LRRK2 kinase inhibition, significantly reduced colitis severity in Lrrk2N2081D mice. Our study characterizes the pathogenic mechanisms of LRRK2-linked CD, highlights structural and functional differences between disease-associated LRRK2 variants, and suggests RAB proteins as promising therapeutic targets for modulating LRRK2 activity in CD treatment.
George R. Heaton, Xingjian Li, Xianting Li, Xiaoting Zhou, Yuanxi Zhang, Duc Tung Vu, Marc Oeller, Ozge Karayel, Quyen Q. Hoang, Meltem Ece Kars, Nitika Kamath, Minghui Wang, Leonid Tarassishin, Matthias Mann, Inga Peter, Zhenyu Yue
The current gold standard for assessing renal pathology in lupus nephritis (LN) is invasive and cannot be serially repeated. To assess if urine can serve as a liquid biopsy for underlying renal pathology, urine obtained from patients with LN at the time of renal biopsy were interrogated for 1,317 proteins, using an aptamer-based proteomic screen. Levels of 57 urine proteins were significantly elevated and correlated with pathology activity index (AI), notably endocapillary hypercellularity, fibrinoid necrosis, and cellular crescents. These included proteins pertaining to leukocyte/podocyte activation, neutrophil activation, endothelial activation, and markers of inflammation/anti-inflammation. In contrast, complement and coagulation cascade proteins, and proteins related to the extracellular matrix (ECM) emerged as the strongest urinary readouts of concurrent renal pathology chonicity index (CI), notably tubular atrophy and interstitial fibrosis. In vitro mechanistic studies revealed that complement proteins C3a and C5a increased the expression of profibrotic ECM proteins in macrophages and proximal tubule epithelial cells. Thus, carefully assembled panels of urinary proteins that are indicative of high renal pathology AI and/or CI may help monitor the status of renal pathology after therapy in patients with LN, in a noninvasive manner, without the need for repeat renal biopsies.
Ting Zhang, Jessica Castillo, Anto Sam Crosslee Louis Sam Titus, Kamala Vanarsa, Vedant Sharma, Sohan Kureti, Ramesh Saxena, Chandra Mohan
In peripheral tissues, an endothelial cell (EC) protein, GPIHBP1, captures lipoprotein lipase (LPL) from the interstitial spaces and transports it to the capillary lumen. LPL mediates the margination of triglyceride-rich (TG-rich) lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. TRL-derived fatty acids are used for fuel in oxidative tissues or stored in adipose tissue. In mice, GPIHBP1 is absent from capillary ECs of the brain (which uses glucose for fuel); consequently, LPL and TRL margination are absent in mouse brain capillaries. However, because fatty acids were reported to play signaling roles in the brain, we hypothesized that LPL-mediated TRL processing might occur within specialized vascular beds within the central nervous system. Here, we show that GPIHBP1 is expressed in capillary ECs of human and mouse choroid plexus (ChP) and that GPIHBP1 transports LPL (produced by adjacent ChP cells) to the capillary lumen. The LPL in ChP capillaries mediates both TRL margination and processing. Intracapillary LPL and TRL margination are absent in the ChP of Gpihbp1–/– mice. GPIHBP1 expression, intracapillary LPL, and TRL margination were also observed in the median eminence and subfornical organ, circumventricular organs implicated in the regulation of food intake.
Wenxin Song, Madison Hung, Ellen Kozlov, Megan Hung, Anh P. Tran, James Carroll, Le Phoung Nguyen, Troy L. Lowe, Paul Kim, Hyesoo Jung, Yiping Tu, Joonyoung Kim, Ashley M. Presnell, Julia Scheithauer, Jenna P. Koerner, Ye Yang, Shino D. Magaki, Christopher K. Williams, Michael Ploug, Haibo Jiang, Christer Betsholtz, Maarja Andaloussi Mäe, Liqun He, Anne P. Beigneux, Loren G. Fong, Stephen G. Young
Chemotherapy resistance remains a formidable challenge to the treatment of high-grade serous ovarian cancer (HGSOC). The drug-tolerant cells may originate from a small population of inherently resistant cancer stem cells (CSCs) in primary tumors. In contrast, sufficient evidence suggests that drug tolerance can also be transiently acquired by nonstem cancer cells. Regardless of the route, key regulators of this plastic process are poorly understood. Here, we utilized multiomics, tumor microarrays, and epigenetic modulation to demonstrate that SOX9 is a key chemo-induced driver of chemoresistance in HGSOC. Epigenetic upregulation of SOX9 was sufficient to induce chemoresistance in multiple HGSOC lines. Moreover, this upregulation induced the formation of a stem-like subpopulation and significant chemoresistance in vivo. Mechanistically, SOX9 increased transcriptional divergence, reprogramming the transcriptional state of naive cells into a stem-like state. Supporting this, we identified a rare cluster of SOX9-expressing cells in primary tumors that were highly enriched for CSCs and chemoresistance-associated stress gene modules. Notably, single-cell analysis showed that chemo treatment results in rapid population-level induction of SOX9 that enriches for a stem-like transcriptional state. Altogether, these findings implicate SOX9 as a critical regulator of early steps of transcriptional reprogramming that lead to chemoresistance through a CSC-like state in HGSOC.
Alexander J. Duval, Fidan Seker-Polat, Magdalena Rogozinska, Meric Kinali, Ann E. Walts, Ozlem Neyisci, Yaqi Zhang, Zhonglin Li, Edward J. Tanner III, Allison E. Grubbs, Sandra Orsulic, Daniela Matei, Mazhar Adli
Bacterial infections, particularly uropathogenic E. coli (UPEC), contribute substantially to male infertility through tissue damage and subsequent fibrosis in the testis and epididymis. The role of testicular macrophages (TMs), a diverse cell population integral to tissue maintenance and immune balance, in fibrosis is not fully understood. Here, we used single-cell RNA sequencing in a murine model of epididymo-orchitis to analyze TM dynamics during UPEC infection. Our study identified a marked increase in S100a4+ macrophages, originating from monocytes, strongly associated with fibrotic changes. This association was validated in human testicular and epididymal samples. We further demonstrated that S100a4+ macrophages transition to a myofibroblast-like phenotype, producing extracellular matrix proteins such as collagen I and fibronectin. S100a4, both extracellular and intracellular, activated collagen synthesis through the TGF-β/STAT3 signaling pathway, highlighting this pathway as a therapeutic target. Inhibition of S100a4 with niclosamide or macrophage-specific S100a4 KO markedly reduced immune infiltration, tissue damage, and fibrosis in infected murine models. Our findings establish the critical role of S100a4+ macrophages in fibrosis during UPEC-induced epididymo-orchitis and propose them as potential targets for antifibrotic therapy development.
Ming Wang, Xu Chu, Zhongyu Fan, Lin Chen, Huafei Wang, Peng Wang, Zihao Wang, Yiming Zhang, Yihao Du, Sudhanshu Bhushan, Zhengguo Zhang
Clinically, blockade of renal glucose resorption by sodium–glucose cotransporter 2 (SGLT2) inhibitors slows progression of kidney disease, yet the underlying mechanisms are not fully understood. We hypothesized that altered renal metabolites underlie observed kidney protection when SGLT2 function is lost. S-adenosylmethionine (SAM) levels were increased in kidneys from mice lacking SGLT2 function on a diabetogenic high-fat diet (SPHFD) compared with WT mice fed HFD. Elevated SAM in SPHFD was associated with improved kidney function and decreased expression of NF-κB pathway–related genes. Injured proximal tubular cells that emerged under HFD conditions in WT mice and humans consistently showed reduction in expression of the SAM synthetase Mat2a/MAT2A, while MAT2A inhibition, which reduces SAM production, abrogated kidney protection in SPHFD mice. Histone H3 lysine 27 (H3K27) repressive trimethylation of NF-κB–related genes was increased in SPHFD, consistent with SAM’s role as a methyl donor. Our data support a model whereby SGLT2 loss enhances SAM levels within the kidney, leading to epigenetic repression of inflammatory genes and kidney protection under metabolic stress.
Hiroshi Maekawa, Yalu Zhou, Yuki Aoi, Margaret E. Fain, Dorian S. Kaminski, Hyewon Kong, Zachary L. Sebo, Ram P. Chakrabarty, Benjamin C. Howard, Grant Andersen, Biliana Marcheva, Peng Gao, Pinelopi Kapitsinou, Joseph Bass, Ali Shilatifard, Navdeep S. Chandel, Susan E. Quaggin
While weight loss is highly recommended for those with obesity, >60% regain their lost weight. This weight cycling is associated with an elevated risk of cardiovascular disease, relative to never having lost weight. How weight loss and regain directly influence atherosclerotic inflammation is unknown. Thus, we studied short-term caloric restriction (stCR) in obese hypercholesterolemic mice, without confounding effects from changes in diet composition. Weight loss promoted atherosclerosis resolution independent of plasma cholesterol. Single-cell RNA sequencing and subsequent mechanistic studies indicated that this can be partly attributed to a unique subset of macrophages accumulating with stCR in epididymal white adipose tissue (eWAT) and atherosclerotic plaques. These macrophages, distinguished by high expression of Fc γ receptor 4 (Fcgr4), helped to clear necrotic cores in atherosclerotic plaques. Conversely, weight regain (WR) following stCR accelerated atherosclerosis progression with disappearance of Fcgr4+ macrophages from eWAT and plaques. Furthermore, WR caused reprogramming of immune progenitors, sustaining hyperinflammatory responsiveness. In summary, we have developed a model to investigate the inflammatory effects of weight cycling on atherosclerosis and the interplay between adipose tissue, bone marrow, and plaques. The findings suggest potential approaches to promote atherosclerosis resolution in obesity and weight cycling through induction of Fcgr4+ macrophages and inhibition of immune progenitor reprogramming.
Bianca Scolaro, Franziska Krautter, Emily J. Brown, Aleepta Guha Ray, Rotem Kalev-Altman, Marie Petitjean, Sofie Delbare, Casey Donahoe, Stephanie Pena, Michela L. Garabedian, Cyrus A. Nikain, Maria Laskou, Ozlem Tufanli, Carmen Hannemann, Myriam Aouadi, Ada Weinstock, Edward A. Fisher
The cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) pathway is intimately associated with antitumoral immunity; however, the direct involvement of this pathway in tumor cell demise remains elusive. Here, we identified a compound, dodecyl 6-hydroxy-2-naphthoate (DHN), that induces pyroptosis in melanoma cells by activating noncanonical cGAS/STING signaling. DHN targets mitochondrial protein cyclophilin D (CypD) to induce the release of mitochondrial DNA, leading to cGAS activation and cyclic GMP-AMP (cGAMP) generation. Meanwhile, DHN-caused intracellular acidification induces protein kinase R-like endoplasmic reticulum kinase (PERK) activation, which promotes STING phosphorylation and polymerization in the presence of cGAMP, thereby facilitating the aggregation of STING in the ER, which serves as a platform to recruit Fas-associated via death domain (FADD) and caspase-8, leading to caspase-8 activation and subsequent gasdermin E cleavage, which ultimately results in pyroptosis of tumor cells and tumor regression in mouse models. The occurrence of this noncanonical cGAS/STING pathway–associated pyroptosis is also observed when both cGAS is activated and intracellular pH declines. Collectively, our findings reveal a pathway that links noncanonical cGAS/STING signaling to gasdermin E–mediated pyroptosis, thereby offering valuable insights for tumor therapy.
Li Xiao, Yuan-li Ai, Xiang-yu Mi, Han Liang, Xiang Zhi, Liu-zheng Wu, Qi-tao Chen, Tong Gou, Chao Chen, Bo Zhou, Wen-bin Hong, Lu-ming Yao, Jun-jie Chen, Xianming Deng, Fu-nan Li, Qiao Wu, Hang-zi Chen
Erythropoietic protoporphyria (EPP) is a genetic disorder typically resulting from decreased ferrochelatase (FECH) activity, the last enzyme in heme biosynthesis. Patients with X-linked protoporphyria (XLPP) have an overlapping phenotype caused by increased activity of 5-aminolevulinic acid synthase 2 (ALAS2), the first enzyme in erythroid heme synthesis. In both cases, protoporphyrin IX (PPIX) accumulates in erythrocytes and secondarily in plasma and tissues. Patients develop acute phototoxicity reactions upon brief exposure to sunlight. Some also experience chronic liver disease, and a small fraction develop acute cholestatic liver failure. Therapeutic options are limited, and none, save hematopoietic stem cell transplantation, directly targets erythroid PPIX accumulation. Bitopertin is an investigational orally available small-molecule inhibitor of the erythroid cell-surface glycine transporter GLYT1. We established the bitopertin PPIX inhibitory half-maximal effective concentration in a human erythroblast EPP model and confirmed a marked reduction of PPIX in erythroblasts derived from patients with EPP. We demonstrate that bitopertin also reduced erythrocyte and plasma PPIX accumulation in vivo in both EPP and XLPP mouse models. Finally, the reduction in erythroid PPIX ameliorated liver disease in the EPP mouse model. Altogether, these data support the development of bitopertin to treat patients with EPP or XLPP.
Sarah Ducamp, Min Wu, Juan Putra, Dean R. Campagna, Yi Xiang, Vu Hong, Matthew M. Heeney, Amy K. Dickey, Rebecca K. Leaf, Mark D. Fleming, Brian MacDonald, Paul J. Schmidt
No posts were found with this tag.